Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78498
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳zh_TW
dc.contributor.advisorYang-Fang Chenen
dc.contributor.author程瑜婷zh_TW
dc.contributor.authorYu-Ting Chengen
dc.date.accessioned2021-07-11T15:00:21Z-
dc.date.available2024-10-02-
dc.date.copyright2019-10-22-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Valov, Ilia, et al. "Electrochemical metallization memories—fundamentals, applications, prospects." Nanotechnology 22.25: 254003 (2011).
2. Waser, Rainer, et al. "Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges." Adv. Mater. 21.25-26: 2632-2663 (2009).
3. Yang, Y. C., Pan, F., Liu, Q., Liu, M., & Zeng, F. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett., 9(4), 1636-1643 (2009).
4. Lin, W. P., Liu, S. J., Gong, T., Zhao, Q., & Huang, W. Polymer‐Based resistive memory materials and devices. Adv. Mater., 26(4), 570-606 (2014).
5. Wong, H. S. P., Lee, H. Y., Yu, S., Chen, Y. S., Wu, Y., Chen, P. S., ... & Tsai, M. J. Metal–oxide RRAM. Proc. IEEE, 100(6), 1951-1970 (2012).
6. Gao, S., Chen, C., Zhai, Z., Liu, H. Y., Lin, Y. S., Li, S. Z., ... & Pan, F. Resistive switching and conductance quantization in Ag/SiO2/indium tin oxide resistive memories. Appl. Phys. Lett., 105(6), 063504 (2014).
7. Chang, T. C., Chang, K. C., Tsai, T. M., Chu, T. J., & Sze, S. M. Resistance random access memory. Mater. Today, 19(5), 254-264 (2016).
8. Yu, S., & Wong, H. S. P. Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans. on Electron devices, 58(5), 1352-1360 (2011).
9. Celano, U., Goux, L., Belmonte, A., Opsomer, K., Degraeve, R., Detavernier, C., ... & Vandervorst, W. Understanding the dual nature of the filament dissolution in conductive bridging devices. J. Phys. Chem. Lett., 6(10), 1919-1924 (2015).
10. Zahurak, J., Miyata, K., Fischer, M., Balakrishnan, M., Chhajed, S., Wells, D., ... & Nakazawa, K. Process integration of a 27nm, 16Gb Cu ReRAM. In 2014 IEEE International Electron Devices Meeting (pp. 6-2). IEEE (2014).
11. Lin, W. J., Liao, Y. M., Lin, H. Y., Haider, G., Lin, S. Y., Liao, W. C., ... & Lo, Y. S. All-marine based random lasers. Org. Electron., 62, 209-215 (2018).
12. Luan, F., Gu, B., Gomes, A. S., Yong, K. T., Wen, S., & Prasad, P. N. Lasing in nanocomposite random media. Nano Today., 10(2), 168-192 (2015).
13. Wiersma, D. S. The physics and applications of random lasers. Nat. Phys., 4(5), 359 (2008).
14. Lau, S. P., Yang, H., Yu, S. F., Yuen, C., Leong, E. S., Li, H., & Hng, H. H. Flexible ultraviolet random lasers based on nanoparticles. Small., 1(10), 956-959 (2005).
15. Hu, H. W., Haider, G., Liao, Y. M., Roy, P. K., Ravindranath, R., Chang, H. T., ... & Chen, Y. F. Wrinkled 2D materials: A versatile platform for low‐threshold stretchable random lasers. Adv. Mater., 29(43), 1703549 (2017).
16. Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L., & Sauvain, E. Laser action in strongly scattering media. Nature, 368(6470), 436 (1994).
17. Gottardo, S., Sapienza, R., García, P. D., Blanco, A., Wiersma, D. S., & López, C. Resonance-driven random lasing. Nat. Photonics, 2(7), 429 (2008).
18. Cao, H., Zhao, Y. G., Ho, S. T., Seelig, E. W., Wang, Q. H., & Chang, R. P. Random laser action in semiconductor powder. Phys. Rev. Lett., 82(11), 2278 (1999).
19. Wiersma, D. S., & Cavalieri, S. Light emission: A temperature-tunable random laser. Nature, 414(6865), 708 (2001).
20. Sun, T. M., Wang, C. S., Liao, C. S., Lin, S. Y., Perumal, P., Chiang, C. W., & Chen, Y. F. Stretchable random lasers with tunable coherent loops. ACS Nano, 9(12), 12436-12441 (2015).
