請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78478完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉汀峰 | zh_TW |
| dc.contributor.advisor | Ting-Feng Yeh | en |
| dc.contributor.author | 葉恆 | zh_TW |
| dc.contributor.author | Heng Yeh | en |
| dc.date.accessioned | 2021-07-11T14:59:13Z | - |
| dc.date.available | 2024-12-24 | - |
| dc.date.copyright | 2019-12-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 王義仲(2011)竹林經營對減緩溫室效應之助益。林業研究專訊18:8-11。
江萬栓(2018)麻竹稈纖維素酶解木質素萃取方法及其木質素特性分析。國立臺灣大學生物資源暨農學院森林環境暨資源學系碩士論文,70頁。 汪大雄(2016)2010年世界人工林資源及2005年竹資源變遷之簡介。台灣林業期刊42:74-87。 林維治、康佐榮、黃松根、江濤(1996)台灣主要竹林資源之調查。林維治竹類論文集,第233-260頁。 邱立文、黃群修、吳俊奇、謝小恬(2015)第4次全國森林資源調查結果概要。台灣林業期刊41:3-13。 陳昱光(2016)與綠竹BoLOL1具交互作用之蛋白質探討。國立臺灣大學生命科學院生化科技學系碩士論文,106頁。 陳盈君(2016)麻竹組織培養培植體消毒及癒傷組織誘導之探討。國立臺灣大學生物資源暨農學院森林環境暨資源學系碩士論文,81頁。 黃盈賓、李士畦、林曉洪(2015)竹材應用於綠色環境技術開發。台灣林業期刊41:32-36。 劉立元(2016)麻竹稈之木質素特性與其 Caffeic acid O-methyltransferase 酵素動力學分析。國立臺灣大學生物資源暨農學院森林環境暨資源學系碩士論文,71頁。 歐書瑋、陳財輝(2013)麻竹產筍林栽培管理技術回顧。林業研究專訊20:41-45。 Aachary, A. A. and S. G. Prapulla (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: Microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Comprehensive Reviews in Food Science and Food Safety 10:2-16. Abdul Khalil, H. P. S., I. U. H. Bhat, M. Jawaid, A. Zaidon, D. Hermawan and Y. S. Hadi (2012) Bamboo fibre reinforced biocomposites: A review. Materials and Design 42:353-368. Aditiya, H. B., T. M. I. Mahlia, W. T. Chong, H. Nur and A. H. Sebayang (2016) Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews 66:631-653. Almagro Armenteros, J. J., K. D. Tsirigos, C. K. Sonderby, T. N. Petersen, O. Winther, S. Brunak, G. von Heijne and H. Nielsen (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology 37:420-423. Anders, N. and P. Dupree (2011) Glycosyltransferases of the GT43 family. In "Annual Plant Reviews Volume 41: Plant Polysaccharides, Biosynthesis and Bioengineering" (Ulvskov, P. ed.) Blackwell Publishing Ltd., West Sussex. pp.251-263. Armstrong, C. L., W. L. Petersen, W. G. Buchholz, B. A. Bowen and S. L. Sulc (1990) Factors affecting PEG-mediated stable transformation of maize protoplasts. Plant Cell Reports 9:335-339. Aspeborg, H., J. Schrader, P. M. Coutinho, M. Stam, A. Kallas, S. Djerbi, P. Nilsson, S. Denman, B. Amini, F. Sterky, E. Master, G. Sandberg, E. Mellerowicz, B. Sundberg, B. Henrissat and T. T. Teeri (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiology 137:983-997. Atmodjo, M. A., Y. Sakuragi, X. Zhu, A. J. Burrell, S. S. Mohanty, J. A. Atwood III, R. Orlando, H. V. Scheller and D. Mohnen (2011) Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex. Proceedings of the National Academy of Sciences of the United States of America 108:20225-20230. Bailey, R. W. and W. Z. Hassid (1996) Xylan synthesis from uridinediphosphate-D-xylose by particulate preparations from immature corncobs. Proceedings of the National Academy of Sciences of the United States of America 56:1586-1593. Baydoun, E. A.-H., K. W. Waldron and C. T. Brett (1989) The interaction of xylosyltransferase and glucuronyltransferase involved in glucuronoxylan synthesis in pea (Pisum sativum) epicotyls. Biochemical Journal 257:853-858. Baydoun, E. A.-H. and C. T. Brett (1997) Distribution of xylosyltransferases and glucuronyltransferase within the Golgi apparatus in etiolated pea (Pisum sativum L.) epicotyls. Journal of Experimental Botany 48:1209-1214. Ben-Arie, R., L. Ordin and J. I. Kindinger (1973) A cell-free xylan synthesizing enzyme system from Avena sativa. Plant and Cell Physiology 14:427-434. Binkleya, D. and M. G. Ryan (1998) Net primary production and nutrient cycling in replicated stands of Eucalyptus saligna and Albizia facaltaria. Forest Ecology and Management 112:79-85. Bolwell, G. P. and D. H. Northcote (1981) Control of hemicellulose and pectin synthesis during differentiation of vascular tissue in bean (Phaseolus vulgaris) callus and in bean hypocotyl. Planta 152:225-233. Bolwell, G. P. and D. H. Northcote (1983) Arabinan synthase and xylan synthase activities of Phaseolus vulgaris. Biochemical Journal 210:497-457. Boulaflous, A., C. Saint-Jore-Dupas, M. C. Herranz-Gordo, S. Pagny-Salehabadi, C. Plasson, F. Garidou, M. C. Kiefer-Meyer, C. Ritzenthaler, L. Faye and V. Gomord (2009) Cytosolic N-terminal arginine-based signals together with a luminal signal target a type II membrane protein to the plant ER. BMC Plant Biology 9:144. Breton, C., L. Snajdrova, C. Jeanneau, J. Koca and A. Imberty (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16:29R-37R. Brown, D. M., F. Goubet, V. W. Wong, R. Goodacre, E. Stephens, P. Dupree and S. R. Turner (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant Journal 52:1154-1168. Brown, D. M., Z. Zhang, E. Stephens, P. Dupree and S. R. Turner (2009) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant Journal 57:732-746. Broxterman, S. E. and H. A. Schols (2018) Characterisation of pectin-xylan complexes in tomato primary plant cell walls. Carbohydrate Polymers 197:269-276. Burris, K. P., E. M. Dlugosz, A. Grace Collins, C. Neal Stewart Jr. and S. C. Lenaghan (2016) Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Reports 35:693-704. Busse-Wicher, M., T. C. Gomes, T. Tryfona, N. Nikolovski, K. Stott, N. J. Grantham, D. N. Bolam, M. S. Skaf and P. Dupree (2014) The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant Journal 79:492-506. Carpita, N. C. (1996) Structure and biogenesis of the cell walls of grasses. Annual Review of Plant Physiology and Plant Molecular Biology 47:445-476. Chang, W. J., M. J. Chang, S. T. Chang and T. F. Yeh (2013) Chemical composition and immunohistological variations of a growing bamboo shoot. Journal of Wood Chemistry and Technology 33:144-155. Chen, X., X. Zhang, Y. Zhang, T. Booth and X. He (2009) Changes of carbon stocks in bamboo stands in China during 100 years. Forest Ecology and Management 258:1489-1496. Chen, X., M. E. Vega-Sanchez, Y. Verhertbruggen, D. Chiniquy, P. E. Canlas, A. Fagerstrom, L. Prak, U. Christensen, A. Oikawa, M. Chern, S. Zuo, F. Lin, M. Auer, W. G. Willats, L. Bartley, J. Harholt, H. V. Scheller and P. C. Ronald (2013a) Inactivation of OsIRX10 leads to decreased xylan content in rice