請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78492完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林淑怡 | zh_TW |
| dc.contributor.author | 黃莉詠 | zh_TW |
| dc.contributor.author | LI-YUNG HUANG | en |
| dc.date.accessioned | 2021-07-11T14:59:59Z | - |
| dc.date.available | 2024-10-23 | - |
| dc.date.copyright | 2019-11-04 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Abid, M., S. Ali, L.K. Qi, R. Zahoor, Z.W. Tian, D. Jiang, J.L. Snider, and T.B. Dai. 2018. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci. Rpt. 8:4615.
Abid, M., Z.W. Tian, S.T. Ata-Ul-Karim, Y. Liu, Y.K. Cui, R. Zahoor, D. Jiang, and T.B. Dai. 2016. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. Plant Physiol. Biochem. 106:218-227. Albacete, A., C. Martínez-Andújar, A. Martínez-Pérez, A.J. Thompson, I.C. Dodd, and F. Pérez-Alfocea. 2015. Unravelling rootstock × scion interactions to improve food security. J. Expt. Bot. 66:2211-2226. Ames, B.N. 1966. Assay of inorganic phosphate, total phosphate and phosphatase. Methods Enzymology 8:115-118. Anjum, S.A., U. Ashraf, M. Tanveer, I. Khan, S. Hussain, B. Shahzad, A. Zohaib, F. Abbas, M.F. Saleem, I. Ali, and L.C. Wang. 2017. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers Plant Sci. 8:69. Aung, K., S.I. Lin, C.C. Wu, Y.T. Huang, C.L. Su, and T.J. Chiou. 2006. PHO2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141:1000-1011. Babitha, K.C., R.S. Vemanna, K.N. Nataraja, and M. Udayakumar. 2015. Overexpression of ECBH1H57 transcription factor from Eleusine coracana L. in tobacco confers tolerance to salt, oxidative and drought stress. PLoS One 10:e0137098. Bian, S.M. and Y.W. Jiang. 2009. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of kentucky bluegrass in response to drought stress and recovery. Sci. Hort. 120:264-270. Brüller, W., H. Luftensteiner, K. Mechtler, V. Peterseil, A.R.R. Steffe, W. Stepanek, C. Topitschnig, I. Widhalm, and M. Wögerbauer. 2013. New plant breeding techniques RNA-dependent DNA methylation, reverse breeding, grafting. Ages. Bradford, K. and T. Tsiao. 1982. Physiological responses to moderate water stress. p121-131. In: O.L. Lange, P.S. Nobel, C.B. Osmand and H. Zegler (eds). Water relations and carbon assimilation. Physiological plant ecology. Springer-Verlag, Berlin, Geremany Carillo, P. and Y. Gibon. 2011. Protocol: Extraction and determination of proline. PrometheusWiki Chaerle, L., M. Pineda, R. Romero-Aranda, D. Van Der Straeten, and M. Baron. 2006. Robotized thermal and chlorophyll fluorescence imaging of pepper mild mottle virus infection in Nicotiana benthamiana. Plant Cell Physiol. 47:1323-1336. Chiou, T.J., K. Aung, S.I. Lin, C.C. Wu, S.F. Chiang, and C.L. Su. 2006. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412-421. Clarkson, D.T., J. Sanderson, and C.B. Scattergood. 1978. Influence of phosphate-stress on phosphate absorption and translocation by various parts of the root system of Hordeum vulgare L. (barley). Planta 139:47-53. Cogliatti, D.H. and D.T. Clarkson. 1983. Physiological-changes in, and phosphate-uptake by potato plants during development of, and recovery from phosphate deficiency. Physiol. Plant 58:287-294. Cruz de Carvalho, M.H. 2008. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal Behaviors 3:156-165. Daudi, A. and J.A. O’Brien. 2012. Detection of hydrogen peroxide by DAB staining in arabidopsis leaves. Bio Protoc. 