21. Chang, S. W., Liao, W. C., Liao, Y. M., Lin, H. I., Lin, H. Y., Lin, W. J., ... & Shen, K. C. A white random laser. Sci. Rep., 8(1), 2720 (2018).
22. Kim, T. W., Yang, Y., Li, F., & Kwan, W. L. Electrical memory devices based on inorganic/organic nanocomposites. NPG Asia Mater., 4(6), e18 (2012).
23. Shim, J. H., Jung, J. H., Lee, M. H., Kim, T. W., Son, D. I., Han, A. N., & Kim, S. W. Memory mechanisms of nonvolatile organic bistable devices based on colloidal CuInS2/ZnS core–shell quantum dot–Poly (N-vinylcarbazole) nanocomposites. Org. Electron., 12(9), 1566-1570 (2011).
24. Ma, Z., Ooi, P. C., Li, F., Yun, D. Y., & Kim, T. W. Electrical bistabilities and conduction mechanisms of nonvolatile memories based on a polymethylsilsesquioxane insulating layer containing CdSe/ZnS quantum dots. J. Electron. Mater., 44(10), 3962-3966 (2015).
25. Son, D. I., Park, D. H., Choi, W. K., Cho, S. H., Kim, W. T., & Kim, T. W. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly (methyl methacrylate) polymer layer. Nanotechnology, 20(19), 195203 (2009).
26. Kassaee, M. Z., Mohammadkhani, M., Akhavan, A., & Mohammadi, R. In situ formation of silver nanoparticles in PMMA via reduction of silver ions by butylated hydroxytoluene. Struct. Chem., 22(1), 11-15 (2011).
27. Yun, D. Y., Park, H. M., Kim, S. W., Kim, S. W., & Kim, T. W. Enhancement of memory margins for stable organic bistable devices based on graphene-oxide layers due to embedded CuInS2 quantum dots. Carbon, 75, 244-248 (2014).
28. Wargnier, R., Baranov, A. V., Maslov, V. G., Stsiapura, V., Artemyev, M., Pluot, M., ... & Nabiev, I. Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot− nanogold assemblies. Nano Lett., 4(3), 451-457 (2004).
29. Zhou, Y., Yun, D. Y., Kim, S. W., & Kim, T. W. Multilevel characteristics and memory mechanisms for nonvolatile memory devices based on CuInS2 quantum dot-polymethylmethacrylate nanocomposites. Appl. Phys. Lett., 105(23), 185_1 (2014).
30. Son, D. I., Kim, J. H., Park, D. H., Choi, W. K., Li, F., Ham, J. H., & Kim, T. W. Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole polymer layer. Nanotechnology, 19(5), 055204 (2008).
31. Vahala, K. J. Optical microcavities. Nature, 424(6950), 839 (2003).
32. Nirmal, M., & Brus, L. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res., 32(5), 407-414 (1999).
33. Sargent, E. H. Colloidal quantum dot solar cells. Nat. photonics, 6(3), 133 (2012).
34. Ma, Z., Wu, C., Lee, D. U., Li, F., & Kim, T. W. Carrier transport and memory mechanisms of multilevel resistive memory devices with an intermediate state based on double-stacked organic/inorganic nanocomposites. Org. Electron., 28, 20-24 (2016).
35. Lim, J., Bae, W. K., Kwak, J., Lee, S., Lee, C., & Char, K. Perspective on synthesis, device structures, and printing processes for quantum dot displays. Opt. Mater. Express, 2(5), 594-628 (2012).
36. Tytus, M., Krasnyj, J., Jacak, W., Chuchmała, A., Donderowicz, W., & Jacak, L. Differences between photoluminescence spectra of type-I and type-II quantum dots. In J. Phys. Conf. Ser. (Vol. 104, No. 1, p. 012011). IOP Publishing (2008).
37. Yoffe, A. D. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys., 50(1), 1-208 (2001).
38. Waser R, Dittmann R, Staikov G, Szot K. Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632-2663 (2009).
39. Lin WP, Liu SJ, Gong T, Zhao Q, Huang W. Polymer‐Based Resistive Memory Materials and Devices. Adv. Mater. 26, 570-606 (2014).