culm cell walls and improved biomass saccharification. Molecular Plant 6:570-573. Chen, X., J. L. Zaro and W. C. Shen (2013b) Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews 65:1357-1369. Chiniquy, D., P. Varanasi, T. Oh, J. Harholt, J. Katnelson, S. Singh, M. Auer, B. Simmons, P. D. Adams, H. V. Scheller and P. C. Ronald (2013) Three novel rice genes closely related to the Arabidopsis IRX9, IRX9L, and IRX14 genes and their roles in xylan biosynthesis. Frontiers in Plant Science 4:83. Chong, S. L., L. Virkki, H. Maaheimo, M. Juvonen, M. Derba-Maceluch, S. Koutaniemi, M. Roach, B. Sundberg, P. Tuomainen, E. J. Mellerowicz and M. Tenkanen (2014) O-Acetylation of glucuronoxylan in Arabidopsis thaliana wild type and its change in xylan biosynthesis mutants. Glycobiology 24:494-506. Chou, Y. H., G. Pogorelko and O. A. Zabotina (2012) Xyloglucan xylosyltransferases XXT1, XXT2, and XXT5 and the glucan synthase CSLC4 form Golgi-localized multiprotein complexes. Plant Physiology 159:1355-1366. Chou, Y. H., G. Pogorelko, Z. T. Young and O. A. Zabotina (2015) Protein-protein interactions among xyloglucan-synthesizing enzymes and formation of Golgi-localized multiprotein complexes. Plant Cell Physiology 56:255-267. Chung, M. J. and S. Y. Wang (2018) Mechanical properties of oriented bamboo scrimber boards made of Phyllostachys pubescens (moso bamboo) from Taiwan and China as a function of density. Holzforschung 72:151-158. Coutinho, P. M., E. Deleury, G. J. Davies and B. Henrissat (2003) An evolving hierarchical family classification for glycosyltransferases. Journal of Molecular Biology 328:307-317. Cui, K., C. Y. He, J. G. Zhang, A. G. Duan and Y. F. Zeng (2012) Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo. Journal of Proteome Research 11:2492-2507. Dalessandro, G. and D. H. Northcote (1981a) Xylan synthetase activity in differentiated xylem cells of sycamore trees (Acer pseudoplatanus). Planta 151:53-60. Dalessandro, G. and D. H. Northcote (1981b) Increase of xylan synthetase activity during xylem differentiation of the vascular cambium of sycamore and poplar trees. Planta 151:61-67. Davey, N. E., K. Van Roey, R. J. Weatheritt, G. Toedt, B. Uyar, B. Altenberg, A. Budd, F. Diella, H. Dinkel and T. J. Gibson (2012) Attributes of short linear motifs. Molecular Biosystems 8:268-281. Demura, T. and Z. H. Ye (2010) Regulation of plant biomass production. Current Opinion in Plant Biology 13:299-304. Dinkel, H., K. Van Roey, S. Michael, M. Kumar, B. Uyar, B. Altenberg, V. Milchevskaya, M. Schneider, H. Kuhn, A. Behrendt, S. L. Dahl, V. Damerell, S. Diebel, S. Kalman, S. Klein, A. C. Knudsen, C. Mader, S. Merrill, A. Staudt, V. Thiel, L. Welti, N. E. Davey, F. Diella and T. J. Gibson (2016) ELM 2016 - data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Research 44:D294-300. Dodd, D. and I. K. Cann (2009) Enzymatic deconstruction of xylan for biofuel production. Global Change Biology Bioenergy 1:2-17. Donev, E., M. L. Gandla, L. J. Jonsson and E. J. Mellerowicz (2018) Engineering non-cellulosic polysaccharides of wood for the biorefinery. Frontiers in Plant Science 9:1537. Emanuelsson, O., H. Nielsen, S. Brunak and G. von Heijne (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology 300:1005-1016. Feingold, D. S., E. F. Neufeld and W. Z. Hassid (1959) Xylosyl transfer catalyzed by an asparagus extract. Journal of Biological Chemistry 234:488-489. Fondeur-Gelinotte, M., V. Lattard, S. Gulberti, R. Oriol, G. Mulliert, M. W. Coughtrie, J. Magdalou, P. Netter, M. Ouzzine and S. Fournel-Gigleux (2007) Molecular basis for acceptor substrate specificity of the human β1,3-glucuronosyltransferases GlcAT-I and GlcAT-P involved in glycosaminoglycan and HNK-1 carbohydrate epitope biosynthesis, respectively. Glycobiology 17:857-867. Gao, Z. M., C. L. Li and Z. H. Peng (2011) Generation and analysis of expressed sequence tags from a normalized cDNA library of young leaf from Ma bamboo (Dendrocalamus latiflorus Munro). Plant Cell Reports 30:2045-2057. Geisler-Lee, J., M. Geisler, P. M. Coutinho, B. Segerman, N. Nishikubo, J. Takahashi, H. Aspeborg, S. Djerbi, E. Master, S. Andersson-Gunneras, B. Sundberg, S. Karpinski, T. T. Teeri, L. A. Kleczkowski, B. Henrissat and E. J. Mellerowicz (2006) Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiology 140:946-962. Geshi, N., J. Harholt, Y. Sakuragi, J. Krüger Jensen and H. V. Scheller (2011) Glycosyltransferases of the GT47 family. In "Annual Plant Reviews Volume 41: Plant Polysaccharides, Biosynthesis and Bioengineering" (Ulvskov, P. ed.) Blackwell Publishing Ltd., West Sussex. pp.265-283. Ghavami, K. (2008) Bamboo: Low cost and energy saving construction materials. In "Morden Bamboo Structures" (Xiao, Y., M. Inoue and S. K. Paudel eds.) Taylor & Francis Group, London. pp.5-21. Giraudo, C. G. and H. J. Maccioni (2003) Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sar1. Molecular Biology of the Cell 14:3753-3766. Gomord, V., L. A. Denmat, A. C. Fitchette-Lainé, B. Satiat-Jeunemaitre, C. Hawes and L. Faye (1997) The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant Journal 11:313-325. Grantham, N. J., J. Wurman-Rodrich, O. M. Terrett, J. J. Lyczakowski, K. Stott, D. Iuga, T. J. Simmons, M. Durand-Tardif, S. P. Brown, R. Dupree, M. Busse-Wicher and P. Dupree (2017) An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nature Genetics 3:859-865. Hörnblad, E., M. Ulfstedt, H. Ronne and A. Marchant (2013) Partial functional conservation of IRX10 homologs in Physcomitrella patens and Arabidopsis thaliana indicates an evolutionary step contributing to vascular formation in land plants. BMC Plant Biology 13:3. Haghighat, M., Q. Teng, R. Zhong and Z. H. Ye (2016) Evolutionary conservation of xylan biosynthetic genes in Selaginella moellendorffii and Physcomitrella patens. Plant and Cell Physiology 57:1707-1719. Hao, Z. and D. Mohnen (2014) A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Critical Reviews in Biochemistry Molecular Biology 49:212-241. Hardt, B., B. Kalz-Fuller, R. Aparicio, C. Volker and E. Bause (2003) (Arg)3 within the N-terminal domain of glucosidase I contains ER targeting information but is not required absolutely for ER