2:e263. Davies, K.J. 1987. Protein damage and degradation by oxygen radicals. J. Biol. Chem. 262:9895-9901. Ding, Y.F., Y.Y. Ye, Z.H. Jiang, Y. Wang, and C. Zhu. 2016. MicroRNA390 is involved in cadmium tolerance and accumulation in rice. Fort. Plant Sci. 7:235. Ferdous, J., S.S. Hussain, and B.J. Shi. 2015. Role of micro RNAs in plant drought tolerance. Plant Biotechnol. J. 13:293-305. Fitch, M.M.M., R.M. Manshardt, D. Gonsalves, J.L. Slightom, and J.C. Sanford. 1992. Virus resistant Papaya plants derived from tissues bombarded with the coat protein gene of Papaya ringspot virus. Bio-Technol. 10:1466-1472. Franco-Zorrilla, J.M., A. Valli, M. Todesco, I. Mateos, M.I. Puga, I. Rubio-Somoza, A. Leyva, D. Weigel, J.A. Garcia, and J. Paz-Ares. 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39:1033-1037. Frazier, T.P., G. Sun, C.E. Burklew, and B. Zhang. 2011. Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol. Biotechnol. 49:159-165. Fujii, H., T.J. Chiou, S.I. Lin, K. Aung, and J.K. Zhu. 2005. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15:2038-2043. Gambino, G., I. Perrone, A. Carra, W. Chitarra, P. Boccacci, D. Torello Marinoni, M. Barberis, F. Maghuly, M. Laimer, and I. Gribaudo. 2010. Transgene silencing in grapevines transformed with GFLV resistance genes: Analysis of variable expression of transgene, siRNAs production and cytosine methylation. Transgenic Res. 19:17-27. Garnier, E. and G. Laurent. 1994. Leaf anatomy, specific mass and water-content in congeneric annual and perennial grass species. New Phytol. 128:725-736. Ghanem, M.E., I. Hichri, A.C. Smigocki, A. Albacete, M.L. Fauconnier, E. Diatloff, C. Martinez-Andujar, S. Lutts, I.C. Dodd, and F. Perez-Alfocea. 2011. Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance. Plant Cell Rep. 30:807-823. Goldschmidt, E.E. 2014. Plant grafting: New mechanisms, evolutionary implications. Frontiers Plant Sci. 5:727. Hammond, J.P., M.R. Broadley, and P.J. White. 2004. Genetic responses to phosphorus deficiency. Ann. Bot. 94:323-332. Haroldsen, V.M., C.L. Chi-Ham, and A.B. Bennett. 2012a. Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks. J. Biotechnol. 161:349-353. Haroldsen, V.M., M.W. Szczerba, H. Aktas, J. Lopez-Baltazar, M.J. Odias, C.L. Chi-Ham, J.M. Labavitch, A.B. Bennett, and A.L.T. Powell. 2012b. Mobility of transgenic nucleic acids and proteins within grafted rootstocks for agricultural improvement. Fort. Plant Sci. 3:39. Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem. Biophysiol. 125:189-198. Heber, U., J. Viil, S. Neimanis, T. Mimura, and K.J. Dietz. 1989. Photoinhibitory damage to chloroplasts under phosphate deficiency and alleviation of deficiency and damage by photorespiratory reactions. Zeitschrift Fur Naturforschung C-a J. Biosci. 44:524-536. Hoagland, D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil. Circular. California agricultural experiment station 347. Hoffland, E., R.V. Boogaard, J. Nelemans, and G. Findenegg. 1992. Biosynthesis and root exudation of citric and malic acids in phosphate‐starved rape plants. New Phytol. 122:675-680. Hoque, M.A., M.N. Banu, Y. Nakamura, Y. Shimoishi, and Y. Murata. 2008. Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J. Plant Physiol. 165:813-824. Hsieh, L.C., S.I. Lin, A.C. Shih, J.W. Chen, W.Y. Lin, C.Y. Tseng, W.H. Li, and T.J. Chiou. 2009. Uncovering small RNA-mediated responses to phosphate deficiency in arabidopsis by deep sequencing. Plant Physiol. 