請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7848
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱家瑩(Chia-Ying Chu) | |
dc.contributor.author | Yen-Han Wang | en |
dc.contributor.author | 王嬿涵 | zh_TW |
dc.date.accessioned | 2021-05-19T17:55:51Z | - |
dc.date.available | 2022-06-23 | |
dc.date.available | 2021-05-19T17:55:51Z | - |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-20 | |
dc.identifier.citation | Agata, K., Soejima, Y., Kato, K., Kobayashi, C., Umesono, Y., and Watanabe, K. (1998). Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers. Zoological science 15, 433-440.
Akimenko, M.A., Johnson, S.L., Westerfield, M., and Ekker, M. (1995). Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121, 347-357. Akiyama, Y., Agata, K., and Inoue, T. (2015). Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian. PloS one 10, e0142214. Alie, A., Leclere, L., Jager, M., Dayraud, C., Chang, P., Le Guyader, H., Queinnec, E., and Manuel, M. (2011). Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of 'germline genes' with stemness. Developmental biology 350, 183-197. Ayache, J., Benard, M., Ernoult-Lange, M., Minshall, N., Standart, N., Kress, M., and Weil, D. (2015). P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Molecular biology of the cell 26, 2579-2595. Baguna, J., and Slack, J.M.W. (1981). Planarian Neoblasts. Nature 290, 14-15. Barbee, S.A., Estes, P.S., Cziko, A.M., Hillebrand, J., Luedeman, R.A., Coller, J.M., Johnson, N., Howlett, I.C., Geng, C., Ueda, R., et al. (2006). Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52, 997-1009. Bramham, C.R., and Wells, D.G. (2007). Dendritic mRNA: transport, translation and function. Nature reviews Neuroscience 8, 776-789. Carroll, J.S., Munchel, S.E., and Weis, K. (2011). The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. The Journal of cell biology 194, 527-537. Chu, C.Y., and Rana, T.M. (2006). Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS biology 4, e210. Chuma, S., and Nakano, T. (2013). piRNA and spermatogenesis in mice. Philosophical transactions of the Royal Society of London Series B, Biological sciences 368, 20110338. Coller, J., and Parker, R. (2005). General translational repression by activators of mRNA decapping. Cell 122, 875-886. Dong, Z., Yuwen, Y., Wang, Q., Chen, G., and Liu, D. (2012). Eight genes expression patterns during visual system regeneration in Dugesia japonica. Gene expression patterns : GEP 12, 1-6. Eisenhoffer, G.T., Kang, H., and Sanchez Alvarado, A. (2008). Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell stem cell 3, 327-339. Evergren, E., Benfenati, F., and Shupliakov, O. (2007). The synapsin cycle: a view from the synaptic endocytic zone. Journal of neuroscience research 85, 2648-2656. Ferreira, A., and Rapoport, M. (2002). The synapsins: beyond the regulation of neurotransmitter release. Cellular and molecular life sciences : CMLS 59, 589-595. Gentile, L., Cebria, F., and Bartscherer, K. (2011). The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Disease models & mechanisms 4, 12-19. Gerona, R.R., Larsen, E.C., Kowalchyk, J.A., and Martin, T.F. (2000). The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. The Journal of biological chemistry 275, 6328-6336. Gitler, D., Xu, Y., Kao, H.T., Lin, D., Lim, S., Feng, J., Greengard, P., and Augustine, G.J. (2004). Molecular determinants of synapsin targeting to presynaptic terminals. The Journal of neuroscience : the official journal of the Society for Neuroscience 24, 