localization. Glycobiology 13:159-168. Harholt, J., J. K. Jensen, Y. Verhertbruggen, C. Sogaard, S. Bernard, M. Nafisi, C. P. Poulsen, N. Geshi, Y. Sakuragi, A. Driouich, J. P. Knox and H. V. Scheller (2012) ARAD proteins associated with pectic arabinan biosynthesis form complexes when transiently overexpressed in planta. Planta 236:115-128. Harper, A. D. and M. Bar-Peled (2002) Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. Plant Physiology 130:2188-2198. Hassan, A. S., K. Houston, J. Lahnstein, N. Shirley, J. G. Schwerdt, M. J. Gidley, R. Waugh, A. Little and R. A. Burton (2017) A genome wide association study of arabinoxylan content in 2-row spring barley grain. PLoS One 12:e0182537. Hatfield, R. D., D. M. Rancour and J. M. Marita (2016) Grass cell walls: A story of cross-linking. Frontiers in Plant Science 7:2056. He, C. Y., K. Cui, J. G. Zhang, A. G. Duan and Y. F. Zeng (2013) Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in moso bamboo. BMC Plant Biology 13:119. He, M. X., J. L. Wang, H. Qin, Z. X. Shui, Q. L. Zhu, B. Wu, F. R. Tan, K. Pan, Q. C. Hu, L. C. Dai, W. G. Wang, X. Y. Tang and G. Q. Hu (2014) Bamboo: A new source of carbohydrate for biorefinery. Carbohydrate Polymers 111:645-654. He, Z. H., I. Cheeseman, D. He and B. D. Kohorn (1999) A cluster of five cell wall-associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis. Plant Molecular Biology 39:1189-1196. Hisamoto, Y. and M. Kobayashi (2010) Protoplast isolation from bamboo leaves. Plant Biotechnology 27:353-358. Hu, R., J. Li, X. Wang, X. Zhao, X. Yang, Q. Tang, G. He, G. Zhou and Y. Kong (2016) Xylan synthesized by Irregular Xylem 14 (IRX14) maintains the structure of seed coat mucilage in Arabidopsis. Journal of Experimental Botany 67:1243-1257. Huang, L. C., W. L. Chen and B. L. Huang (1989) Tissue culture investigations of bamboo III. A method for viable protoplast isolation from Bambusa cells of liquid suspension culture. Botanical Bulletin of Academia Sinica 30:49-57. Hung, K. C., H. Yeh, T. C. Yang, T. L. Wu, J. W. Xu and J. H. Wu (2017) Characterization of wood-plastic composites made with different lignocellulosic materials that vary in their morphology, chemical composition and thermal stability. Polymers 9:726. Isagi, Y., T. Kawahara, K. Kamo and H. Ito (1997) Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecology 130:41-52. Ishihara, M. and K. Shimizu (1983) Structure of the reducing end-groups in spruce xylan. Carbohydrate Research 111:243-288. Ishikawa, M., H. Kuroyama, Y. Takeuchi and Y. Tsumuraya (2000) Characterization of pectin methyltransferase from soybean hypocotyls. Planta 210:782-791. Jayanetti, D. L. and P. R. Follett (2008) Bamboo in construction. In "Morden Bamboo Structures" (Xiao, Y., M. Inoue and S. K. Paudel eds.) Taylor & Francis Group, London. pp.23-32. Jensen, J. K., N. Johnson and C. G. Wilkerson (2013) Discovery of diversity in xylan biosynthetic genes by transcriptional profiling of a heteroxylan containing mucilaginous tissue. Frontiers in Plant Science 4:183. Jensen, J. K., N. R. Johnson and C. G. Wilkerson (2014) Arabidopsis thaliana IRX10 and two related proteins from psyllium and Physcomitrella patens are xylan xylosyltransferases. Plant Journal 80:207-215. Jensen, J. K., M. Busse-Wicher, C. P. Poulsen, J. U. Fangel, P. J. Smith, J. Y. Yang, M. J. Pena, M. H. Dinesen, H. J. Martens, M. Melkonian, G. K. Wong, K. W. Moremen, C. G. Wilkerson, H. V. Scheller, P. Dupree, P. Ulvskov, B. R. Urbanowicz and J. Harholt (2018) Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis. New Phytologist 218:1049-1060. Jiang, F., J. Zhu and H. L. Liu (2013) Protoplasts: A useful research system for plant cell biology, especially dedifferentiation. Protoplasma 250:1231-1238. Jiang, N., R. E. Wiemels, A. Soya, R. Whitley, M. Held and A. Faik (2016) Composition, assembly, and trafficking of a wheat xylan synthase complex. Plant Physiology 170:1999-2023. Johansson, M. H. and O. Samuelson (1977) Reducing end groups in birch xylan and their alkaline degradation. Wood Science and Technology 11:251-263. Johnson, G. A., D. L. Wyse and C. C. Sheaffer (2013) Yield of perennial herbaceous and woody biomass crops over time across three locations. Biomass and Bioenergy 58:267-274. Kakuda, S., T. Shiba, M. Ishiguro, H. Tagawa, S. Oka, Y. Kajihara, T. Kawasaki, S. Wakatsuki and R. Kato (2004) Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1. Journal of Biological Chemistry 279:22693-22703. Kawahara, Y., M. de la Bastide, J. P. Hamilton, H. Kanamori, W. R. McCombie, S. Ouyang, D. C. Schwartz, T. Tanaka, J. Wu, S. Zhou, K. L. Childs, R. M. Davidson, H. Lin, L. Quesada-Ocampo, B. Vaillancourt, H. Sakai, S. S. Lee, J. Kim, H. Numa, T. Itoh, C. R. Buell and T. Matsumoto (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4. Keegstra, K. and N. Raikhel (2001) Plant glycosyltransferases. Current Opinion in Plant Biology 4:219-224. Keenan, R. J., D. M. Freymann, R. M. Stroud and P. Walter (2001) The signal recognition particle. Annual Review of Biochemistry 70:755-775. Kelley, L. A., S. Mezulis, C. M. Yates, M. N. Wass and M. J. E. Sternberg (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10:845. Kennes, D., H. N. Abubackar, M. Diaz, M. C. Veiga and C. Kennes (2016) Bioethanol production from biomass: Carbohydrate vs syngas fermentation. Journal of Chemical Technology and Biotechnology 91:304-317. Keppler, B. D. and A. M. Showalter (2010) IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in Arabidopsis. Molecular Plant 3:834-841. Kjaergaard, M. and B. B. Kragelund (2017) Functions of intrinsic disorder in transmembrane proteins. Cellular and Molecular Life Sciences 74:3205-3224. Kobayashi, F., H. Take, C. Asada and Y. Nakamura (2004) Methane production from steam-exploded bamboo. Journal of Bioscience and Bioengineering 97:426-428. Kulkarni, A. R., S. Pattathil, M. G. Hahn, W. S. York and M. A. O'Neill (2012) Comparison of arabinoxylan structure in bioenergy and model grasses. Industrial Biotechnology 8:222-229. Kuroyama, H. and Y. Tsumuraya (2001) A xylosyltransferase that synthesizes β-(1→4)-xylans in wheat (Triticum aestivum L.) seedlings. Planta 213:231-240. Kuttiraja, M., R. Sindhu, P. E. Varghese, S. V. Sandhya, P. Binod, S. Vani, A. Pandey and R. K. Sukumaran (2013) Bioethanol production from bamboo (Dendrocalamus sp.) process waste. Biomass and Bioenergy 59:142-150. Lairson, L. L., B. Henrissat, G. J. Davies and S. G. Withers (2008) Glycosyltransferases: structures, functions, and mechanisms. Annual Review of Biochemistry 77:521-555. Lazzeri, P. A., R. Brettschneider, R. Liihrs and H. Lӧrz (1991) Stable transformation of barley via PEG-induced direct DNA uptake into protoplasts. Theoretical and Applied Genetics 81:437-444. Lee, C., M. A. O'Neill, Y. Tsumuraya, A. G. Darvill and Z.