151:2120-2132. Huang, T.K., C.L. Han, S.I. Lin, Y.J. Chen, Y.C. Tsai, Y.R. Chen, J.W. Chen, W.Y. Lin, P.M. Chen, T.Y. Liu, Y.S. Chen, C.M. Sun, and T.J. Chiou. 2013. Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots. Plant Cell 25:4044-4060. Huen, A.K. 2016. Identification and characterisation of long-distance mobility of phosphate starvation-responsive microRNAs in Arabidopsis and Nicotiana benthamiana. Sydney Uni., Faculty of Sci., Life and Environ. Sci., Aust., PhD Diss. Abstr. 2123-15079. Jaleel, C.A., P. Manivannan, A. Wahid, M. Farooq, H.J. Al-Juburi, R. Somasundaram, and R. Panneerselvam. 2009. Drought stress in plants: A review on morphological characteristics and pigments composition. Intl. J. Agr. Biol. 11:100-105. Karthikeyan, A.S., D.K. Varadarajan, A. Jain, M.A. Held, N.C. Carpita, and K.G. Raghothama. 2007. Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225:907-918. Kato, M. and S. Shimizu. 1987. Chlorophyll metabolism in higher plants. Vii. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Can. J. Bot. 65:729-735. Khraiwesh, B., J.K. Zhu, and J. Zhu. 2012. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim. Biophysiol. Acta 1819:137-148. Ku, H.M., C.C. Hu, H.J. Chang, Y.T. Lin, F.J. Jan, and C.T. Chen. 2011. Analysis by virus induced gene silencing of the expression of two proline biosynthetic pathway genes in Nicotiana benthamiana under stress conditions. Plant Physiol. Biochem. 49:1147-1154. Kumar, R.R., K. Karajol, and G. Naik. 2011. Effect of polyethylene glycol induced water stress on physiological and biochemical responses in pigeonpea (Cajanus cajan L. Millsp.). Recent Res. Sci. Technol. 3:148-152. López‐Ráez, J.A., T. Charnikhova, V. Gómez‐Roldán, R. Matusova, W. Kohlen, R. De Vos, F. Verstappen, V. Puech‐Pages, G. Bécard, and P. Mulder. 2008. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 178:863-874. Li, S.N., G.H. Dong, R. Hailili, L.P. Yang, Y.X. Li, F. Wang, Y.B. Zeng, and C.Y. Wang. 2016. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catalysis B-Environ. 190:26-35. Li, W.X., Y. Oono, J.H. Zhu, X.J. He, J.M. Wu, K. Iida, X.Y. Lu, X.P. Cui, H.L. Jin, and J.K. Zhu. 2008. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238-2251. Lichtenthaler, H.K. and A.R. Wellburn. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions. 11:591-592. Lim, M.Y., B.R. Jeong, M. Jung, and C.H. Harn. 2016. Transgenic tomato plants expressing strawberry D-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses. Plant Biotechnol. Rpt. 10:105-116. Liu, H.H., X. Tian, Y.J. Li, C.A. Wu, and C.C. Zheng. 2008. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836-843. Liu, T.Y., T.K. Huang, C.Y. Tseng, Y.S. Lai, S.I. Lin, W.Y. Lin, J.W. Chen, and T.J. Chiou. 2012. PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell 24:2168-2183. Lutts, S., J. Kinet, and J. Bouharmont. 1996. NaCl-induced senescence in leaves of rice (Oryza satival.) cultivars differing in salinity resistance. Ann. Bot. 78:389-398. Lynch, J.P. and K.M. Brown. 2001. Topsoil foraging–an architectural adaptation of plants to low phosphorus availability. Plant and Soil 237:225-237. Mafakheri, A., A. Siosemardeh, B. Bahramnejad, P.C. Struik, and Y. Sohrabi. 2011. Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea (Cicer arietinum) cultivars. Austral. J. Crop Sci. 5:1255-1260. Matsuda, Y., G. Liang, Y. Zhu, F. Ma, R.S. Nelson, and B. Ding. 2002. The commelina yellow mottle virus promoter drives companion-cell-specific gene expression in multiple organs of transgenic tobacco. Protoplasma 220:51-58. Medrano, H., J.M. Escalona, J. Bota, J. Gulías, and J.J.A.o.b. Flexas. 2002. Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Ann. Bot. 89:895-905. Metzger, R. 1995. Closing the cycle: Obstacles to efficient P management for improved global security. In: Tiessen H (ed) Phosphorus in the Global Environment: Transfers, Cycles, and Management. Wiley, New York, pp 27–42. Moran, J.F., M. Becana, I. Iturbeormaetxe, S. Frechilla, R.V. Klucas, and P. Apariciotejo. 1994. Drought induces oxidative stress in pea-plants. Planta 194:346-352. Millner, P. and D. Kitt. 1992. The Beltsville method for soilless production of vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 2:9-15. Nakano, Y. and K. Asada. 1981. Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol. 22:867-880. Nawaz, M.A., M. Imtiaz, Q. Kong, F. Cheng, W. Ahmed, Y. Huang, and Z. Bie. 2016. Grafting: A technique to modify ion accumulation in horticultural crops. Frontiers Plant Sci. 7:1457. Nayyar, H. and D. Gupta. 2006. Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environ. Expt. Bot. 58:106-113. Negi, N.P., D.C. Shrivastava, V. Sharma, and N.B. Sarin. 2015. Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco. Plant Cell Rep. 34:1109-1126. Nxele, X., A. Klein, and B.K. Ndimba. 2017. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African J. of Bot. 108:261-266. Pant, B.D., A. Buhtz, J. Kehr, and W.R. Scheible. 2008. MicroRNA399 is a long‐distance signal for the regulation of plant phosphate homeostasis. Plant J. 53:731-738. Pant, B.D., M. Musialak-Lange, P. Nuc, P. May, A. Buhtz, J. Kehr, D. Walther, and W.R. Scheible. 2009. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 150:1541-1555. Pascal, A.A., Z. Liu, K. Broess, B. van Oort, H. van Amerongen, C. Wang, P. Horton, B. Robert, W. Chang, and A. Ruban. 2005. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134-137. Paul, M. and M. Stitt. 1993. Effects of nitrogen and phosphorus deficiencies on levels of carbohydrates, respiratory enzymes and metabolites in seedlings of tobacco and their response to exogenous sucrose. Plant Cell Environ. 16:1047-1057. Peret, B., T. Desnos, R. Jost, S. Kanno, O. Berkowitz, and L. Nussaume. 2014. Root architecture responses: In search of phosphate. Plant Physiol. 166:1713-1723. Plaxton, W.C. and H.T. Tran. 2011. Metabolic adaptations of phosphate-starved plants. Plant Physiol. 156:1006-1015. Rajwanshi, R., S. Chakraborty, K. Jayanandi, B. Deb, and D.A. Lightfoot. 2014. Orthologous plant microRNAs: Microregulators with great potential for improving stress tolerance in plants. Theory Appl. Genet. 127:2525-2543. Rausch, C. and M. Bucher. 2002. Molecular mechanisms of phosphate transport in plants. Planta 216:23-37. Reddy, A.R., K.V. Chaitanya, and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161:1189-1202. Rivero, R.M., J.M. Ruiz, and L. Romero. 2003. Role of grafting in horticultural plants under stress conditions. J. Food Agr. Environ. 1:70-74. Sabra, A., F. Daayf, and S. Renault. 2012. Differential physiological and biochemical responses of three Echinacea species to salinity stress. Sci. Hort. 135:23-31. Sairam, R.K., K.V. Rao, and G.C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163:1037-1046. Sairam, R.K., G.C. Srivastava, S. Agarwal, and R.C. Meena. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol. Plant. 49:85-91. Sanchez, C.A. 2015. Phosphorus, p65-126. In: A. V. Barker and d. J. Pilbeam (eds). Handbook of plant nutrition.1th ed. Boca raton. Fl. USA, CRC press. Schenk, M. and S. Barber. 1979. Phosphate uptake by corn as affected by soil characteristics and root morphology. Soil Sci. Soc. Amer. J. 43:880-883. Scott Russell, R. and R.P. Martin. 1953. A study of the absorption and utilization of phosphate by young barley plants. J. Expt. Acta Physiol. Plant. Bot. 4:108-127. Seel, W.E., G.A.F. Hendry, and J.A. Lee. 1992. The combined effects of desiccation and irradiance on mosses from xeric and hydric habitats. J. Expt. Bot. 43:1023-1030. Sgherri, C.L.M., M. Maffei, and F. Navari-Izzo. 2000. Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. J. Plant Physiol. 157:273-279. Shriram, V., V. Kumar, R.M. Devarumath, T.S. Khare, and S.H. Wani. 2016. MicroRNAs as potential targets for abiotic stress tolerance in plants. Fort. Plant Sci. 7:817. Sibley, J.L., D.J. Eakes, C.H. Gilliam, G.J. Keever, W.A. Dozier, and D.G. Himelrick. 1996. Foliar SPAD-502 meter values, nitrogen levels, and extractable chlorophyll for red maple selections. HortScience 31:468-470. Singh, M., J. Kumar, S. Singh, V.P. Singh, and S.M. Prasad. 2015. Roles of osmoprotectants in improving salinity and drought tolerance in plants. Rev. Environ. Sci. Bio-Technol. 14:407-426. Singh, S.K. and V.R. Reddy. 2016. Methods of mesophyll conductance estimation: Its impact on key biochemical parameters and photosynthetic limitations in phosphorus-stressed soybean across CO2. Physiol. Plant 157:234-254. Song, G.Q., A.E. Walworth, and W.H. Loescher. 2015. Grafting of genetically engineered plants. J. Amer. Soc. Hort. Sci. 140:203-213. Sunkar, R., Y.F. Li, and G. Jagadeeswaran. 2012. Functions of microRNAs in plant stress responses. Trends Plant Sci. 17:196-203. Taiz, L. and E. Zeiger. 1998. Transport and translocation of water and solutes, p83-98. In: D.S., andrew (ed). Water and plant cell. 6th ed. Plant physiology. Sinauer, USA. Torres, M.A., J.L. Dangl, and J.D. Jones. 2002. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99:517-522. Toyota, K., N. Koizumi, and F. Sato. 2003. Transcriptional activation of phospho enol pyruvate carboxylase by phosphorus deficiency in tobacco. J. Expt. Bot. 54:961-969. Tsai, Y.C. and C.H. Kao. 2004. The involvement of hydrogen peroxide in abscisic acid-induced activities of ascorbate peroxidase and glutathione reductase in rice roots. Plant Growth Regula. 43:207-212. Verma, S. and S.N. Mishra. 2005. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J. Plant Physiol. 162:669-677. Vijayaraghavareddy, P., V. Adhinarayanreddy, R.S. Vemanna, S. Sreeman, and U. Makarla. 2017. Quantification of membrane damage/cell death using Evans blue staining technique. Bio-Protocol. 7:e2519. Wang, C., A. Yang, H. Yin, and J. Zhang. 2008. Influence of water stress on endogenous hormone contents and cell damage of maize seedlings. J. Integrative Plant Biol. 50:427-434. Wang, X., Y. Gao, Q. Wang, M. Chen, X. Ye, D. Li, X. Chen, L. Li, and D. Gao. 2019. 24-Epibrassinolide-alleviated drought stress damage influences antioxidant enzymes and autophagy changes in peach (Prunus persicae L.) leaves. Plant Physiol. Biochem. 