3711-3720. Gonzalez-Estevez, C., Felix, D.A., Rodriguez-Esteban, G., and Aboobaker, A.A. (2012). Decreased neoblast progeny and increased cell death during starvation-induced planarian degrowth. The International journal of developmental biology 56, 83-91. Guedelhoefer, O.C.t., and Sanchez Alvarado, A. (2012). Planarian immobilization, partial irradiation, and tissue transplantation. Journal of visualized experiments : JoVE. Guo, T., Peters, A.H., and Newmark, P.A. (2006). A Bruno-like gene is required for stem cell maintenance in planarians. Developmental cell 11, 159-169. Hay, E.D., and Coward, S.J. (1975). Fine structure studies on the planarian, Dugesia. I. Nature of the 'neoblast' and other cell types in noninjured worms. Journal of ultrastructure research 50, 1-21. Hayashi, T., and Agata, K. (2012). A unique FACS method to isolate stem cells in planarian. Methods in molecular biology 879, 29-37. Hayashi, T., Asami, M., Higuchi, S., Shibata, N., and Agata, K. (2006). Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Development, growth & differentiation 48, 371-380. Inoue, T., Hoshino, H., Yamashita, T., Shimoyama, S., and Agata, K. (2015). Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function. Zoological letters 1, 7. Inoue, T., Yamashita, T., and Agata, K. (2014). Thermosensory signaling by TRPM is processed by brain serotonergic neurons to produce planarian thermotaxis. The Journal of neuroscience : the official journal of the Society for Neuroscience 34, 15701-15714. Jonas, S., and Izaurralde, E. (2015). Towards a molecular understanding of microRNA-mediated gene silencing. Nature reviews Genetics 16, 421-433. Kao, H.T., Porton, B., Hilfiker, S., Stefani, G., Pieribone, V.A., DeSalle, R., and Greengard, P. (1999). Molecular evolution of the synapsin gene family. The Journal of experimental zoology 285, 360-377. Kashima, M., Kumagai, N., Agata, K., and Shibata, N. (2016). Heterogeneity of chromatoid bodies in adult pluripotent stem cells of planarian Dugesia japonica. Development, growth & differentiation 58, 225-237. Keene, A.C., Mazzoni, E.O., Zhen, J., Younger, M.A., Yamaguchi, S., Blau, J., Desplan, C., and Sprecher, S.G. (2011). Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 6527-6534. Kihara, A.H., Santos, T.O., Paschon, V., Matos, R.J., and Britto, L.R. (2008). Lack of photoreceptor signaling alters the expression of specific synaptic proteins in the retina. Neuroscience 151, 995-1005. Kumar, A., and Brockes, J.P. (2012). Nerve dependence in tissue, organ, and appendage regeneration. Trends in neurosciences 35, 691-699. Lee, H.K., Yang, Y., Su, Z., Hyeon, C., Lee, T.S., Lee, H.W., Kweon, D.H., Shin, Y.K., and Yoon, T.Y. (2010). Dynamic Ca2+-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Science 328, 760-763. Linder, P., and Jankowsky, E. (2011). From unwinding to clamping - the DEAD box RNA helicase family. Nature reviews Molecular cell biology 12, 505-516. Mathys, H., Basquin, J., Ozgur, S., Czarnocki-Cieciura, M., Bonneau, F., Aartse, A., Dziembowski, A., Nowotny, M., Conti, E., and Filipowicz, W. (2014). Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Molecular cell 54, 751-765. Meikar, O., Vagin, V.V., Chalmel, F., Sostar, K., Lardenois, A., Hammell, M., Jin, Y., Da Ros, M., Wasik, K.A., Toppari, J., et al. (2014). An atlas of chromatoid body components. Rna 20, 483-495. Minshall, N., and Standart, N. (2004). The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer. Nucleic acids research 32, 1325-1334. Morgan, T. (1901). Regeneration. New York: Macmillan. Newmark, P.A., Reddien, P.W., Cebria, F., and Sanchez Alvarado, A. (2003). Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proceedings of the National Academy of Sciences of the United States of America 100 Suppl 1, 11861-11865. Nicklas, S., Okawa, S., Hillje, A.L., Gonzalez-Cano, L., Del Sol, A., and Schwamborn, J.C. (2015). The RNA helicase DDX6 regulates cell-fate specification in neural stem cells via miRNAs. Nucleic acids research 43, 2638-2654. Nishimura, T., Padamsi, Z., Fakim, H., Milette, S., Dunham, W.H., Gingras, A.C., and Fabian, M.R. (2015). The eIF4E-Binding Protein 4E-T Is a Component of the mRNA Decay Machinery that Bridges the 5' and 3' Termini of Target mRNAs. Cell reports 11, 1425-1436. Paskin, T.R., Jellies, J., Bacher, J., and Beane, W.S. (2014). Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength. PloS one 9, e114708. Pearson, B.J., Eisenhoffer, G.T., Gurley, K.A., Rink, J.C., Miller, D.E., and Sanchez Alvarado, A. (2009). Formaldehyde-based whole-mount in situ hybridization method for planarians. Developmental dynamics : an official publication of the American Association of Anatomists 238, 443-450. Perin, M.S., Johnston, P.A., Ozcelik, T., Jahn, R., Francke, U., and Sudhof, T.C. (1991). Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. The Journal of biological chemistry 266, 615-622. Pimentel, J., and Boccaccio, G.L. (2014). Translation and silencing in RNA granules: a tale of sand grains. Frontiers in molecular neuroscience 7, 68. Poss, K.D., Wilson, L.G., and Keating, M.T. (2002). Heart regeneration in zebrafish. Science 298, 2188-2190. Ramsay, K., Bergmann, M., Veale, L.O., Richardson, C.A., Kaiser, M.J., Vize, S.J., and Feist, S.W. (2001). Damage, autotomy and arm regeneration in starfish caught by towed demersal fishing gears. Mar Biol 138, 527-536. Rand, J.B., and Russell, R.L. (1984). Choline acetyltransferase-deficient mutants of the nematode Caenorhabditis elegans. Genetics 106, 227-248. Ray, K., Perez, S.E., Yang, Z., Xu, J., Ritchings, B.W., Steller, H., and Goldstein, L.S. (1999). Kinesin-II is required for axonal transport of choline acetyltransferase in Drosophila. The Journal of cell biology 147, 507-518. Reddien, P.W. (2013). Specialized progenitors and regeneration. Development 140, 951-957. Reddien, P.W., and Sanchez Alvarado, A. (2004). Fundamentals of planarian regeneration. Annual review of cell and developmental biology 20, 725-757. Resch, A.M., Palakodeti, D., Lu, Y.C., Horowitz, M., and Graveley, B.R. (2012). Transcriptome analysis reveals strain-specific and conserved stemness genes in Schmidtea mediterranea. PloS one 7, e34447. Roberts-Galbraith, R.H., and Newmark, P.A. (2015). On the organ trail: insights into organ regeneration in the planarian. Current opinion in genetics & development 32, 37-46. Rouhana, L., Shibata, N., Nishimura, O., and Agata, K. (2010). Different requirements for conserved post-transcriptional regulators in planarian regeneration and stem cell maintenance. Developmental biology 341, 429-443. Rouhana, L., Weiss, J.A., Forsthoefel, D.J., Lee, H., King, R.S., Inoue, T., Shibata, N., Agata, K., and Newmark, P.A. (2013). RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: methodology and dynamics. Developmental dynamics : an official publication of the American Association of Anatomists 242, 718-730. Salvetti, A., Rossi, L., Lena, A., Batistoni, R., Deri, P., Rainaldi, G., Locci, M.T., Evangelista, M., and Gremigni, V. (2005). DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 132, 1863-1874. Sanchez Alvarado, A. (2004). Planarians. Current biology : CB 14, R737-738. Savas, J.N., Ma, B., Deinhardt, K., Culver, B.P., Restituito, S., Wu, L., Belasco, J.G., Chao, M.V., and Tanese, N. (2010). A role for huntington disease protein in dendritic RNA granules. The Journal of biological chemistry 285, 13142-13153. Slack, J.M. (2011). Development. Planarian pluripotency. Science 332, 799-800. Solana, J., Lasko, P., and Romero, R. (2009). Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Developmental biology 328, 410-421. Takano, T., Pulvers, J.N., Inoue, T., Tarui, H., Sakamoto, H., Agata, K., and Umesono, Y. (2007). Regeneration-dependent conditional gene knockdown (Readyknock) in planarian: demonstration of requirement for Djsnap-25 expression in the brain for negative phototactic behavior. Development, growth & differentiation 49, 383-394. Tazaki, A., Gaudieri, S., Ikeo, K., Gojobori, T., Watanabe, K., and Agata, K. (1999). Neural network in planarian revealed by an antibody against planarian synaptotagmin homologue. Biochemical and biophysical research communications 260, 426-432. Tu, K.C., Pearson, B.J., and Sanchez Alvarado, A. (2012). TORC1 is required to balance cell proliferation and cell death in planarians. Developmental biology 365, 458-469. Waghray, S., Williams, C., Coon, J.J., and Wickens, M. (2015). Xenopus CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo. Rna 21, 1335-1345. Wagner, D.E., Wang, I.E., and Reddien, P.W. (2011). Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332, 811-816. Wang, Y., Arribas-Layton, M., Chen, Y., Lykke-Andersen, J., and Sen, G.L. (2015). DDX6 Orchestrates Mammalian Progenitor Function through the mRNA Degradation and Translation Pathways. Molecular cell 60, 118-130. Wenemoser, D., Lapan, S.W., Wilkinson, A.W., Bell, G.W., and Reddien, P.W. (2012). A molecular wound response program associated with regeneration initiation in planarians. Genes & development 26, 988-1002. Weston, A., and Sommerville, J. (2006). Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic acids research 34, 3082-3094. Wurtzel, O., Cote, L.E., Poirier, A., Satija, R., Regev, A., and Reddien, P.W. (2015). A Generic and Cell-Type-Specific Wound Response Precedes Regeneration in Planarians. Developmental cell 35, 632-645. Yasuyama, K., Kitamoto, T., and Salvaterra, P.M. (1995). Localization of choline acetyltransferase-expressing neurons in the larval visual system of Drosophila melanogaster. Cell and tissue research 282, 193-202. Yasuyama, K., and Salvaterra, P.M. (1999). Localization of choline acetyltransferase-expressing neurons in Drosophila nervous system. Microscopy research and technique 45, 65-79. Yoshida-Kashikawa, M., Shibata, N., Takechi, K., and Agata, K. (2007). DjCBC-1, a conserved DEAD box RNA helicase of the RCK/p54/Me31B family, is a component of RNA-protein complexes in planarian stem cells and neurons. Developmental dynamics : an official publication of the American Association of Anatomists 236, 3436-3450. Zeitelhofer, M., Karra, D., Macchi, P., Tolino, M., Thomas, S., Schwarz, M., Kiebler, M., and Dahm, R. (2008). Dynamic interaction between P-bodies and transport ribonucleoprotein particles in dendrites of mature hippocampal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 7555-7562. Zhang, X., Kim-Miller, M.J., Fukuda, M., Kowalchyk, J.A., and Martin, T.F. (2002). Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 34, 599-611. Zhu, S.J., Hallows, S.E., Currie, K.W., Xu, C., and Pearson, B.J. (2015). A mex3 homolog is required for differentiation during planarian stem cell lineage development. eLife 4. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7848 | - |