-H. Ye (2007a) The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity. Plant and Cell Physiology 48:1624-1634. Lee, C., R. Zhong, E. A. Richardson, D. S. Himmelsbach, B. T. McPhail and Z. H. Ye (2007b) The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis. Plant and Cell Physiology 48:1659-1672. Lee, C., Q. Teng, W. Huang, R. Zhong and Z. H. Ye (2009) Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant and Cell Physiology 50:1075-1089. Lee, C., Q. Teng, R. Zhong and Z. H. Ye (2011) Molecular dissection of xylan biosynthesis during wood formation in poplar. Molecular Plant 4:730-747. Lee, C., R. Zhong and Z. H. Ye (2012) Arabidopsis family GT43 members are xylan xylosyltransferases required for the elongation of the xylan backbone. Plant and Cell Physiology 53:135-143. Lee, C., Q. Teng, R. Zhong, Y. Yuan and Z. H. Ye (2014) Functional roles of rice glycosyltransferase family GT43 in xylan biosynthesis. Plant Signaling & Behavior 9:e27809. Li, C., L. Xuan, Y. He, J. Wang, H. Zhang, Y. Ying, A. Wu, A. Bacic, W. Zeng and L. Song (2018) Molecular mechanism of xylogenesis in moso bamboo (Phyllostachys edulis) shoots during cold storage. Polymers 11:38. Li, F., S. Ren, W. Zhang, Z. Xu, G. Xie, Y. Chen, Y. Tu, Q. Li, S. Zhou, Y. Li, F. Tu, L. Liu, Y. Wang, J. Jiang, J. Qin, S. Li, Q. Li, H. C. Jing, F. Zhou, N. Gutterson and L. Peng (2012) Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Bioresource Technology 130:629-637. Li, F., M. Zhang, K. Guo, Z. Hu, R. Zhang, Y. Feng, X. Yi, W. Zou, L. Wang, C. Wu, J. Tian, T. Lu, G. Xie and L. Peng (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnology Journal 13:514-525. Li, Y. B., S. W. Rogers, Y. C. Tse, S. W. Lo, S. S. M. Sun, G. Y. Jauh and L. Jiang (2002) BP-80 and homologs are concentrated on post-Golgi, probable lytic prevacuolar compartments. Plant Cell Physiology 43:726-742. Lin, H. Y., J. C. Chen and S. C. Fang (2018) A protoplast transient expression system to enable molecular, cellular, and functional studies in Phalaenopsis orchids. Frontier in Plant Science 9:843. Lin, Y. C., W. Li, Y. H. Sun, S. Kumari, H. Wei, Q. Li, S. Tunlaya-Anukit, R. R. Sederoff and V. L. Chiang (2013) SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. Plant Cell 25:4324-4341. Lin, Y. C., W. Li, H. Chen, Q. Li, Y. H. Sun, R. Shi, C. Y. Lin, J. P. Wang, H. C. Chen, L. Chuang, G. Z. Qu, R. R. Sederoff and V. L. Chiang (2014) A simple improved-throughput xylem protoplast system for studying wood formation. Nature Protocols 9:2194-2205. Liu, J. and A. Mushegian (2003) Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Science 12:1418-1431. Liu, M., G. Qiao, J. Jiang, H. Yang, L. Xie, J. Xie and R. Zhuo (2012) Transcriptome sequencing and de novo analysis for Ma bamboo (Dendrocalamus latiflorus Munro) using the Illumina platform. PLoS One 7:e46766. Lobovikov, M., S. Paudel, M. Piazza, H. Ren and J. Wu (2007) World bamboo resources: A thematic study prepared in the framework of the globa forest resources assessment 2005. Food and Agriculture Organization of the United Nations Technical Papers - Non-Wood Forest Products 18:pp.73. Lovegrove, A., M. D. Wilkinson, J. Freeman, T. K. Pellny, P. Tosi, L. Saulnier, P. R. Shewry and R. A. Mitchell (2013) RNA interference suppression of genes in glycosyltransferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiology 163:73. Mahdavi, M., P. L. Clouston and S. R. Arwade (2011) Development of laminated bamboo lumber. Journal of Materials in Civil Engineering 23:1036-1042. Mano, M. C. R., I. A. Neri-Numa, J. B. da Silva, B. N. Paulino, M. G. Pessoa and G. M. Pastore (2018) Oligosaccharide biotechnology: An approach of prebiotic revolution on the industry. Applied Microbiology and Biotechnology 102:17-37. Masani, M. Y., G. A. Noll, G. K. Parveez, R. Sambanthamurthi and D. Prufer (2014) Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. PLoS One 9:e96831. Mathur, J., C. Koncz and L. Szabados (1995) A simple method for isolation, liquid culture, transformation and regeneration of Arabidopsis thaIiana protoplasts. Plant Cell Reports 14:221-226. McCormick, C., Y. Leduc, D. Martindale, K. Mattison, L. E. Esford, A. P. Dyer and F. Tufaro (1998) The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nature Genetics 19:158-161. McCormick, C., G. Duncan, K. T. Goutsos and F. Tufaro (2000) The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proceedings of the National Academy of Sciences of the United States of America 97:668-673. Meents, M. J., Y. Watanabe and A. L. Samuels (2018) The cell biology of secondary cell wall biosynthesis. Annals of Botany 121:1107-1125. Meents, M. J., S. Motani, S. D. Mansfield and A. L. Samuels (2019) Organization of xylan production in the Golgi during secondary cell wall biosynthesis. Plant Physiology 181:527-546. Mikkonen, K. S. and M. Tenkanen (2012) Sustainable food-packaging materials based on future biorefinery products: Xylans and mannans. Trends in Food Science & Technology 28:90-102. Mitchell, R. A., P. Dupree and P. R. Shewry (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiology 144:43-53. Mortimer, J. C., G. P. Miles, D. M. Brown, Z. Zhang, M. P. Segura, T. Weimar, X. Yu, K. A. Seffen, E. Stephens, S. R. Turner and P. Dupree (2010) Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proceedings of the National Academy of Sciences of the United States of America 107:17409-17414. Mortimer, J. C., N. Faria-Blanc, X. Yu, T. Tryfona, M. Sorieul, Y. Z. Ng, Z. Zhang, K. Stott, N. Anders and P. Dupree (2015) An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14. Plant Journal 83:413-426. Neumann, U., F. Brandizzi and C. Hawes (2003) Protein transport in plant cells: In and out of the Golgi. Annals of Botany 92:167-180. Odzuck, W. and H. Kauss (1972) Biosynthesis of pure araban and xylan. Phytochemistry 11:2489-2494. Ogita, S., N. Kikuchi, T. Nomura and Y. Kato (2011) A practical protocol for particle bombardment-mediated transformation of Phyllostachys bamboo suspension cells. Plant Biotechnology 28:43-50. Oikawa, A., H. J. Joshi, E. A. Rennie, B. Ebert, C. Manisseri, J. L. Heazlewood and H. V. Scheller (2010) An integrative approach to the identification of Arabidopsis and rice genes involved in xylan and secondary wall development. PLoS One 5:e15481. Oikawa, A., C. H. Lund, Y. Sakuragi and H. V. Scheller (2013) Golgi-localized enzyme complexes for plant cell wall biosynthesis. Trends Plant Science 18:49-58. Ortiz, A. R., C. E. Strauss and O. Olmea (2002) MAMMOTH (matching molecular models obtained from theory): An automated method for model comparison. Protein Science 11:2606-2621. Ouzzine, M., S. Gulberti, P. Netter, J. Magdalou and S. Fournel-Gigleux (2000) Structure/function of the human Ga1 β 1,3-glucuronosyltransferase. Dimerization and functional activity are mediated by two crucial cysteine residues. Journal of Biological Chemistry 275:28254-28260. Pannuzzo, M., D. H. De Jong, A. Raudino and S. J. Marrink (2014) Simulation of polyethylene glycol and calcium-mediated membrane fusion. Journal of Chemical Physics 140:124905. Paudel, S. K. (2008) Engineered bamboo as a building material. In "Morden Bamboo Structures" (Xiao, Y., M. Inoue and S. K. Paudel eds.) Taylor & Francis Group, London. pp.33-40. Pauly, M. and K. Keegstra (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant Journal 54:559-568. Pawar, P. M., S. Koutaniemi, M. Tenkanen and E. J. Mellerowicz (2013) Acetylation of woody lignocellulose: Significance and regulation. Frontiers in Plant Science 4:118. Peña, M. J., R. Zhong, G. K. Zhou, E. A. Richardson, M. A. O'Neill, A. G. Darvill, W. S. York and Z. H. Ye (2007) Arabidopsis irregular xylem8 and irregular xylem9: Implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549-563. Peña, M. J., A. R. Kulkarni, J. Backe, M. Boyd, M. A. O'Neill and W. S. York (2016) Structural diversity of xylans in the cell walls of monocots. Planta 244:589-606. Pedersen, L. C., K. Tsuchida, H. Kitagawa, K. Sugahara, T. A. Darden and M. Negishi (2000) Heparan/chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I. Journal of Biological Chemistry 275:34580-34585. Pedersen, L. C., T. A. Darden and M. Negishi (2002) Crystal structure of β 1,3-glucuronyltransferase I in complex with active donor substrate UDP-GlcUA. Journal of Biological Chemistry 277:21869-21873. Pedersen, L. C., J. Dong, F. Taniguchi, H. Kitagawa, J. M. Krahn, L. G. Pedersen, K. Sugahara and M. Negishi (2003) Crystal structure of an α1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. Journal of Biological Chemistry 278:14420-14428. Peng, P. and D. She (2014) Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: A review. Carbohydrate Polymers 112:701-720. Peng, Z., Y. Lu, L. Li, Q. Zhao, Q. Feng, Z. Gao, H. Lu, T. Hu, N. Yao, K. Liu, Y. Li, D. Fan, Y. Guo, W. Li, Y. Lu, Q. Weng, C. Zhou, L. Zhang, T. Huang, Y. Zhao, C. Zhu, X. Liu, X. Yang, T. Wang, K. Miao, C. Zhuang, X. Cao, W. Tang, G. Liu, Y. Liu, J. Chen, Z. Liu, L. Yuan, Z. Liu, X. Huang, T. Lu, B. Fei, Z. Ning, B. Han and Z. Jiang (2013a) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nature Genetics 45:456-461. Peng, Z., C. Zhang, Y. Zhang, T. Hu, S. Mu, X. Li and J. Gao (2013b) Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS One 8:e78944. Petersen, P. D., J. Lau, B. Ebert, F. Yang, Y. Verhertbruggen, J. S. Kim, P. Varanasi, A. Suttangkakul, M. Auer, D. Loqué and H. V. Schelle (2012) Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants. Biotechnology for Biofuels 5:84. Porchia, A. C. and H. V. Scheller (2000) Arabinoxylan biosynthesis identification and partial characterization of β‐1,4‐xylosyltransferase from wheat. Physiologia Plantarum 110:350-356. Pordesimo, L. O., W. C. Edens and S. Sokhansanj (2004) Distribution of aboveground biomass in corn stover. Biomass and Bioenergy 26:337-343. Potter, H. and R. Heller (2018) Transfection by electroporation. Current Protocols in Molecular Biology 121:9.3.1-9.3.13. Qiao, G., H. Li, M. Liu, J. Jiang, Y. Yin, L. Zhang and R. Zhuo (2013) Callus induction and plant regeneration from anthers of Dendrocalamus latiflorus Munro. In Vitro Cellular & Developmental Biology - Plant 49:375-382. Qiao, G., H. Yang, L. Zhang, X. Han, M. Liu, J. Jiang, Y. Jiang and R. Zhuo (2014) Enhanced cold stress tolerance of transgenic Dendrocalamus latiflorus Munro (Ma bamboo) plants expressing a bacterial CodA gene. In Vitro Cellular & Developmental Biology - Plant 50:385-391. Qiao, G., M. Liu, K. Song, H. Li, H. Yang, Y. Yin and R. Zhuo (2017) Phenotypic and comparative transcriptome analysis of different ploidy plants in Dendrocalamus latiflorus Munro. Frontiers in Plant Science 8:1371. Ratke, C., P. M. Pawar, V. K. Balasubramanian, M. Naumann, M. L. Duncranz, M. Derba-Maceluch, A. Gorzsas, S. Endo, I. Ezcurra and E. J. Mellerowicz (2015) Populus GT43 family members group into distinct sets required for primary and secondary wall xylan biosynthesis and include useful promoters for wood modification. Plant Biotechnology Journal 13:26-37. Ratke, C., B. K. Terebieniec, S. Winestrand, M. Derba-Maceluch, T. Grahn, B. Schiffthaler, T. Ulvcrona, M. Ozparpucu, M. Ruggeberg, S. O. Lundqvist, N. R. Street, L. J. Jonsson and E. J. Mellerowicz (2018) Downregulating aspen xylan biosynthetic GT43 genes in developing wood stimulates growth via reprograming of the transcriptome. New Phytologist 219:230-245. Ren, Y., S. F. Hansen, B. Ebert, J. Lau and H. V. Scheller (2014) Site-directed mutagenesis of IRX9, IRX9L and IRX14 proteins involved in xylan biosynthesis: Glycosyltransferase activity is not required for IRX9 function in Arabidopsis. PLoS One 9:e105014. Rennie, E. A., S. F. Hansen, E. E. Baidoo, M. Z. Hadi, J. D. Keasling and H. V. Scheller (2012) Three members of the Arabidopsis glycosyltransferase