135:30-40. Welbaum, G.E. 2015. Fertilization and mineral nutrition requirements for growing vegetables. p. 47-65. In: C. Sissen (ed.). Vegetable production and practices. CabI, Scitus Academics Llc., Virginia, USA Williams, R.F. 1955. Redistribution of mineral elements during development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 6:25-42. Yamori, W., T. Nagai, and A. Makino. 2011. The rate‐limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species. Plant Cell Environ. 34:764-777. Yancey, P.H. 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. of Expt. Bot. 208:2819-2830. Yue, B., W.Y. Xue, L.Z. Xiong, X.Q. Yu, L.J. Luo, K.H. Cui, D.M. Jin, Y.Z. Xing, and Q.F. Zhang. 2006. Genetic basis of drought resistance at reproductive stage in rice: Separation of drought tolerance from drought avoidance. Genet. 172:1213-1228. Zamojc, K., M. Zdrowowicz, D. Jacewicz, D. Wyrzykowski, and L. Chmurzynski. 2016. Fluorescent probes used for detection of hydrogen peroxide under biological conditions. Critical Rev. Analytical Chemistry 46:171-200. Zhang, B. 2015. Microrna: A new target for improving plant tolerance to abiotic stress. J. Expt. Bot. 66:1749-1761. Zhang, X., Z. Zou, P. Gong, J. Zhang, K. Ziaf, H. Li, F. Xiao, and Z. Ye. 2011. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol. Lett. 33:403-409. Zhang, Z., Y. Wang, L. Chang, T. Zhang, J. An, Y. Liu, Y. Cao, X. Zhao, X. Sha, T. Hu, and P. Yang. 2016. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Plant Cell Rep. 35:439-453. Zhou, L., Y. Liu, Z. Liu, D. Kong, M. Duan, and L. Luo. 2010. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J. Expt. Bot. 61:4157-4168. Zhou, M., D. Li, Z. Li, Q. Hu, C. Yang, L. Zhu, and H. Luo. 2013. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 161:1375-1391. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78492 | - |
| dc.description.abstract | 近年來許多研究指出微型核糖核酸(microRNA, miRNA),在植物非生物性逆境耐受性中扮演關鍵角色,其中miR2111和miR169受缺磷逆境或乾旱逆境所調控。為了研究圓葉菸草nbe-miR2111及nbe-miR169在缺磷逆境及乾旱逆境所扮演的角色,我們分別產生大量表現nbe-miR2111 (簡稱PCoYMV::nbe-miR2111)和nbe-miR169 (簡稱P35S::nbe-miR169)的轉殖圓葉菸草,並各選取三個株系(Line)與野生菸草在幼苗與成株階段進行缺磷或乾旱處理。結果顯示轉殖株在500 μM (正常磷)、50 μM (低磷)與0 μM (無磷)處理下,PCoYMV::nbe-miR2111與P35S::nbe-miR169轉殖成株與幼苗,多數植株性狀不具一致結果或與WT無顯著差異。無磷處理下,P35S::nbe-miR169轉殖株下位葉先出現壞疽情形,但恢復磷肥供應後,轉殖株地上部鮮重顯著高於WT,暗示轉殖株可能透過犧牲下位葉而在恢復供磷後有較WT佳的復原能力。乾旱逆境並重新復水試驗,P35S::nbe-miR169轉殖株有較好的恢復能力,例如:葉片不再萎凋下垂、較高的地上部鮮重、較高的相對含水量與較高的抗氧化酵素活性,如抗壞血酸過氧化酶(ascorbate peroxidase, APX)與過氧化氫酶(catalase, CAT)活性提高,而相對電解質滲漏率、過氧化氫(hydrogen peroxide, H2O2)濃度、丙二醛(malondialdehyde, MDA)濃度、脯胺酸(proline)與損傷細胞等逆境指標也較低,轉殖株中以Line 12-3表現最佳,Line 3-5次之,Line 1-1僅優於WT。 | zh_TW |
| dc.description.abstract | In recent years, many researches have pointed out that plant microRNAs (miRNAs) play key roles in abiotic stresses tolerance. Among them, miR2111 and miR169 were regulates by the phosphorus deficiency and drought stress in previous studies. To explore the roles of nbe-miR2111 and nbe-miR169 in response to phosphorus deficiency and drought stress in tobacco (Nicotiana benthamiana), we generated transgenic tobacco which overexpress nbe-miR2111 (PCoYMV::nbe-miR2111) and nbe-miR169 (P35S::nbe-miR169). Wild-type (WT) tobacco and three transgenic lines were subjected to phosphorus deficiency and drought treatment at the seedling and adult stage. Most of the measurement items showed no consistent results or no significant difference between PCoYMV::nbe-miR2111 and P35S::nbe-miR169 with WT seedlings and adult plants under three different phosphorus concentrations: 500 μM (normal phosphorus), 50 μM (low phosphorus) and 0 μM (absence of phosphorus). Under the treatment of absence of phosphorus, the lower leaves of P35S::nbe-miR169 transgenic plants first appeared necrosis. However, after re-supply of phosphorus fertilizer, the fresh weight of P35S::nbe-miR169 transgenic plants was significantly higher than that of WT, suggesting that the transgenic plants may have better recovery ability than WT by sacrificing the lower leaves under treatment of absence of phosphorus. After drought stress and re-watering, the P35S::nbe-miR169 transgenic plants have better resilience, such as leaves no longer droop, higher shoot fresh weight, higher relative water content and higher antioxidant enzyme activities- including higher ascorbate peroxidase (APX) and catalase (CAT) activity. Stress indicators, such relativity electrolyte leakage, hydrogen peroxide (H2O2) concentration, malondialdehyde (MDA) concentrations, proline content and damaged cells was lower than WT. Within transgenic plants, line 12-3 is the best and then is line 3-5, line 1-1 only better than WT. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:59:59Z (GMT). No. of bitstreams: 1 ntu-108-R06628118-1.pdf: 14696525 bytes, checksum: b13f7995c10de3876649093a577ab9c5 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 內容目錄 v 表目錄 vii 圖目錄 ix 前人研究 1 一、 缺磷對植物生理的影響 1 二、 乾旱對植物生理的影響 2 三、 植物微型核糖核酸(microRNA)對非生物逆境耐受性之探討 4 四、 應用嫁接技術提升植物對逆境的耐受性 5 試驗動機與目的 8 材料與方法 9 一、 試驗材料 9 二、 栽培條件與管理方式 10 三、 試驗流程及試驗設計 12 (一) PCoYMV::nbe-miR2111轉殖株磷處理試驗 12 (二) P35S::nbe-miR169轉殖株磷處理試驗 13 (三) P35S::nbe-miR169乾旱恢復試驗 14 四、 調查項目與分析方法 15 五、 統計分析方法 21 結果 28 一、 PCoYMV::nbe-miR2111轉殖株磷處理試驗 28 (一) 苗期培養基試驗 28 (二) 成株介質耕試驗 28 二、 P35S::nbe-miR169轉殖株磷處理試驗 29 (一) 苗期培養基試驗 29 (二) 水耕磷處理試驗 30 (三) 無磷恢復試驗 31 三、 P35S::nbe-miR169轉殖株乾旱試驗 31 (一) 第一次乾旱試驗 31 (二) 第二次乾旱試驗 33 (三) 第三次乾旱試驗 34 討論 80 一、 PCoYMV::nbe-miR2111轉殖株幼苗與成株在磷處理下與野生型菸草間的差異 80 二、 P35S::nbe-miR169轉殖株磷處理試驗 81 (一) 苗期與成株磷試驗 81 (二) 無磷恢復試驗 82 三、 P35S::nbe-miR169轉殖株乾旱試驗 83 (一) 大量表現nbe-miR169對菸草植株在乾旱下植株性狀之影響 83 (二) 大量表現nbe-miR169對菸草植株在乾旱下逆境指標與氧化逆境之影響 85 (三) 大量表現nbe-miR169對菸草植株在乾旱下抗氧化酵素之影響 88 (四) P35S::nbe-miR169轉殖株其他性狀 88 結論 91 參考文獻 92 附錄 102 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 微型核糖核酸 | zh_TW |
| dc.subject | 圓葉菸草 | zh_TW |
| dc.subject | 乾旱 | zh_TW |
| dc.subject | 磷 | zh_TW |
| dc.subject | drought | en |
| dc.subject | microRNA | en |
| dc.subject | phosphorus | en |
| dc.subject | Nicotiana benthamiana | en |
| dc.title | 微型核糖核酸2111及169對圓葉菸草(Nicotiana benthamiana)在缺磷和乾旱逆境耐受性上所扮演的角色 | zh_TW |
| dc.title | The role of nbe-miR2111 and nbe-miR169 in the tolerance to phosphorus deficiency and drought stress in tobacco (Nicotiana benthamiana) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 108-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅筱鳳;林維怡 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 微型核糖核酸,磷,乾旱,圓葉菸草, | zh_TW |
| dc.subject.keyword | microRNA,phosphorus,drought,Nicotiana benthamiana, | en |
| dc.relation.page | 103 | - |
| dc.identifier.doi | 10.6342/NTU201904219 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-10-18 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2024-11-04 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 14.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