dc.description.abstract | 再生是生物體更新或修復受損的細胞和組織,藉以維持正常生理功能與生存的方式。扁形動物渦蟲綱具有強大的再生能力,其體內存在大量多功能性成體幹細胞(neoblasts),能夠增生並分化成所有類型的細胞。因此,維持成體幹細胞增生與分化的平衡,對於渦蟲的生理恆定和再生過程都極為重要。DDX6蛋白屬於DEAD-box RNA解旋酶家族,真核生物中的DDX6同源蛋白不論在序列或功能上都具有高度保守性,並參與多項細胞生理機制。最近的研究更指出,DDX6能夠協同微核糖核酸(microRNA)影響哺乳類神經幹細胞分化,亦可透過降解mRNA和抑制轉譯的方式調控哺乳類上皮幹細胞的增生與分化。然而,對於渦蟲DDX6同源蛋白DjCBC-1是否能調控成體幹細胞增生與分化至今仍尚未明瞭。先前研究顯示,Djcbc-1表現在成體幹細胞、神經和生殖細胞當中,而抑制Djcbc-1的表現量會限制渦蟲眼點的再生。本研究進一步證實Djcbc-1高量表現於再生組織,並發現Djcbc-1的表現與否能顯著地影響處於再生期的渦蟲之存活率。除此之外,抑制Djcbc-1的表現量也會改變渦蟲腦部結構的完整性,並且大幅減弱渦蟲的負趨光性。我的研究結果顯示,Djcbc-1參與渦蟲個體的生理恆定、再生過程、以及負趨光性的調控。 | zh_TW |
dc.description.abstract | Regeneration is the process of renewal and regrowth of damaged tissue to maintain the normal physiological functions for surviving. Planarian has a robust ability of regeneration. Regeneration in planarians requires neoblasts, the pluripotent somatic stem cells, which can proliferate and differentiate into all different cell types. Regulation of neoblasts proliferation and differentiation is critical for planarians homeostasis and regeneration. DDX6, a member of the DEAD-box protein family, is highly conserved among most eukaryotes. DDX6 homologs play multiple roles in many biological processes. Recent studies showed that DDX6 regulates the differentiation of mammalian neural stem cells by microRNAs, as well as regulates the proliferation and the differentiation of mammalian epidermal stem cells by mRNA degradation and translational repression. However, it is unclear that whether DjCBC-1, the DDX6 ortholog in planarians, also regulates the proliferation and differentiation of neoblasts. Previous studies showed that Djcbc-1 is expressed in neoblasts, neurons, and germline cells. In addition, depletion of Djcbc-1 limited the formation of photoreceptors. Here, I further demonstrated that Djcbc-1 is highly expressed in the regenerating tissue, and is essential for planarian survival at regeneration status. Besides, depletion of Djcbc-1 perturbed the homeostasis of brain structure and reduced the negative phototaxis in planarians. Collectively, these results suggest that Djcbc-1 participates in tissue homeostasis, regeneration, and the regulation of negative phototaxis in planarians. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:55:51Z (GMT). No. of bitstreams: 1 ntu-105-R03b21012-1.pdf: 5212717 bytes, checksum: 4982943a768a10dc36eb043c60b530ba (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員審定書 ... i
誌謝 ... ii 摘要 ... iii Abstract ... iv 1. Introduction ... 1 1.1 Regeneration in planarians ... 1 1.2 Neoblasts in planarian regeneration and homeostasis ... 2 1.3 Nervous systems and the behaviors of planarians ... 3 1.4 DEAD-box helicase 6 (DDX6) ... 5 1.5 DjCBC-1, the DDX6 ortholog in Dugesia japonica ... 7 2. Materials and Methods ... 11 2.1 Animals ... 11 2.2 Synthesis and purification of digoxigenin (DIG)-labeled RNA probes ... 11 2.3 Whole-mount in situ hybridization (WISH) ... 13 2.4 Gamma (γ)-irradiation ... 14 2.5 RNA isolation and cDNA preparation ... 14 2.6 Quantitative reverse-transcription PCR (RT-qPCR) ... 15 2.7 Fluorescence-activated cell sorting (FACS) ... 16 2.8 DsRNA-mediated RNA interference (RNAi) experiment ... 17 2.9 Photophobia assay ... 18 2.10 Motility assay ... 19 2.11 Immunofluorescence (IF) staining with phospho-Histone 3 (H3p) (Ser10) or SYNORF1 (Synapsin) antibody ... 19 3. Results ... 21 3.1 Djcbc-1 was highly expressed in brain and neoblasts of planarian ... 21 3.2 Djcbc-1 was highly expressed in the regenerating tissue of planarian ... 22 3.3 Djcbc-1 was essential for the survival of newly regenerated planarian ... 23 3.4 Depletion of Djcbc-1 delayed the eyespots formation during planarian head regeneration ... 25 3.5 The neoblasts population was not declined after Djcbc-1 RNAi ... 25 3.6 Depletion of Djcbc-1 may affect the activity of neoblasts ... 26 3.7 Depletion of Djcbc-1 perturbed the brain of planarian during homeostasis ... 27 3.8 Depletion of Djcbc-1 impaired the brain regeneration of planarian ... 29 3.9 Depletion of Djcbc-1 abolished the negative phototaxis of planarian ... 30 4. Discussion ... 32 4.1 Summary and significance ... 32 4.2 Depletion of Djcbc-1 in newly regenerated planarians results in abnormal phenotype, even leads to death ... 34 4.3 Planarian behavior and the subtype neurons of CNS ... 36 4.4 The function of DjCBC-1 in neurons ... 38 4.5 Perspective ... 38 5. Figures ... 40 Figure 1 Djcbc-1 was highly expressed in brain and neoblasts of planarian ... 40 Figure 2 The expression level of Djcbc-1 was decreased after γ-irradiation ... 41 Figure 3 Djcbc-1 was highly expressed in FACS isolated X1 and X2 populations from the body of planarian ... 42 Figure 4 Djcbc-1 was highly expressed in the regenerating tissue of planarian ... 44 Figure 5 Djcbc-1 RNAi was sufficient to deplete 80% of Djcbc-1 in planarian ... 46 Figure 6 Small planarians were more sensitive to Djcbc-1 RNAi ... 47 Figure 7 Newly regenerated planarians were more sensitive to Djcbc-1 RNAi ... 49 Figure 8 Djcbc-1 was essential for the survival of newly regenerated planarian ... 50 Figure 9 Depletion of Djcbc-1 delayed the eyespots formation during planarian head regeneration ... 52 Figure 10 The expression patterns and levels of neoblasts-related marker genes after Djcbc-1 RNAi ... 54 Figure 11 Depletion of Djcbc-1 increased the relative amounts of isolated X1 but not the X2 cells ... 55 Figure 12 Depletion of Djcbc-1 increased the mitotic cells of planarians ... 57 Figure 13 Djcbc-1-depleted planarians were more sensitive to γ-irradiation with the dosage of 5 Gy or 90 Gy ... 58 Figure 14 Depletion of Djcbc-1 had no effect on the planarian eyespots during homeostasis ... 59 Figure 15 Depletion of Djcbc-1 perturbed the planarian brain during homeostasis ... 60 Figure 16 Gene expression levels of FACS-separated cell populations in Djcbc-1-depleted planarian ... 62 Figure 17 Depletion of Djcbc-1 did not impair the eyespots regeneration of planarian ... 63 Figure 18 Depletion of Djcbc-1 impaired the brain regeneration of planarian ... 64 Figure 19 Depletion of Djcbc-1 abolished the negative phototaxis of planarian... 66 Figure 20 Depletion of Djcbc-1 did not affect the planarian motility and the stimulating-escape response ... 68 Figure 21 Summary of the function of DjCBC-1 in planarian ... 69 6. Reference ... 71 | |
dc.language.iso | en | |
dc.title | 渦蟲DDX6核糖核酸解旋酶DjCBC-1之功能研究 | zh_TW |
dc.title | Functional study of the planarian RNA helicase DDX6, DjCBC-1 | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭典翰(Dian-Han Kuo),陳示國(Shih-Kuo Chen) | |
dc.subject.keyword | DEAD-box核糖核酸解璇?,DDX6,DjCBC-1,組織恆定性,再生,渦蟲, | zh_TW |
dc.subject.keyword | DEAD-box helicase 6,DDX6,DjCBC-1,homeostasis,regeneration,planarian, | en |
dc.relation.page | 81 | |
dc.identifier.doi | 10.6342/NTU201602791 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-08-21 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf | 5.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。