family 8 are xylan glucuronosyltransferases. Plant Physiology 159:1408-1417. Rennie, E. A. and H. V. Scheller (2014) Xylan biosynthesis. Current Opinion in Biotechnology 26:100-107. Rodgers, M. W. and G. P. Bolwell (1992) Partial purification of Golgi-bound arabinosyltransferase and two isoforms of xylosyltransferase from French bean (Phaseolus vulgaris L.). Biochemical Journal 288:817-822. Saint-Jore-Dupas, C., A. Nebenfuhr, A. Boulaflous, M. L. Follet-Gueye, C. Plasson, C. Hawes, A. Driouich, L. Faye and V. Gomord (2006) Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. Plant Cell 18:3182-3200. Saulnier, L., F. Guillon, P. E. Sado and X. Rouau (2007) Plant cell wall polysaccharides in storage organs; Xylans (food applications). In "Comprehensive Glycoscience" (Kamerling, H. ed.) Elsevier, Amsterdam. pp.653-689. Scheller, H. V. and P. Ulvskov (2010) Hemicelluloses. Annual Reviw of Plant Biology 61:263-289. Schmittgen, T. D. and K. J. Livak (2008) Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3:1101-1108. Schoberer, J., U. Vavra, J. Stadlmann, C. Hawes, L. Mach, H. Steinkellner and R. Strasser (2009) Arginine/lysine residues in the cytoplasmic tail promote ER export of plant glycosylation enzymes. Traffic 10:101-115. Schutze, M.-P., P. A. Peterson and M. R. Jackson (1994) An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO Journal 13:1696-1705. Scurlock, J. M. O., D. C. Dayton and B. Hames (2000) Bamboo: An overlooked biomass resource? Biomass and Bioenergy 19:229-244. Shanmughavel, P. and K. Francis (1996) Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass and Bioenergy 10:383-391. Shen, Y., D. Meng, K. McGrouther, J. Zhang and L. Cheng (2017) Efficient isolation of Magnolia protoplasts and the application to subcellular localization of MdeHSF1. Plant Methods 13:44. Shiba, T., S. Kakuda, M. Ishiguro, I. Morita, S. Oka, T. Kawasaki, S. Wakatsuki and R. Kato (2006) Crystal structure of GlcAT-S, a human glucuronyltransferase, involved in the biosynthesis of the HNK-1 carbohydrate epitope. Proteins 65:499-508. Simmons, T. J., J. C. Mortimer, O. D. Bernardinelli, A. C. Poppler, S. P. Brown, E. R. deAzevedo, R. Dupree and P. Dupree (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nature Communacations 7:13902. Simpson, R. J. (2010) Disruption of cultured cells by nitrogen cavitation. Cold Spring Harbor Protocols 2010(November):1219-1222. Smith, P. J., H. T. Wang, W. S. York, M. J. Pena and B. R. Urbanowicz (2017) Designer biomass for next-generation biorefineries: Leveraging recent insights into xylan structure and biosynthesis. Biotechnology for Biofuels 10:286. Song, L., W. Zeng, A. Wu, K. Picard, E. R. Lampugnani, R. Cheetamun, C. Beahan, A. Cassin, A. Lonsdale, M. S. Doblin and A. Bacic (2015) Asparagus spears as a model to study heteroxylan biosynthesis during secondary wall development. PLoS One 10:e0123878. Sparkes, I. A., J. Runions, A. Kearns and C. Hawes (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1:2019-2025. Spiess, M., T. Junne and M. Janoschke (2019) Membrane protein integration and topogenesis at the ER. Protein Journal 38:306-316. Stillwell, W. (2016) Membrane isolation methods. In "An Introduction to Biological Membranes: Composition, Structure and Function" (Stillwell, W. ed.) Elsevier, Amsterdam. pp.247-271. Strasser, R., J. Schoberer, C. Jin, J. Glossl, L. Mach and H. Steinkellner (2006) Molecular cloning and characterization of Arabidopsis thaliana Golgi α-mannosidase II, a key enzyme in the formation of complex N-glycans in plants. Plant Journal 45:789-803. Suzuki, K., E. Ingold, M. Sugiyama and A. Komamine (1991) Xylan synthase activity in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements. Plant and Cell Physiology 32:303-306. Suzuki, K., S. Kitamura, Y. Kato and T. Itoh (2000) Highly substituted glucuronoarabinoxylans (hsGAXs) and low-branched xylans show a distinct localization pattern in the tissues of Zea mays L. Plant Cell Physiology 41:948-959. Suzuki, K., S. Kitamura, Y. Sone and T. Itoh (2002) Immunohistochemical localization of hemicelluloses and pectins varies during tissue development in the bamboo culm. Histochemical Journal 34:535-544. Tan, L., S. Eberhard, S. Pattathil, C. Warder, J. Glushka, C. Yuan, Z. Hao, X. Zhu, U. Avci, J. S. Miller, D. Baldwin, C. Pham, R. Orlando, A. Darvill, M. G. Hahn, M. J. Kieliszewski and D. Mohnen (2013) An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270-287. Thomason, W. E., W. R. Raun, G. V. Johnson, C. M. Taliaferro, K. W. Freeman, K. J. Wynn and R. W. Mullen (2005) Switchgrass response to harvest frequency and time and rate of applied nitrogen. Journal of Plant Nutrition 27:1199-1226. Timmers, J., S. Vernhettes, T. Desprez, J. P. Vincken, R. G. Visser and L. M. Trindade (2009) Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall. FEBS Letters 583:978-982. Tu, L. and D. K. Banfield (2010) Localization of Golgi-resident glycosyltransferases. Cellular and Molecular Life Sciences 67:29-41. Urahara, T., K. Tsuchiya, T. Kotake, T. Tohno-oka, K. Komae, N. Kawada and Y. Tsumuraya (2004) A β-(1→4)-xylosyltransferase involved in the synthesis of arabinoxylans in developing barley endosperms. Physiologia Plantarum 122:169-180. Urbanowicz, B. R., M. J. Pena, S. Ratnaparkhe, U. Avci, J. Backe, H. F. Steet, M. Foston, H. Li, M. A. O'Neill, A. J. Ragauskas, A. G. Darvill, C. Wyman, H. J. Gilbert and W. S. York (2012) 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proceedings of the National Academy of Sciences of the United States of America 109:14253-14258. Urbanowicz, B. R., M. J. Pena, H. A. Moniz, K. W. Moremen and W. S. York (2014) Two Arabidopsis proteins synthesize acetylated xylan in vitro. Plant Journal 80:197-206. Van Roey, K., B. Uyar, R. J. Weatheritt, H. Dinkel, M. Seiler, A. Budd, T. J. Gibson and N. E. Davey (2014) Short linear motifs: Ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chemical Reviews 114:6733-6778. Vohra, M., J. Manwar, R. Manmode, S. Padgilwar and S. Patil (2014) Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering 2:573-584. von Heijne, G. (1990) The signal peptide. Journal of Membrane Biology 