40. Akinaga, H., Shima, H., Takano, F., Inoue, I. H., & Takagi, H. Resistive switching effect in metal/insulator/metal heterostructures and its application for non‐volatile memory. IEEJ Trans. Electr. Electron. Eng., 2(4), 453-457 (2007).
41. Kozicki, M. N., Yun, M., Hilt, L., & Singh, A. Applications of programmable resistance changes in metal-doped chalcogenides. Pennington NJ USA: Electrochem. Soc., 99, 298-309 (1999).
42. Donald A. Neamen. Semiconductor Physics and Devices: Basic Principles, 4e
43. Jeremy Bernstein, Paul M. Fishbane, Stephen G. Gasiorowicz. Modern Physics (2000)
44. Luan, F., Gu, B., Gomes, A. S., Yong, K. T., Wen, S., & Prasad, P. N. Lasing in nanocomposite random media. Nano Today., 10(2), 168-192 (2015).
45. Wiersma, D. S. The physics and applications of random lasers. Nat. Phys., 4(5), 359 (2008).
46. Sun, T. M., Wang, C. S., Liao, C. S., Lin, S. Y., Perumal, P., Chiang, C. W., & Chen, Y. F. Stretchable random lasers with tunable coherent loops. ACS Nano, 9(12), 12436-12441 (2015).
47. Balachandran, R. M., Pacheco, D. P., & Lawandy, N. M. Laser action in polymeric gain media containing scattering particles. Appl. Optics, 35(4), 640-643 (1996).
48. Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L., & Sauvain, E. Laser action in strongly scattering media. Nature, 368(6470), 436 (1994).
49. Liao, Y. M., Lai, Y. C., Perumal, P., Liao, W. C., Chang, C. Y., Liao, C. S., ... & Chen, Y. F. Highly stretchable label‐like random laser on universal substrates. Adv. Mate. Technol., 1(6), 1600068 (2016).
50. Auzel, F., & Goldner, P. Coherent light sources with powder: Stimulated amplification versus super-radiance. J. Alloys and Comp., 300, 11-17 (2000).
51. Polson, R. C., & Vardeny, Z. V. Random lasing in human tissues. Appl. Phys. Lett., 85(7), 1289-1291 (2004).
52. Wiersma, D. S., & Cavalieri, S. Light emission: A temperature-tunable random laser. Nature, 414(6865), 708 (2001).
53. http://www.pse.ntu.edu.tw/resear/super_pages.php?ID=research3&Sn=14
54. https://en.wikipedia.org/wiki/Poly(methyl_methacrylate)
55. Lim, J., Bae, W. K., Kwak, J., Lee, S., Lee, C., & Char, K. Perspective on synthesis, device structures, and printing processes for quantum dot displays. Opt. Mater. Express, 2(5), 594-628 (2012).
56. Tytus, M., Krasnyj, J., Jacak, W., Chuchmała, A., Donderowicz, W., & Jacak, L. Differences between photoluminescence spectra of type-I and type-II quantum dots. In J. Phys. Conf. Ser. (Vol. 104, No. 1, p. 012011). IOP Publishing (2008).
57. Waser R, Dittmann R, Staikov G, Szot K. Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632-2663 (2009).
58. Lin WP, Liu SJ, Gong T, Zhao Q, Huang W. Polymer‐Based Resistive Memory Materials and Devices. Adv. Mater. 26, 570-606 (2014).
59. Luan, F., Gu, B., Gomes, A. S., Yong, K. T., Wen, S., & Prasad, P. N. Lasing in nanocomposite random media. Nano Today., 10(2), 168-192 (2015).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78498-
dc.description.abstract本研究提出了一個新穎的隨機雷射光唯獨性電阻式隨機存取記憶體之概念。藉由導電橋接隨機存取記憶體之電化學金屬化原理,氧化還原反應後產生銀奈米粒子聚集於含有硒化鎘/硫化鋅膠體量子點的絕緣層中,外加高於閾值量之光輻射下,可得到隨機雷射之光訊號回饋,此為將導電橋接隨機存取記憶體結合隨機雷射所設計出的唯讀性電寫雙電讀光讀元件。對於隨機雷射光訊號而言,硒化鎘/硫化鋅膠體量子點為其增益介質的螢光材料,然而聚集而成的銀奈米粒子則為散射介質使受激輻射的光強度能夠於增益介質中累增形成隨機雷射訊號。再者,藉由直流電寫下高低阻態以及隨機雷射之強度閾值,可使之成為具有及閘邏輯性之記憶體。此研究成果可視為對於光通訊以及記憶體應用下的重大發展。zh_TW
dc.description.abstractThis study proposes a novel concept of integration of random laser in non-volatile resistive random access memory (RRAM), which consists of light emitting semiconductor quantum dots (QDs) embedded in an insulating layer. According to the electrochemical metallization (ECM) effect of the conductive bridge random access memory (CBRAM), the agglomeration of silver nanoparticles by the redox reaction are concentrated in the insulating layer during the on/off switching process, which can serve as scattering centers for the emitted light arising from QDs. Under the external radiation with the pumping power density above threshold, the optical signal feedback of random laser can be achieved. This unique feature provides an excellent opportunity for the newly designed RRAM possessing of reading the encoded information electrically and optically. For the occurrence of random laser action, CdSe/ZnS QDs act as the fluorescent materials of the gain medium, and the aggregated silver nanoparticles serve as the scattering centers for the formation of coherent loops, so that the intensity of the stimulated radiation can be amplified for the gain medium to achieve random laser action. Through the capability of both hybrid electric and optical reading, we demonstrate that the RRAM incorporated semiconductor QDs can be used multiple-bits AND gate logic. Our study shown here therefore paves a key step for the development of a variety of ultrahigh speed information technology.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:00:21Z (GMT). No. of bitstreams: 1
ntu-108-R06222057-1.pdf: 2753086 bytes, checksum: 8b04d26e74aa1934c901b8bedc4723d1 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
Chapter 1 Introduction 1
Chapter 2 Theoretical Background 4
2.1 Redox-Based Resistance Switching Memories 4
2.1.1 Resistance Switching Behaviors 5
2.1.2 Electrochemical Metallization Systems 7
2.2 Theory of Photoluminescence (PL) 9
2.2.1 Band Gap Structure 9
2.2.2 Optical Transition 12
2.3 Laser 14
2.4 Random Laser (RL) 18
2.4.1 Emission Properties 20
2.4.2 Application 23
Chapter 3 Experimental Details 26
3.1 Scanning Electron Microscope (SEM) 26
3.2 Energy-Dispersive X-ray Analysis (EDXA) 28
3.3 Thermal Evaporation 29
3.4 Absorption Spectrophotometer 31
3.5 Electrical Characteristics Measurement 32
3.6 Photoluminescence and Random Laser Measurement 33
3.7 Materials 34
3.7.1 PMMA 34
3.7.2 CdSe/ZnS Colloidal Core-Shell Quantum Dots 34
3.8 Device Fabrication 36
Chapter 4 Results and discussion 37
Chapter 5 Conclusions 48
Reference: 49
-
dc.language.isoen-
dc.subject電化學金屬化zh_TW
dc.subject電阻式隨機存取記憶體zh_TW
dc.subject隨機雷射zh_TW
dc.subject硒化鎘/硫化鋅膠體量子點zh_TW
dc.subjectRRAMen
dc.subjectrandom laseren
dc.subjectelectrochemical metallization effecten
dc.subjectCdSe/ZnS colloidal quantum dotsen
dc.title隨機雷射之複合型光電邏輯式電化學金屬化記憶體之整合zh_TW
dc.titleIntegration of Random Laser in Electrochemical Metallization Memories for Hybrid Optic/Electric Logicen
dc.typeThesis-
dc.date.schoolyear108-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝馬利歐;林泰源;沈志霖zh_TW
dc.contributor.oralexamcommitteeMario Hofmann;;en
dc.subject.keyword隨機雷射,電阻式隨機存取記憶體,電化學金屬化,硒化鎘/硫化鋅膠體量子點,zh_TW
dc.subject.keywordrandom laser,RRAM,electrochemical metallization effect,CdSe/ZnS colloidal quantum dots,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU201904155-
dc.rights.note未授權-
dc.date.accepted2019-09-26-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2024-10-22-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved