Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78495
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅(Chih-I Wu)
dc.contributor.authorAng-Sheng Chouen
dc.contributor.author周昂昇zh_TW
dc.date.accessioned2021-07-11T15:00:10Z-
dc.date.available2026-01-21
dc.date.copyright2021-03-05
dc.date.issued2021
dc.date.submitted2021-01-22
dc.identifier.citation[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films.” Science, vol. 306, pp. 666-669 (2004).
[2] X. Li and H. Zhu, “Two-dimensional MoS2: Properties, preparation, and applications.” Journal of Materiomics, 1(1):33-44 (2015).
[3] K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D.Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition.” Nano Lett. 12, 1, 161–166 (2012).
[4] J. S. Moon, M. Antcliffe, H. C. Seo, D. Curtis, S. Lin, A. Schmitz, I. Milosavljevic, A. A. Kiselev, R. S. Ross, D. K. Gaskill, P. M. Campbell, R. C. Fitch, K. M. Lee, and P. Asbeck, “Ultra-low resistance Ohmic contacts in graphene field effect transistors.” Applied Physics Letters, 100, 203512 (2012).
[5] H. W. Kroto, J. R. Heath, S. C. O’ Brien, R. F. Curl and R. E. Smalley, “Transition metal contacts to graphene.” Nature, 318, 162 (1985)
[6] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene.” Reviews of Modern Physics, 81(1): p. 109-162 (2009).
[7] Eva, Y.A., L. Guohong, and D. Xu, “Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport.” Reports on Progress in Physics, 75(5): p. 056501 (2012).
[8] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets.” Nature Chem, vol. 5, no. 4, pp. 263-75 (2013).
[9] Q. Tang and D. Jiang, “Stabilization and Band-Gap Tuning of the 1T-MoS2 Monolayer by Covalent Functionalization.” Chem. Mater, vol. 27, no. 10, pp. 3743-3748 (2015).
[10] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.” Nano Lett, vol. 10, no. 4, pp. 1271-5 (2010).
[11] B. S. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios, and R. Chau, “High performance fully-depleted tri-gate CMOS transistors.” IEEE Electron Device Letters, vol. 24, no. 4, pp. 263-265 (2003).
[12] V. P. Trivedi and J. G. Fossum, “Scaling fully depleted SOI CMOS.” IEEE Transactions on Electron Device, vol. 50, no. 10, pp. 2095-2103 (2003).
[13] S. Salahuddin and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Device.” Nano Letters, vol. 8, no. 2, pp. 405-410 (2008).
[14] E.P. Gusev, D.A. Buchanan, E. Cartier, A. Kurnar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P.C. Jamison, D.A. Neumayer, M. Copel, M.A. Gribelyuk, H. Okom-Schmidt, C. D'Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L-A. Ragnarsson, P. Ronsheim, K. Rim, R. J. Fleming, A. Mocuta and A. Ajmera, “Ultrathin high-K stacks for advanced COMS devices.” International Electron Device Meeting, pp. 20.1.1-20.1.4 (2001).
[15] S. Veeraraghavan and J. G. Fossum, “Short-channel effects in SOI MOSFETs.” IEEE Transactions on Electron Devices, vol. 36, no. 3, pp. 522-528 (1989).
[16] I. Ferain, C. A. Colinge and J.-P. Colinge, “Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors.” Nature, vol. 479, pp. 310-316 (2011).
[17] M. Heyns and W. Tsai, “Ultimate Scaling of CMOS Logic Devices with Ge and III–V Materials.” MRS Bulletin, vol. 34, no. 7, pp. 485-492 (2011).
[18] Y. Liu, X. Duan, Y. Huang, and X. Duan, “Two-dimensional transistors beyond graphene and TMDCs.” Chem Soc Rev, vol. 47, no. 16, pp. 6388-6409 (2018).
[19] F. Schwierz, J. Pezoldt, and R. Granzner, “Two-dimensional materials and their prospects in transistor electronics.” Nanoscale, vol. 7, no. 18, pp. 8261-83 (2015).
[20] H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene.” J. Mater. Chem., 21, 3335–3345 (2011).
[21] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee and L. Colombo, “Electronics based on two-dimensional materials.” Nature Nanotechnology, 9, 768–779 (2014).
[22] K. A. Patel, R. W. Grady, K. K. H. Smithe, E. Pop and R. Sordan, “Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography.” 2D Materials, 7, 015018 (2019).
[23] A. S Chou, P. C. Shen, C. C. Cheng, L. S. Lu, W. C. Chueh, M. Y. Li, G. Pitner, W. H. Chang, C. I. Wu, J. Kong, L. J. Li and H. S. P. Wong, “High On-Current 2D nFET of 390 μA/μm at VDS = 1V using Monolayer CVD MoS2 without Intentional Doping.” IEEE Symposia on VLSI Technology Circuits, TN1.7 (2020).
[24] R. T. Tung, “The physics and chemistry of the Schottky barrier height.” Applied Physics Reviews. 1, 011304 (2014).
[25] Y. Liu, J. Guo, E. Zhu, L. Liao, S. J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang and X. Duan, “Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions.” Nature, 557, 696–700 (2018).
[26] X. Cui, E. M. Shih, L. A. Jauregui, S. H. Chae, Y. D. Kim, B. Li, D. Seo, K. Pistunova, J. Yin, J. H. Park, H. J. Choi, Y. H. Lee, K. Watanabe, T. Taniguchi, P. Kim, C. R. Dean, and J. C. Hone, “Low-temperature Ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes.” Nano Letters, 17, 8, 4781–4786 (2017).
[27] L. Yu, Y. H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics.” Nano Lett., 14, 6, 3055–3063 (2014).
[28] Y. Wang, J. C. Kim, R. J. Wu, J. Martinez, X. Song, J. Yang, F. Zhao, A. Mkhoyan, H. Y. Jeong and M. Chhowalla, “Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors.” Nature, 568, 70–74 (2019).
[29] D. Jena, K. Banerjee and G. Xing, “Intimate contacts.” Nature Materials, vol. 13, no. 12, pp. 1076-1078 (2014).
[30] A. N. Obraztsov, “Chemical vapour deposition: Making graphene on a large scale.” Nature Nanotech. 4, 212–213 (2009).
[31] G. H. Han, F. Güneş, J. J. Bae, E. S. Kim, S. J. Chae, H.-J. Shin, J.-Y. Choi, D. Pribat, and Y. H. Lee, “Influence of Copper Morphology in Forming Nucleation Seeds for Graphene Growth.” Nano Lett. 11, 10, 4144–4148 (2011).
[32] S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, and J. H. Warner, “Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition.” Chem. Mater. 26, 22, 6371–6379 (2014).
[33] H, Xiao, “Introduction to semiconductor manufacturing technology 3/E” Chuan Hwa Publishing Ltd. Chapter 7 (2012).
[34] D.A. Boyd, W.-H. Lin, C.-C. Hsu, M.L. Teague, C.-C. Chen, Y.-Y. Lo, W.-Y. Chan, W.-B. Su, T.-C. Cheng, C.-S. Chang, C.-I. Wu N.-C. Yeh, “Single-step deposition of high-mobility graphene at reduced temperatures.” Nat Commun. 6, 6620 (2015).
[35] L. Bergman and R. J. Nemanich, “Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films.” Journal of Applied Physics 78, 6709 (1995).
[36] Y. Li, C. Yu, Y. Gan, P. Jiang, J.i Yu, Y. Ou, D.-F. Zou, C. Huang, J. Wang, T. Jia, Q. Luo, X.-F. Yu, H. Zhao, C.-F. Gao, and J. Li, “Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation.” npj Comput Mater. 4, 49 (2018).
[37] Shohei Nakahara, “Recent development in a TEM specimen preparation technique using FIB for semiconductor devices.” Surface and Coatings Technology Vol 169 –170, pages 721–727 (2003).
[38] Julio Güémez and Manuel Fiolhais, “Relativistic description of the photoelectric effect.” American Journal of Physics 86, 825 (2018)
[39] Friedrich Reinert and Stefan Hüfner, “Photoemission spectroscopy—from early days to recent applications.” New Journal of Physics. Vol 7, 97 (2005).
[40] Kuo-You Huang, “Fabrication of Ultralow-Contact-Resistance Graphene Field-Effect Transistors and Investigation of Metal-Graphene Interfaces.” GIPO, National Taiwan University, doctoral dissertation (2018).
[41] Xiaoqing Shi, Stuart A. Boden, “Chapter 17 — Scanning helium ion beam lithography.” Frontiers of Nanoscience, Vol 11, pages 563-594 (2016).
[42] Michael T Postek, András Vladár, Charles Archie, and Bin Ming, “Review of current progress in nanometrology with the helium ion microscope.” Meas. Sci. Technol. 22 024004 (2020).
[43] L. Dobrescu, M. Petrov, D. Dobrescu and C. Ravariu, “Threshold voltage extraction methods for MOS transistors.” 2000 International Semiconductor Conference. 23rd Edition, vol.1, pp. 371-374 (2000).
[44] H.-Y. Chang, W. Zhu, and D. Akinwande, “On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals.” Applied Physics Letters, vol. 104, no. 11 (2014).
[45] A. Pacheco-Sanchez, M. Claus, S. Mothes, and M. Schröter, “Contact resistance extraction methods for short- and long-channel carbon nanotube field-effect transistors.” Solid-State Electronics, vol. 125, pp. 161-166 (2016).
[46] T. Abbas and L. Slewa, “Transmission line method measurement of (metal/ZnS) contact resistance.” Int. J. Nanoelectronics and Materials, vol. 8, pp. 111-120 (2015).
[47] A. J. Chiquito, C. A. Amorim, O. M. Berengue, L. S. Araujo, E. P. Bernardo, and E. R. Leite, “Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices.” J Phys Condens Matter, vol. 24, no. 22, p. 225303 (2012).
[48] G. Roberts and J. Polanco, “Thermally assisted tunnelling in dielectric films.” Physica Status Solidi (a), vol. 1, no. 3, pp. 409-420 (1970).
[49] A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to two-dimensional semiconductors.” Nat Mater, vol. 14, no. 12, pp. 1195-205 (2015).
[50] S. J. Chae, F. Güneş, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.‐J. Shin, S.‐M. Yoon, J.‐Y. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of Large‐Area Graphene Layers on Poly‐Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation.” Adv. Mater. 21, 2328–2333 (2009).
[51] W.-H. Lin, T.-H. Chen, J.-K. Chang, J.-I. Taur, Y.-Y. Lo, W.-L. Lee, C.-S. Chang, W.-B. Su, and C.-I. Wu, “A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate.” ACSNano Vol. 8, NO.2, 1784–1791(2014)
[52] Adarsh Kaniyoor and Sundara Ramaprabhu, “A Raman spectroscopic investigation of graphite oxide derived graphene.” AIP Advances 2, 032183 (2012).
[53] B. Li, Y. Nan, P. Zhang, and X. Song, “Structural characterization of individual graphene sheets formed by arc discharge and their growth mechanisms.” RSC Adv. 6, 19797–19806 (2016).
[54] Y. Wang, Z. Ni, T. Yu, Z. X. Shen, H. Wang, Y. hong Wu, W. Chen, and A. T. S. Wee, “Raman Studies of Monolayer Graphene: The Substrate Effect.” J. Phys. Chem. C 112, 10637–10640 (2008).
[55] L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, A. H. Castro Neto, and M. A. Pimenta, “Probing the electronic structure of bilayer graphene by Raman scattering.” PHYSICAL REVIEW B 76, 201401, R (2007).
[56] Beidou Guo, Liang Fang, Baohong Zhang, Jian Ru Gong, “Graphene Doping: A Review.” Insciences Journal, 1(2): p. 80-89. (2011).
[57] G. M. Ku, E. Lee, B. Kang, J. H. Lee, K. Cho, and W. H. Lee, “Relationship between the dipole moment of selfassembled monolayers incorporated in graphene transistors and device electrical stabilities.” RSC Adv., 7, 27100 (2017).
[58] Kosuke Nagashio and Akira Toriumi, “Graphene/Metal Contact.” Frontiers of Graphene and Carbon Nanotubes pp 53-78 (2015).
[59] Li, W.; Zhang, Y.; Long, X.; Cao, J.; Xin, X.; Guan, X.; Peng, J.; Zheng, X. “Gas Sensors Based on Mechanically Exfoliated MoS2 Nanosheets for Room-Temperature NO2 Detection.” Sensors, 19, 2123 (2019).
[60] C. Lee, H. Yan, L. Brus, T. Heinz, J. Hone and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.” ACS Nano, vol. 4, no. 5, pp. 2695-2700, (2010).
[61] G. Kukucska and J. Koltai, “Theoretical Investigation of Strain and Doping on the Raman Spectra of Monolayer MoS2.” Phys. Status Solidi B, 254, 1700184 (2017).
[62] Saptarshi Das, “Two Dimensional Electrostrictive Field Effect Transistor (2D-EFET): A sub-60mV/decade Steep Slope Device with High ON current.” Scientific Reports 6, 34811 (2016).
[63] Z. Cao, F. Lin, G. Gong, H. Chen and J. Martin, “Low Schottky barrier contacts to 2H-MoS2 by Sn electrodes.” Applied Physics Letters, 116, 022101, (2020).
[64] C. J. McClellan, E. Yalon, K. K. H. Smithe, S. V. Suryavanshi and E. Pop, “Effective n-type Doping of Monolayer MoS2 by AlOx.” Device Research Conference (2017).
[65] C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat and E. Pop, “Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition.” Nano Letters, 16, 6, 3824–3830 (2016).
[66] D. Somvanshi, S. Kallatt, C. Venkatesh, S. Nair, G. Gupta, J. K. Anthony, D. Karmakar and K. Majumdar, “Nature of carrier injection in metal/2D-semiconductor interface and its implications for the limits of contact resistance.” Physical Review B, 96(20), 205423 (2017).
[67] K. K. H. Smithe, S. V. Suryavanshi, M. M. Rojo, A. D. Tedjarati and E. Pop, “Low Variability in Synthetic Monolayer MoS2 Devices.” ACS Nano, 11, 8, 8456–8463 (2017).
[68] R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors.” Nature Materials, 13, 1128–1134 (2014).
[69] International Roadmap for Devices and Systems (2020).
[70] A. Rai, A. Valsaraj, H. C. P. Movva, A. Roy, R. Ghosh, S. Sonde, S. Kang, J. Chang, T. Trivedi, R. Dey, S. Guchhait, S. Larentis, L. F. Register, E. Tutuc and S. K. Banerjee, “Air Stable Doping and Intrinsic Mobility Enhancement in Monolayer Molybdenum Disulfide by Amorphous Titanium Suboxide Encapsulation.” Nano Letters, 15, 7, 4329–4336 (2015).
[71] P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng, J.-H. Park, M.-H. Chiu, A.-Y. Lu, H.-L. Tang, M. M. Tavakoli, G. Pitner, X. Ji, Z. Cai, N. Mao, J. Wang, V. Tung, J. Li, J. Bokor, A. Zettl, C.-I. Wu, T. Palacios, L.-J. Li, and J. Kong, “Ultralow contact resistance between semimetal and monolayer semiconductors.” Nature, accepted, waiting to be published. (2021).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78495-
dc.description.abstract要實現二維材料在半導體元件領域中的應用,必須證明元件的性能和製程的可行性。然而,由於費米能級釘扎效應,金屬與半導體介面處的位能障從根本上導致了高接觸電阻和不良的電流傳輸能力,限制了二維材料半導體的發展。在本文中,我們提出並驗證了半金屬電極結合二維半導體材料的概念,其有效抑制了費米能級釘扎效應,從而獲得高效能、低功耗的邏輯電晶體。
首先,在二維材料的製備技術上,我們開發出低溫電漿輔助化學氣相沉積法,成功提升石墨烯品質;接著,通過基板修飾和分子摻雜改善了石墨烯的導電特性,利用傳輸線模型來萃取已摻雜之石墨烯與金屬之接觸電阻,我們獲得最好的結果顯示N型摻雜以鈦作為電極其接觸電阻為0.26 kΩ·μm;P型摻雜以金作為電極其接觸電阻則為0.06 kΩ·μm;最後,在定性分析中,與純金屬電極相比,石墨烯作為與二硫化鉬的半金屬電極表現出最佳結果。
因此,我們擴展了對更多種類半金屬的研究,包括錫、鉍、銻等半金屬。本研究透過氦離子束微影技術,將元件通道微縮至35奈米,所有的二維材料場效電晶體均表現出卓越的短通道性能,也透過拉曼光譜分析、Y函數法與變溫電性量測等實驗加以驗證其顯著的提升機制來自於半金屬與二維材料間的載子交互作用,尤其是鉍電極,其強摻雜效應使「鉍-二硫化鉬」介面處的蕭特基能障高度接近於零,最終達到導通狀態電流密度為860 μA/μm,接觸電阻為0.38 kΩ∙μm,創下二維材料半導體元件領域中的世界紀錄,且已相當接近International Roadmap for Devices and Systems (IRDS) 指標中的矽基邏輯電晶體規格。這些成就為進一步微縮元件尺度和延續摩爾定律提供了一條切實可行的途徑。
zh_TW
dc.description.abstractA wide variety of two-dimensional (2D) materials covers broad electronic properties, including metals, semimetals, semiconductors, and insulators. In order to realize the future 2D semiconductor electronics, it is imperative to prove the process feasibility and device performance. Many of those 2D materials have demonstrated promising potential for electronic and optoelectronic applications. In this thesis, we focused on forming a low resistance metal-2D contact for high performance low power logic application. We proposed to adopt several specific semimetals as metal contact to 2D semiconductor materials, where the Fermi-level pinning effect could be relieved, thereby lowering the contact resistance (RC) to below 0.5 kΩ∙μm in 2D devices.
In the second chapter, we at first developed a low-temperature plasma-enhanced chemical vapor deposition (CVD) process to successfully improve the film quality of graphene. The electrical properties of the fresh graphene could be further enhanced through substrate modification and molecular doping. Then we used graphene as the semimetal contact to molybdenum disulfide (MoS2) and demonstrated a higher current performance 5 times than pure metal contacts through the qualitative electrical analysis.
In the following chapters, we expanded the research to other kinds of semimetals, including Tin (Sn), Bismuth (Bi), Antimony (Sb). All of them demonstrated superior short channel monolayer MoS2 field-effect-transistor (FET) performance that the Bi contact reached near zero Schottky barrier height, a low RC value of 0.38 kΩ∙μm, and a record high ON-state current density of 860 μA/μm at VDS = 1 V. Above device performance could be further boost through material and process optimization, allowing to satisfy the specification of Si logic transistors in the metrics of International Roadmap for Devices and Systems (IRDS). The achievement in this work also provides a practical pathway to enable further shrinkage of device scale and extend Moore’s law.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:00:10Z (GMT). No. of bitstreams: 1
U0001-2101202121231400.pdf: 12649336 bytes, checksum: 1f3a446a127659275b769b9113261b61 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘要 I
Abstract II
Contents IV
Table List VIII
Figure List IX
Chapter 1. Introduction 1