115:195-201. Wang, X., Q. Tang, X. Zhao, C. Jia, X. Yang, G. He, A. Wu, Y. Kong, R. Hu and G. Zhou (2016a) Functional conservation and divergence of Miscanthus lutarioriparius GT43 gene family in xylan biosynthesis. BMC Plant Biology 16:102. Wang, Y., C. Fan, H. Hu, Y. Li, D. Sun, Y. Wang and L. Peng (2016b) Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances 34:997-1017. Wass, M. N., L. A. Kelley and M. J. Sternberg (2010) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Research 38:W469-473. Whitehead, C., F. J. Ostos Garrido, M. Reymond, R. Simister, A. Distelfeld, S. G. Atienza, F. Piston, L. D. Gomez and S. J. McQueen-Mason (2018) A glycosyl transferase family 43 protein involved in xylan biosynthesis is associated with straw digestibility in Brachypodium distachyon. New Phytologist 218:974-985. Wu, A. M., C. Rihouey, M. Seveno, E. Hornblad, S. K. Singh, T. Matsunaga, T. Ishii, P. Lerouge and A. Marchant (2009a) The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation. Plant Journal 57:718-731. Wu, A. M., E. Hornblad, A. Voxeur, L. Gerber, C. Rihouey, P. Lerouge and A. Marchant (2010) Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiology 153:542-554. Wu, F. H., D. P. Kan, S. B. Lee, H. Daniell, Y. W. Lee, C. C. Lin, N. S. Lin and C. S. Lin (2009b) Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes. Tree Physiology 29:847-856. Wu, J. Z., Q. Liu, X. S. Geng, K. M. Li, L. J. Luo and J. P. Liu (2017) Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz). BMC Biotechnology 17:29. Xu, N., W. Zhang, S. Ren, F. Liu, C. Zhao, H. Liao, Z. Xu, J. Huang, Q. Li, Y. Tu, B. Yu, Y. Wang, J. Jiang, J. Qin and L. Peng (2012) Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnology for Biofuels 5:58. Yan, J., A. Aznar, C. Chalvin, D. S. Birdseye, E. E. K. Baidoo, A. Eudes, P. M. Shih, D. Loque, A. Zhang and H. V. Scheller (2018) Increased drought tolerance in plants engineered for low lignin and low xylan content. Biotechnology for Biofuels 11:195. Yang, T. C. and T. Y. Lee (2018) Effects of density and heat treatment on the physico-mechanical properties of unidirectional round bamboo stick boards (UBSBs) made of Makino bamboo (Phyllostachys makinoi). Construction and Building Materials 187:406-413. Ye, S., C. Cai, H. Ren, W. Wang, M. Xiang, X. Tang, C. Zhu, T. Yin, L. Zhang and Q. Zhu (2017) An efficient plant regeneration and transformation system of ma bamboo (Dendrocalamus latiflorus Munro) started from young shoot as explant. Frontiers in Plant Science 8:1298. Yen, T. M., Y. J. Ji and J. S. Lee (2010) Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. Forest Ecology and Management 260:339-344. Yokoyama, R. and K. Nishitani (2004) Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiology 45:1111-1121. Yoo, S. D., Y. H. Cho and J. Sheen (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2:1565-1572. York, W. S. and M. A. O'Neill (2008) Biochemical control of xylan biosynthesis - which end is up? Current Opinion in Plant Biology 11:258-265. Yoshida, S., A. Kuno, N. Saito, M. Aoyama and I. Kusakabe (1998) Structure of xylan from culms of bamboo grass (Sasa senanensis Rehd.). Journal of Wood Science 44:457-462. Yuan, Z. and R. D. Teasdale (2002) Prediction of Golgi type II membrane proteins based on their transmembrane domains. Bioinformatics 18:1109-1115. Yue, P. P., G. Q. Fu, Y. J. Hu, J. Bian, M. F. Li, Z. J. Shi and F. Peng (2018) Changes of chemical composition and hemicelluloses structure in differently aged bamboo (Neosinocalamus affinis) culms. Journal of Agricultural and Food Chemistry 66:9199-9208. Zamora, D. S., G. J. Wyatt, K. G. Apostol and U. Tschirner (2013) Biomass yield, energy values, and chemical composition of hybrid poplars in short rotation woody crop production and native perennial grasses in Minnesota, USA. Biomass and Bioenergy 49:222-230. Zeng, W., N. Jiang, R. Nadella, T. L. Killen, V. Nadella and A. Faik (2010) A glucurono(arabino)xylan synthase complex from wheat contains members of the GT43, GT47, and GT75 families and functions cooperatively. Plant Physiology 154:78-97. Zeng, W., E. R. Lampugnani, K. L. Picard, L. Song, A. M. Wu, I. M. Farion, J. Zhao, K. Ford, M. S. Doblin and A. Bacic (2016) Asparagus IRX9, IRX10, and IRX14A are components of an active xylan backbone synthase complex that forms in the Golgi apparatus. Plant Physiology 171:93-109. Zhang, B., T. Zhao, W. Yu, B. Kuang, Y. Yao, T. Liu, X. Chen, W. Zhang and A. M. Wu (2014) Functional conservation of the glycosyltransferase gene GT47A in the monocot rice. Journal of Plant Research 127:423-432. Zhang, H., Y. Q. Ying, J. Wang, X. H. Zhao, W. Zeng, C. Beahan, J. B. He, X. Y. Chen, A. Bacic, L. L. Song and A. M. Wu (2018) Transcriptome analysis provides insights into xylogenesis formation in Moso bamboo (Phyllostachys edulis) shoot. Scientific Reports 8:3951. Zhao, X., K. Ouyang, S. Gan, W. Zeng, L. Song, S. Zhao, J. Li, M. S. Doblin, A. Bacic, X. Y. Chen, A. Marchant, X. Deng and A. M. Wu (2014) Biochemical and molecular changes associated with heteroxylan biosynthesis in Neolamarckia cadamba (Rubiaceae) during xylogenesis. Frontiers in Plant Science 5:602. Zhong, R. and Z. H. Ye (2003) Unraveling the functions of glycosyltransferase family 47 in plants. Trends Plant Science 8:565-568. Zhong, R., M. J. Peña, G. K. Zhou, C. J. Nairn, A. Wood-Jones, E. A. Richardson, W. H. Morrison, 3rd, A. G. Darvill, W. S. York and Z. H. Ye (2005) Arabidopsis Fragile Fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17:3390-3408. Zhong, R., Q. Teng, M. Haghighat, Y. Yuan, S. T. Furey, R. L. Dasher and Z. H. Ye (2017) Cytosol-localized UDP-xylose synthases provide the major source of UDP-xylose for the biosynthesis of xylan and xyloglucan. Plant and Cell Physiology 58:156-174. Zhou, B. Z., M. Y. Fu, J. Z. Xie, X. S. Yang and Z. C. Li (2005) Ecological functions of bamboo forest: Research and application. Journal of Forestry Research 16:143-147. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78478 | - |
| dc.description.abstract | 麻竹(Dendrocalamus latiflorus Munro, Dla)是臺灣的速生竹種,能於一個生長季由新筍成長至高於20 m的竹桿,生長速度極快。在麻竹細胞壁中,木聚醣(Xylan)是蘊藏量豐富的重要非纖維素多醣(Non-cellulosic polysaccharides),含量可達細胞壁組成分之20%,然而目前對於其生合成的了解並不透徹。本研究比對實驗室先前自行組裝之麻竹Transcriptome資料庫,發現共有9個第43醣基轉移酶家族(Glycosyltransferase 43 family, GT43)(DlaGT43A - I)及5個GT47家族之酵素(DlaGT47A - E)可能與麻竹木聚醣主鏈之生合成有關。這些木聚糖主鏈生合成酶分屬於IRX9、IRX9L、IRX14/14L及IRX10/10L四個不同的親緣分支群(Clades),除了IRX9分支群外,其餘GT43家族之生合成酶均屬第二型膜蛋白;此外,大部分DlaGT43s與DlaGT47s序列中具有部分保守的DxD motifs與GT signature motifs可能提供重要的酵素功能,其序列之CTS區域(CTS, Cytoplasmic tail + Transmembrane domain + Stem region)具有類似的Arg-base motifs及訊息肽(Signal peptide),可能與酵素的派送(Sorting)有關。若分析主鏈生合成基因在麻竹各組織中mRNA之表現,可發現其具有動態的組織依賴性(Dynamically tissue-dependent expression)。而從麻竹微粒體分部(Microsomal fraction)中偵測木醣轉移酶(Xylosyltransferases, XylTs)酵素活性可看出,麻竹XylTs在20oC、pH 6.8並添加二價陽離子(Divalent cation)與外源受體(Exogenous acceptor)環境下具有最佳的酵素活性,且在竹筍中有較高的酵素比活性。除此之外,本試驗亦嘗試利用麻竹癒傷組織進行懸浮培養,初步建立原生質體(Protoplast)分離及基因短暫表現(Transient expression)之系統,藉此研究麻竹細胞中酵素運作之胞內表現位置(Subcellular localization)。利用此一系統發現,麻竹木聚醣主鏈生合成酶在單獨表現時並不完全表現於高爾基氏體(Golgi apparatus),其很可能需要形成蛋白質複合體才會具有完整表現功能。 | zh_TW |
| dc.description.abstract | Ma bamboo (Dendrocalamus latiflorus Munro, Dla) is one of the fast growing bamboo species in Taiwan. It can reach more than 20-m in height within one growing season. Xylan is the most abundant non-cellulosic polysaccharide in ma bamboo cell wall, and the content is nearly 20%. Althought it is well known that xylan plays an import role in cell wall structure, the mechanism of xylan biosynthesis of this species is still unknown. In this study, nine members of the glycosyltransferase 43 (GT43) family (DlaGT43A - I) and five members of the GT47 family (DlaGT47A - E) were identified by searching our in-house ma bamboo transcriptome database. These identified genes were potentially involved in the biosynthesis mechanism of xylan backbone biosynthesis, and could be classified into four phylogenetic clades named IRX9, IRX9L, IRX14/14L and IRX10/10L. All members of the GT43 family are predicted to be type II membrane proteins except for IRX9 clade. In addition to partially conserved DxD motifs and GT signature motifs that might be crucial for enzymatic function, several Arg-base motifs and signal peptides in CTS regions (CTS, Cytoplasmic tail + Transmembrane domain + Stem region) that might relate to enzyme sorting are also included in some amino acid sequences of DlaGT43s and DlaGT47s. Analysis of mRNA expression of these xylan backbone biosynthesis genes showed a clustered profile between different ma bamboo tissues. This result indicated the dynamically tissue-dependent expression pattern of xylan backbone biosynthesis mechanism in ma bamboo. Xylosyltransferases (XylTs) activities of microsomal fractions isolated from ma bamboo were also investigated, and the optimal activity is at 20oC, pH 6.8 with the addition of divalent cation and exogenous acceptor. Futhermore, higher specific activities were observed in the ma bamboo shoots over other ma bamboo tissues. We also culture the suspension cells from pre-established ma bamboo calli in our laboratory, and establish the protoplast isolation and transient expression system to study the enzyme subcellular localization in living ma bamboo cells. Using this system, XylTs of ma bamboo didn’t seem to be localized in Golgi apparatus perfectly when expressed alone. It is reasonable to speculate that forming a complex might be an essential process for complete localization and function in Golgi apparatus. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:59:13Z (GMT). No. of bitstreams: 1 ntu-108-R05625039-1.pdf: 6583629 bytes, checksum: 6eded2d0a53ba472d846c711e046181d (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌 謝 II 摘 要 III Abstract IV 目 錄 VI 圖 目 錄 IX 表 目 錄 XIII 附 錄 XIV 第一章 前言 1 第二章 文獻回顧 4 2.1 竹類植物介紹 4 2.1.1 竹類資源及其利用方式 4 2.1.2 臺灣麻竹介紹 6 2.2 木聚醣在細胞壁之重要性 8 2.2.1 木聚醣結構 8 2.2.2 木聚醣對於鴨拓草類植物之重要性 10 2.3 木聚醣主鏈生合成之研究 11 2.3.1 阿拉伯芥irx突變株 12 2.3.2 木聚醣主鏈生合成基因之鑑定與植株改良應用 14 2.3.3 XylTs酵素活性偵測 15 2.3.4 XSCs細胞內表現位置及構型 17 2.4 原生質體對於竹類植物研究領域之重要性 18 第三章 研究目的 20 第四章 材料方法 22 4.1 試驗材料 22 4.1.1 麻竹組織 22 4.1.2 麻竹懸浮細胞 24 4.2 基因選殖 24 4.2.1 麻竹Total RNA及cDNA製備 24 4.2.2 引子設計及選殖步驟 25 4.2.3 聚合酶鏈鎖反應與目標基因純化 27 4.2.4 選殖載體建構及轉形 27 4.2.5 質體製備及菌種保存 28 4.2.6 Rapid amplification of cDNA ends 28 4.3 親緣關係分析 29 4.4 序列分析 31 4.5 即時定量聚合酶鏈鎖反應 32 4.5.1 麻竹各組織之Total RNA及cDNA製備 32 4.5.2 專一性引子設計及PCR效率確認 32 4.5.3 基因表現分析 33 4.6 麻竹XylTs之酵素活性分析 35 4.6.1 微粒體分部分離 35 4.6.2 酵素反應及活性測定 35 4.6.3 酵素反應產物之鑑定 36 4.7 融合螢光蛋白生物影像試驗 37 4.7.1 螢光蛋白表現載體之建構 37 4.7.2 螢光蛋白表現載體之製備 40 4.7.3 原生質體分離 40 4.7.4 細胞內基因短暫表現 41 4.8 統計分析 41 第五章 結果討論 42 5.1 麻竹木聚醣主鏈生合成基因之篩選及選殖 42 5.2 麻竹木聚醣主鏈生合成酶之親緣關係分析 46 5.2.1 GT43家族 46 5.2.2 GT47家族 48 5.3 麻竹木聚醣主鏈生合成酶之序列分析 51 5.3.1 DlaGT43s之結合位預測及特殊Motif 51 5.3.2 DlaGT43s跨膜域之預測 55 5.3.3 DlaGT43s序列CTS區域特徵分析 56 5.3.4 DlaGT47s之結合位預測及特殊Motif 59 5.3.5 DlaGT47s訊息肽之預測 61 5.4 麻竹木聚醣主鏈生合成基因之mRNA表現模式 63 5.5 麻竹XylTs之體外酵素活性分析 67 5.5.1 木聚醣主鏈生合成偵測與受體選擇性 67 5.5.2 生化性質評估 69 5.5.3 酵素反應產物鑑定 72 5.5.4 酵素動力 73 5.5.5 組織特異性 74 5.6 麻竹木聚醣主鏈生合成酶之胞內表現位 78 5.6.1 麻竹原生質體分離及基因短暫表現系統之建立 78 5.6.2 標示螢光蛋白建立 81 5.6.3 胞內表現之共軛交生物影像分析 82 第六章 結論 91 第七章 未來展望 93 第八章 參考文獻 94 第九章 附錄 114 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 麻竹 | zh_TW |
| dc.subject | 組織特異性 | zh_TW |
| dc.subject | 木醣轉移? | zh_TW |
| dc.subject | 胞內表現位置 | zh_TW |
| dc.subject | 木聚醣主鏈生合成 | zh_TW |
| dc.subject | Dendrocalamus latiflorus | en |
| dc.subject | Xylosyltransferases | en |
| dc.subject | Xylan backbone biosynthesis | en |
| dc.subject | Subcellular localization | en |
| dc.subject | Tissue specificity | en |
| dc.title | 麻竹木醣轉移酶活性分析及基因選殖 | zh_TW |
| dc.title | Dendrocalamus latiflorus xylosyltransferases activity characterization and gene cloning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 108-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張上鎮;王淑珍;孫英玄;林崇熙 | zh_TW |
| dc.contributor.oralexamcommittee | ;;; | en |
| dc.subject.keyword | 麻竹,胞內表現位置,組織特異性,木醣轉移?,木聚醣主鏈生合成, | zh_TW |
| dc.subject.keyword | Dendrocalamus latiflorus,Subcellular localization,Tissue specificity,Xylosyltransferases,Xylan backbone biosynthesis, | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU201904389 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-12-17 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| dc.date.embargo-lift | 2024-12-26 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 6.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