1-1. Fundamentals of two-dimensional materials 2
1-1-1. Semimetal ─ Graphene 2
1-1-2. Semiconductor ─ Transition metal dichalcogenides (TMDCs) 5
1-2. Developments of two-dimensional materials 7
1-3. Motivation (advantages and bottlenecks) 14
Chapter 2. Experiments Methodologies 17
2-1. Growth mechanism of chemical vapor deposition 17
2-1-1. Thermal-assisted 17
2-1-2. Plasma-enhanced 19
2-2. Analysis of materials qualities 25
2-2-1. Transfer process 25
2-2-2. Raman spectroscopy and photoluminescence spectroscopy 26
2-2-3. Atomic force microscope 28
2-2-4. Transmission electron microscopy 29
2-2-5. Photoemission spectroscopy 31
2-3. Devices fabrication and Lithography system 35
2-3-1. LED mask-less aligner 35
2-3-2. Principle of scanning microscope (HIM) 36
2-3-3. Helium ion beam lithography 39
2-4. Physical Vapor Deposition System 40
2-5. Vacuum Measurement System 42
2-6. Extraction of electrical properties 43
2-6-1. Mobility 43
2-6-2. Contact resistance 47
2-6-3. Schottky barrier (temperature-dependent measurement) 50
Chapter 3. Graphene based transistors 55
3-1. Growth and detection 55
3-1-1. High quality film growth 55
3-1-2. Polymer-free transfer 58
3-1-3. Quality detection 59
3-2. Graphene doping 63
3-2-1. Transistors fabrication 64
3-2-2. Substrate modify 66
3-2-3. Additional doping 67
3-3. Electrical and optical properties 67
3-3-1. Electrical characteristic 67
3-3-2. Interfaces analysis: Photoelectron spectroscopy 74
3-4. Contact optimization in 2D logic application 78
Chapter 4. CVD-1L-MoS2 with Tin (Sn) contacts 81
4-1. Qualities analysis and device fabrication 81
4-2. Electrical properties of common metal (Ni) v.s Sn 86
4-2-1. Transfer and output characteristic 86
4-2-2. Sn/MoS2 interface (re-melting model) 88
4-3. Temperature-dependent measurement 90
4-3-1. Schottky barrier 90
4-3-2. Contact resistance 91
4-4. Benchmark 92
4-4-1. Carrier density and contact resistance 92
4-4-2. On-state current and channel length scaling 94
Chapter 5. CVD-1L-MoS2 with Bismuth (Bi) contacts 96
5-1. Metal contacts doping effect 96
5-2. Electrical properties of Bi v.s Sn 97
5-2-1. Transfer and output characteristic 97
5-2-2. Detail discussion about Bi/MoS2 interface 98
5-3. Benchmark 101
5-3-1. Record high On-state current 101
5-3-2. Record low contact resistance without intentional doping 102
5-4. Tungsten disulfide (WS2) with Bi contacts 104
5-5. Thermal reliability 107
5-6. Antimony (Sb) contacts 108
Chapter 6. Conclusions and future work 110
Reference 113
Publication list 124
dc.language.isoen
dc.subject邏輯電晶體zh_TW
dc.subject半金屬zh_TW
dc.subject二維材料zh_TW
dc.subject接觸電阻zh_TW
dc.subjectSemimetalen
dc.subjectContact resistanceen
dc.subjectLogic transistoren
dc.subjectTwo-dimensional materialen
dc.title半金屬電極於二維材料邏輯電晶體之電特性研究zh_TW
dc.titleInvestigation of Electrical Properties of Two-dimensional Material Logic Transistors with Semimetal Electrodes
en
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree博士
dc.contributor.oralexamcommittee張文豪(Wen-Hao Chang),吳育任(Yuh-Renn Wu),簡昭欣(Chao-Hsin Chien),陳美杏(Mei-Hsing Chen)
dc.subject.keyword二維材料,邏輯電晶體,接觸電阻,半金屬,zh_TW
dc.subject.keywordTwo-dimensional material,Logic transistor,Contact resistance,Semimetal,en
dc.relation.page125
dc.identifier.doi10.6342/NTU202100118
dc.rights.note有償授權
dc.date.accepted2021-01-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
dc.date.embargo-lift2026-01-21-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2101202121231400.pdf
  未授權公開取用
12.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved