請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78477完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳敏璋 | zh_TW |
| dc.contributor.author | 林玉書 | zh_TW |
| dc.contributor.author | Yu-Shu Lin | en |
| dc.date.accessioned | 2021-07-11T14:59:09Z | - |
| dc.date.available | 2024-12-18 | - |
| dc.date.copyright | 2019-12-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] International Technology Roadmap for Semiconductors 2013 Edition Executive Summary, 17 (2013).
[2] G.E. Moore, Cramming more Components onto Integrated Circuits, Electronics, 38 (1965) 114. [3] H. Iwai, Roadmap for 22 nm and beyond (Invited Paper), Microelectronic Engineering, 86 (2009) 1520-1528. [4] M. Houssa, High-K Gate Dielectrics, Institute of Physics (2004). [5] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, Quantum-Mechanical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-thin-Oxide nMOSFET’s, IEEE Electron Device Letters, 18 (1997) 209. [6] J. H. Stathis and D.J. DiMaria, Oxide Scaling Limit for Future Logic and Memory Technology, Microelectron. Eng., 48 (1999) 395-401. [7] G.D. Wilk, R. M. Wallace, and J. M. Anthony, High-K Gate Dielectrics: Current Status and Materials Properties Considerations, Journal of Applied Physics, 89 (2001)5243-5275. [8] E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, High-resolution Depth Profiling in Ultrathin Al2O3 Films on Si, Applied Physics Letters, 76 (2000) 176-178. [9] M. Copel, E. Cartier, E. P. Gusev, S. Guha, N. Bojarczuk, and M. Poppeller, Robustness of Ultrathin Aluminum Oxide Dielectrics on Si (001), Applied Physics Letters, 78 (2001) 2670-2672. [10] J. W. Lim and S. J. Yun, Electrical Properties of Alumina Films by Plasma Enhanced Atomic Layer Deposition, Electrochem. Solid-State Letters, 7 (2004) F45-F48. [11] J. L. van Hemmen, S. B. S. Heil, J. H. Klootwijk, F. Roozeboom, C. J. Hodson, M. C. M. van de Sanden, and W. M. M. Kesselsa, Plasma and Thermal ALD of Al2O3 in a Commercial 200 mm, Journal of The Electrochemical Society, 154 (2007) G165-G169. [12] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yang, MOSFET Transistors Fabricated with High Permittivity TiO2 Dielectrics, IEEE Transactions Electron Devices, 44 (1997) 104-109. [13] P. Chowdhury, Harish C. Barshilia, N. Selvakumar, B. Deepthi, K.S. Rajam, Ayan Roy Chaudhuri , and S.B. Krupanidhi, The Structural and Electrical Properties of TiO2 Thin Films Prepared by Thermal Oxidation, Physica B, 403 (2008) 3718-3723. [14] B. H. Lee, L. Kang, R. Nieh, W. J. Qi, and Jack C. Lee, Thermal Stability and Electrical Characteristics of Ultrathin Hafnium Oxide Gate Dielectric Reoxidized with Rapid Thermal Annealing, Applied Physics Letters, 76 (2000) 1926-1928. [15] E.P. Gusev, C. Cabral Jr., M. Copel, C. D’Emic, and M. Gribelyuk, Ultrathin HfO2 Films Grown on Silicon by Atomic Layer Deposition for Advanced Gate Dielectrics Applications, Microelectronic Engineering, 69 (2003) 145-151. [16] D. Triyoso, R. Liu, D. Roan, M. Ramon, N. V. Edwards, R. Gregory, D. Werho, J. Kulik, G. Tam, E. Irwin, X.-D. Wang, L. B. La, C. Hobbs, R. Garcia, J. Baker, B. E. White, Jr., and P. Tobin, Impact of Deposition and Annealing Temperature on Material and Electrical Characteristics of ALD HfO2, Journal of The Electrochemical Society, 151 (2004) F220-F227. [17] M. Copel, M. Gribelyuk, and E. Gusev, Structure and stability of ultrathin zirconium oxide layers on Si (001), Applied Physics Letters, 76 (2000) 436-438. [18] T. S. Jeon, J. M. White, and D. L. Kwong, Thermal Stability of Ultrathin ZrO2 Films Prepared by Chemical Vapor Deposition on Si (100), Applied Physics Letters, 78 (2001) 368-370. [19] X. Wu, D. Landheer, M.J. Graham, H.-W. Chen, T. Y. Huang, and T. S. Chao, Structure and Thermal Stability of MOCVD ZrO2 Films on Si (100), Journal of Crystal Growth, 250 (2003) 479-485. [20] S. Venkataraj, O. Kappertz, Ch. Liesch, R. Detemple, R. Jayavel, and M. Wuttig, Thermal Stability of Sputtered Zirconium Oxide Films, Vacuum, 75 (2004) 7-16. [21] S. J. Yun, J. W. Lim, and J. H. Lee, Effect of Plasma on Characteristics of Zirconium Oxide Films Deposited by Plasma-Enhanced Atomic Layer Deposition, Electrochemical and Solid-State Letters, 8 (2005) F47-F50. [22] B. Lee, K. J. Choi, A. Hande, M. J. Kim, R. M. Wallace, J. Kim, Y. Senzaki, D. Shenai, H. Li, M. Rousseau, and J. Suydam, A Novel Thermally-stable Zirconium Amidinate ALD Precursor for ZrO2 Thin Films, Microelectronic Engineering, 86 (2009) 272-276. [23] H. Jung, K. Im, H. Hwang, and D. Yang, Electrical characteristics of an ultrathin (1.6 nm) TaOxNy gate dielectric, Applied Physics Letters, 76 (2000) 3630-3631. [24] Y. S. Lai, K. J. Chen, and J. S. Chen, Effects of Plasma Prenitridation and Postdeposition Annealing on the Structural and Dielectric Characteristics of the Ta2O5/Si System, Journal of The Electrochemical Society, 149 (2002) F63-F68. [25] W. J. Maeng, J. W. Lee, J. M. Myoung, and H. Kim, Comparative Studies of Atomic Layer Deposition and Plasma-Enhanced Atomic Layer Deposition Ta2O5 and the Effects on Electrical Properties of In situ Nitridation, Japanese Journal of Applied Physics, 46 (2007) 3224-3228. [26] W. H. Kim, W. J. Maeng, K. J. Moon, J. M. Myoung, and H. Kim, Growth Characteristics and Electrical Properties of La2O3 Gate Oxides Grown by Thermal and Plasma-Enhanced Atomic Layer Deposition, Thin Solid Films, 519 (2010) 362-366. [27] G. D. Wilk, and R. M. Wallace, Electrical Properties of Hafnium Silicate Gate Dielectrics Deposited Directly on Silicon, Applied Physics Letters, 74 (1999) 2854-2856. [28] G. D. Wilk, and R. M. Wallace, Stable Zirconium Silicate Gate Dielectrics Deposited Directly on Silicon, Appl. Phys. Lett., 76 (2000) 112-114. [29] G. D. Wilk, R. M. Wallace, and J. M. Anthony, Hafnium and Zirconium Silicates for Advanced Gate Dielectrics, Journal of Applied Physics, 87 (2000) 484-492. [30] J. Robertson, High Dielectric Constant Oxides, Eur. Phys. J. Appl. Phys., 28 (2004) 265–291. [31] J. Robertson, High Dielectric Constant Gate Oxides for Metal Oxide Si Transistors, Reports on Progress in Physics, 69 (2006) 327-396. [32] J. Roertson, Band Offsets of Wide-Band-Gap Oxides and Implications for Future Electronic Devices, Journal of Vacuum Science & Technology, B 18 (2000) 1785-1791. [33] S. M. George, Atomic Layer Deposition: An Overview, Chemical Reviews, 110 (2010) 111-131. [34] A. Sherman, Atomic Layer Deposition for Nanotechnology, Ivoryton Press, Ivoryton, CT, (2008). [35] Hongtao Wang. Atomic Layer Deposition of Oxides for Microelectronics. (Dissertation) (2009) [36] LU Wei-Er, DONG Ya-Bin, LI Chao-Bo, XIA Yang, LI Nan. Research Progress on Growth Rate Controlling of Atomic Layer Deposition. Journal of Inorganic Materials, 29 (2014) 345~351. [37] H. Kim, Thin Solid Films, Characteristics and Applications of Plasma Enhanced Atomic Layer Deposition, 519 (2011) 6639-6644. [38] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges J. Vac. Sci. Technol., A 29 (2011) 050801. [39] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669. [40] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nat Nanotechnol, 6 (2011) 147-150. [41] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat Nanotechnol, 7 (2012) 699-712. [42] A. Kuc, Low-dimensional transition-metal dichalcogenides, Chemical Modelling, (2014) 1-29. [43] H. Liu, K. Xu, X. Zhang, P.D. Ye, The integration of high-k dielectric on two-dimensional crystals by atomic layer deposition, Applied Physics Letters, 100 (2012) 152115. [44] S. McDonnell, B. Brennan, A. Azcatl, N. Lu, H. Dong, C. Buie, J. Kim, C.L. Hinkle, M.J. Kim, R.M. Wallace, HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability, ACS Nano, 7 (2013) 10354-10361. [45] J. Kim, S. Jandhyala, Atomic layer deposition of dielectrics for carbon-based electronics, Thin Solid Films, 546 (2013) 85-93. [46] T. George, M.S. Islam, A.K. Dutta, J. Kang, W. Cao, X. Xie, D. Sarkar, W. Liu, K. Banerjee, Graphene and beyond-graphene 2D crystals for next-generation green electronics, Micro- and Nanotechnology Sensors, Systems, and Applications VI, 2014. [47] H. Liu, P.D.D. Ye, MoS2 Dual-Gate MOSFET with Atomic-Layer-Deposited Al2O3 as Top-Gate Dielectric, Ieee Electron Device Letters, 33 (2012) 546-548. [48] S.W. Min, H.S. Lee, H.J. Choi, M.K. Park, T. Nam, H. Kim, S. Ryu, S. Im, Nanosheet thickness-modulated MoS2 dielectric property evidenced by field-effect transistor performance, Nanoscale, 5 (2013) 548-551. [49] H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Lett, 12 (2012) 3695-3700. [50] H. Fang, M. Tosun, G. Seol, T.C. Chang, K. Takei, J. Guo, A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium, Nano Lett, 13 (2013) 1991-1995. [51] A. Pezeshki, S.H.H. Shokouh, S.R.A. Raza, J.S. Kim, S.W. Min, I. Shackery, S.C. Jun, S. Im, Top and back gate molybdenum disulfide transistors coupled for logic and photo-inverter operation, Journal of Materials Chemistry C, 2 (2014) 8023-8028. [52] X. Zou, J. Wang, C.H. Chiu, Y. Wu, X. Xiao, C. Jiang, W.W. Wu, L. Mai, T. Chen, J. Li, J.C. Ho, L. Liao, Interface engineering for high-performance top-gated MoS2 field-effect transistors, Adv Mater, 26 (2014) 6255-6261. [53] D. Krasnozhon, D. Lembke, C. Nyffeler, Y. Leblebici, A. Kis, MoS2 transistors operating at gigahertz frequencies, Nano Lett, 14 (2014) 5905-5911. [54] F.A. McGuire, Y.C. Lin, K. Price, G.B. Rayner, S. Khandelwal, S. Salahuddin, A.D. Franklin, Sustained Sub-60 mV/decade Switching via the Negative Capacitance Effect in MoS2 Transistors, Nano Lett, 17 (2017) 4801-4806. [55] C.C. Hobbs, L.R.C. Fonseca, A. Knizhnik, V. Dhandapani, S.B. Samavedam, W.J. Taylor, J.M. Grant, L.G. Dip, D.H. Triyoso, R.I. Hegde, D.C. Gilmer, R. Garcia, D. Roan, M.L. Lovejoy, R.S. Rai, E.A. Hebert, H.H. Tseng, S.G.H. Anderson, B.E. White, P.J. Tobin, Fermi-Level Pinning at the Polysilicon/Metal Oxide Interface—Part I, IEEE Transactions on Electron Devices, 51 (2004) 971-977. [56] C.C. Hobbs, L.R.C. Fonseca, A. Knizhnik, V. Dhandapani, S.B. Samavedam, W.J. Taylor, J.M. Grant, L.G. Dip, D.H. Triyoso, R.I. Hegde, D.C. Gilmer, R. Garcia, D. Roan, M.L. Lovejoy, R.S. Rai, E.A. Hebert, H.H. Tseng, S.G.H. Anderson, B.E. White, P.J. Tobin, Fermi-Level Pinning at the Polysilicon/Metal–Oxide Interface—Part II, IEEE Transactions on Electron Devices, 51 (2004) 978-984. [57] J.R. Pfiester, F.K. Baker, T.C. Mele, H.H. Tseng, P.J. Tobin, J.D. Hayden, J.W. Miller, C.D. Gunderson, L.C. Parrillo, The effects of boron penetration on p+ polysilicon gated PMOS devices, IEEE Transactions on Electron Devices, 37 (1990) 1842-1851. [58] L. Qiang, R. Lin, P. Ranade, K. Tsu-Jae, H. Chenming, Metal gate work function adjustment for future CMOS technology, (2001) 45-46. [59] Y.-C. Yeo, T.-J. King, C. Hu, Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology, Journal of Applied Physics, 92 (2002) 7266. [60] I. De, D. Johri, A. Srivastava, C.M. Osburn, Impact of gate workfunction on device performance at the 50 nm technology node, Solid-State Electronics, 44 (2000) 1077-1080. [61] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, M. Metz, High-k/Metal–Gate Stack and Its MOSFET Characteristics, IEEE Electron Device Letters, 25 (2004) 408-410. [62] Y.-M. Kim, J.-S. Lee, Tunable work functions of platinum gate electrode on HfO2 thin films for metal-oxide-semiconductor devices, Applied Physics Letters, 92 (2008) 102901. [63] L.P.B. Lima, H.F.W. Dekkers, J.G. Lisoni, J.A. Diniz, S. Van Elshocht, S. De Gendt, Metal gate work function tuning by Al incorporation in TiN, Journal of Applied Physics, 115 (2014) 074504. [64] M. Hasan, H. Park, J.-M. Lee, H. Hwang, Dual-Metal-Gate Work Function by Controlling Metal Gate Thickness and Composition, Electrochemical and Solid-State Letters, 11 (2008) H124. [65] L. Qiang, Y. Yee Chia, P. Ranade, H. Takeuchi, K. Tsu-Jae, H. Chenming, S.C. Song, H.F. Luan, K. Dim-Lee, Dual-metal gate technology for deep-submicron CMOS transistors, (2000) 72-73. [66] C. Cabral, J. Kedzierski, B. Linder, S. Zafar, V. Narayanan, S. Fang, A. Steegen, P. Kozlowski, R. Carruthers, R. Jammy, Dual workfunction fully silicided metal gates, (2004) 184-185. [67] I. Polishchuk, P. Ranade, K. Tsu-Jae, H. Chenming, Dual work function metal gate CMOS technology using metal interdiffusion, IEEE Electron Device Letters, 22 (2001) 444-446. [68] T. Bing-Yue, H. Chih-Feng, Wide range work function modulation of binary alloys for MOSFET application, IEEE Electron Device Letters, 24 (2003) 153-155. [69] R. Ishii, K. Matsumura, A. Sakai, T. Sakata, Work function of binary alloys, Applied Surface Science, 169-170 (2001) 658-661. [70] C. Ren, B.B. Faizhal, D.S.H. Chan, M.F. Li, Y.C. Yeo, A.D. Trigg, N. Balasubramanian, D.L. Kwong, Work function tuning of metal nitride electrodes for advanced CMOS devices, Thin Solid Films, 504 (2006) 174-177. [71] H.K. Kim, S.Y. Lee, I.H. Yu, T.J. Park, R. Choi, C.S. Hwang, Gate Engineering in TiN/La/TiN and TiLaN Metal Layers on Atomic-Layer-Deposited HfO2/Si, Ieee Electron Device Letters, 33 (2012) 955-957. [72] B.-Y. Tsui, C.-F. Huang, Investigation of Cu/TaN Metal Gate for Metal-Oxide-Silicon Devices, Journal of The Electrochemical Society, 150 (2003) G22. [73] S. You-Seok, G.P. Heuss, L. Jae-Hoon, V. Misra, Effect of the composition on the electrical properties of TaSixNy metal gate electrodes, IEEE Electron Device Letters, 24 (2003) 439-441. [74] P. Ranade, H. Takeuchi, T.-J. King, C. Hu, Work Function Engineering of Molybdenum Gate Electrodes by Nitrogen Implantation, Electrochemical and Solid-State Letters, 4 (2001) G85. [75] J. Westlinder, J. Malmström, G. Sjöblom, J. Olsson, Low-resistivity ZrNx metal gate in MOS devices, Solid-State Electronics, 49 (2005) 1410-1413. [76] P.-C. Jiang, Y.-S. Lai, J.S. Chen, Influence of Nitrogen Content in WNx on Its Thermal Stability and Electrical Property as a Gate Electrode, Journal of The Electrochemical Society, 153 (2006) G572. [77] I.Z. Mitrovic, H.M. Przewlocki, K. Piskorski, G. Simutis, V.R. Dhanak, N. Sedghi, S. Hall, Effect of oxygen on tuning the TiNx metal gate work function on LaLuO3, Thin Solid Films, 520 (2012) 6959-6962. [78] J.A. Rothschild, M. Eizenberg, Tuning of Fermi level position at HfNx/SiO2 interface, Applied Physics Letters, 94 (2009) 081905. [79] C.S. Kang, H.J. Cho, Y.H. Kim, R. Choi, K. Onishi, A. Shahriar, J.C. Lee, Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21 (2003) 2026. [80] D.M. Hausmann, E. Kim, J. Becker, R.G. Gordon, Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors, Chemistry of Materials, 14 (2002) 4350-4358. [81] R. Jha, J. Lee, P. Majhi, V. Misra, Investigation of work function tuning using multiple layer metal gate electrodes stacks for complementary metal-oxide-semiconductor applications, Applied Physics Letters, 87 (2005) 223503. [82] I.S. Jeon, J. Lee, P. Zhao, P. Sivasubramani, T. Oh, J. Kim, D. Cha, J. Huang, M.J. Kim, B.E. Gnade, J. Kim, R.M. Wallace, A novel methodology on tuning work function of metal, gate using stacking bi-metal layers, (2004) 303-306. [83] L. Ching-Huang, G.M.T. Wong, M.D. Deal, W. Tsai, P. Majhi, C. Chi On, M.R. Visokay, J.J. Chambers, L. Colombo, B.M. Clemens, Y. Nishi, Characteristics and mechanism of tunable work function gate electrodes using a bilayer metal structure on SiO2 and HfO2, IEEE Electron Device Letters, 26 (2005) 445-447. [84] S. Park, L. Colombo, Y. Nishi, K. Cho, Ab initio study of metal gate electrode work function, Applied Physics Letters, 86 (2005) 073118. [85] T.-M. Pan, C.-L. Chen, W.-W. Yeh, W.-J. Lai, Physical and Electrical Properties of Lanthanum Oxide Dielectrics with Al and Al∕TaN Metal Gates, Electrochemical and Solid-State Letters, 10 (2007) H101. [86] C.-H. Lu, G.M.T. Wong, M. Deal, B.M. Clemens, Y. Nishi, Process Integration and Electrical Properties of Bilayer Metal Gate/High-k MOSFETs, (2007) 59-60. [87] R. Gassilloud, C. Maunoury, C. Leroux, F. Piallat, B. Saidi, F. Martin, S. Maitrejean, A study of nitrogen behavior in the formation of Ta/TaN and Ti/TaN alloyed metal electrodes on SiO2 and HfO2 dielectrics, Applied Physics Letters, 104 (2014) 143501. [88] E.J. Jung, I.G. Lee, M.H. Cho, D.H. Ko, Control of the Workfunction in Bilayer Metal Gate Stacks by Varying the First Layer Thickness, Electrochemical and Solid-State Letters, 14 (2011) H163. [89] M. Hasan, H. Park, H. Yang, H. Hwang, H.-S. Jung, J.-H. Lee, Ultralow work function of scandium metal gate with tantalum nitride interface layer for n-channel metal oxide semiconductor application, Applied Physics Letters, 90 (2007) 103510. [90] S. Youn, K. Roh, S. Yang, Y. Roh, K.-S. Kim, Y.-C. Jang, N.-E. Lee, Investigation of the W–TiN metal gate for metal–oxide–semiconductor devices, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19 (2001) 1591. [91] X.-R. Wang, Y.-L. Jiang, Q. Xie, C. Detavernier, G.-P. Ru, X.-P. Qu, B.-Z. Li, Annealing effect on the metal gate effective work function modulation for the Al/TiN/SiO2/p-Si structure, Microelectronic Engineering, 88 (2011) 573-577. [92] H.B. Michaelson, The work function of the elements and its periodicity, Journal of Applied Physics, 48 (1977) 4729. [93] A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures, Nature, 499 (2013) 419-425. [94] X. Wang, P. Wang, J. Wang, W. Hu, X. Zhou, N. Guo, H. Huang, S. Sun, H. Shen, T. Lin, M. Tang, L. Liao, A. Jiang, J. Sun, X. Meng, X. Chen, W. Lu, J. Chu, Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics, Adv Mater, 27 (2015) 6575-6581. [95] R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, F. Zamora, 2D materials: to graphene and beyond, Nanoscale, 3 (2011) 20-30. [96] S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang, G.H. Ahn, G. Pitner, M.J. Kim, J. Bokor, C. Hu, H.P. Wong, A. Javey, MoS2 transistors with 1-nanometer gate lengths, Science, 354 (2016) 99-102. [97] W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, K. Banerjee, Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors, Nano Lett, 13 (2013) 1983-1990. [98] Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, B. Huang, Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers, Phys Chem Chem Phys, 13 (2011) 15546-15553. [99] C. Ruppert, O.B. Aslan, T.F. Heinz, Optical properties and band gap of single- and few-layer MoTe2 crystals, Nano Lett, 14 (2014) 6231-6236. [100] I.G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski, A.F. Morpurgo, Indirect-to-direct band gap crossover in few-layer MoTe2, Nano Lett, 15 (2015) 2336-2342. [101] W. Zhang, Z. Huang, W. Zhang, Y. Li, Two-dimensional semiconductors with possible high room temperature mobility, Nano Research, 7 (2014) 1731-1737. [102] Y.F. Lin, Y. Xu, S.T. Wang, S.L. Li, M. Yamamoto, A. Aparecido-Ferreira, W. Li, H. Sun, S. Nakaharai, W.B. Jian, K. Ueno, K. Tsukagoshi, Ambipolar MoTe2 transistors and their applications in logic circuits, Adv Mater, 26 (2014) 3263-3269. [103] S. Nakaharai, M. Yamamoto, K. Ueno, Y.F. Lin, S.L. Li, K. Tsukagoshi, Electrostatically Reversible Polarity of Ambipolar alpha-MoTe2 Transistors, ACS Nano, 9 (2015) 5976-5983. [104] N.R. Pradhan, D. Rhodes, S. Feng, Y. Xin, S. Memaran, B.H. Moon, H. Terrones, M. Terrones, L. Balicas, Field-effect transistors based on few-layered alpha-MoTe2, ACS Nano, 8 (2014) 5911-5920. [105] I.G. Lezama, A. Ubaldini, M. Longobardi, E. Giannini, C. Renner, A.B. Kuzmenko, A.F. Morpurgo, Surface transport and band gap structure of exfoliated 2H-MoTe2 crystals, 2D Materials, 1 (2014) 021002. [106] S. Fathipour, N. Ma, W.S. Hwang, V. Protasenko, S. Vishwanath, H.G. Xing, H. Xu, D. Jena, J. Appenzeller, A. Seabaugh, Exfoliated multilayer MoTe2 field-effect transistors, Applied Physics Letters, 105 (2014) 192101. [107] H. Liu, M. Si, S. Najmaei, A.T. Neal, Y. Du, P.M. Ajayan, J. Lou, P.D. Ye, Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films, Nano Lett, 13 (2013) 2640-2646. [108] J. Yang, S. Kim, W. Choi, S.H. Park, Y. Jung, M.H. Cho, H. Kim, Improved growth behavior of atomic-layer-deposited high-k dielectrics on multilayer MoS2 by oxygen plasma pretreatment, ACS Appl Mater Interfaces, 5 (2013) 4739-4744. [109] A. Azcatl, S. McDonnell, K.C. Santosh, X. Peng, H. Dong, X.Y. Qin, R. Addou, G.I. Mordi, N. Lu, J. Kim, M.J. Kim, K. Cho, R.M. Wallace, MoS2 functionalization for ultra-thin atomic layer deposited dielectrics, Applied Physics Letters, 104 (2014) 111601. [110] L. Cheng, X. Qin, A.T. Lucero, A. Azcatl, J. Huang, R.M. Wallace, K. Cho, J. Kim, Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone, ACS Appl Mater Interfaces, 6 (2014) 11834-11838. [111] Y.-S. Lin, P.-H. Cheng, K.-W. Huang, H.-C. Lin, M.-J. Chen, Atomic layer deposition of sub-10 nm high-K gate dielectrics on top-gated MoS2 transistors without surface functionalization, Applied Surface Science, 443 (2018) 421-428. [112] I. Kwak, J.H. Park, L. Grissom, B. Fruhberger, A. Kummel, Mechanism of Low Temperature ALD of Al2O3 on Graphene Terraces, ECS Transactions, 75 (2016) 143-151. [113] I. Kwak, M. Kavrik, J.H. Park, L. Grissom, B. Fruhberger, K.T. Wong, S. Kang, A.C. Kummel, Low interface trap density in scaled bilayer gate oxides on 2D materials via nanofog low temperature atomic layer deposition, Applied Surface Science, 463 (2019) 758-766. [114] Q. Qian, B. Li, M. Hua, Z. Zhang, F. Lan, Y. Xu, R. Yan, K.J. Chen, Improved Gate Dielectric Deposition and Enhanced Electrical Stability for Single-Layer MoS2 MOSFET with an AlN Interfacial Layer, Sci Rep, 6 (2016) 27676. [115] A. Azcatl, S. Kc, X. Peng, N. Lu, S. McDonnell, X. Qin, F. de Dios, R. Addou, J. Kim, M.J. Kim, K. Cho, R.M. Wallace, HfO2 on UV–O3 exposed transition metal dichalcogenides: interfacial reactions study, 2D Materials, 2 (2015) 014004. [116] H.Y. Shih, W.H. Lee, W.C. Kao, Y.C. Chuang, R.M. Lin, H.C. Lin, M. Shiojiri, M.J. Chen, Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing, Sci Rep, 7 (2017) 39717. [117] G. Lee, B. Lee, J. Kim, K. Cho, Ozone Adsorption on Graphene: Ab Initio Study and Experimental Validation, The Journal of Physical Chemistry C, 113 (2009) 14225-14229. [118] H. Liu, K. Xu, X.J. Zhang, P.D. Ye, The integration of high-k dielectric on two-dimensional crystals by atomic layer deposition, Applied Physics Letters, 100 (2012) 152115. [119] Y. Kim, J.G. Song, Y.J. Park, G.H. Ryu, S.J. Lee, J.S. Kim, P.J. Jeon, C.W. Lee, W.J. Woo, T. Choi, H. Jung, H.B. Lee, J.M. Myoung, S. Im, Z. Lee, J.H. Ahn, J. Park, H. Kim, Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides, Sci Rep, 6 (2016) 18754. [120] S. Bettis Homan, V.K. Sangwan, I. Balla, H. Bergeron, E.A. Weiss, M.C. Hersam, Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene-MoS2 van der Waals Heterojunction, Nano Lett, 17 (2017) 164-169. [121] Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, X.A. Zhang, Controllable 2H-to-1T' phase transition in few-layer MoTe2, Nanoscale, 10 (2018) 19964-19971. [122] L.A. Riley, A.S. Cavanagh, S.M. George, Y.S. Jung, Y. Yan, S.H. Lee, A.C. Dillon, Conformal surface coatings to enable high volume expansion Li-ion anode materials, Chemphyschem, 11 (2010) 2124-2130. [123] C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, High-performance organic thin-film transistors with metal oxide/metal bilayer electrode, Applied Physics Letters, 87 (2005) 193508. [124] S. Guo, Z. Zhu, X. Hu, W. Zhou, X. Song, S. Zhang, K. Zhang, H. Zeng, Ultrathin tellurium dioxide: emerging direct bandgap semiconductor with high-mobility transport anisotropy, Nanoscale, 10 (2018) 8397-8403. [125] K. Choi, Y.T. Lee, J.S. Kim, S.-W. Min, Y. Cho, A. Pezeshki, D.K. Hwang, S. Im, Non-Lithographic Fabrication of All-2D α-MoTe2 Dual Gate Transistors, Advanced Functional Materials, 26 (2016) 3146-3153. [126] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2, Nano Lett, 11 (2011) 5111-5116. [127] N.M.D. Brown, N. Cui, A. McKinley, An XPS study of the surface modification of natural MoS2 following treatment in an RF-oxygen plasma, Applied Surface Science, 134 (1998) 11-21. [128] A. Azcatl, X. Qin, A. Prakash, C. Zhang, L. Cheng, Q. Wang, N. Lu, M.J. Kim, J. Kim, K. Cho, R. Addou, C.L. Hinkle, J. Appenzeller, R.M. Wallace, Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure, Nano Lett, 16 (2016) 5437-5443. [129] M.B. Kanoun, S. Goumri-Said, M. Jaouen, Structure and mechanical stability of molybdenum nitrides: A first-principles study, Physical Review B, 76 (2007). [130] I. Jauberteau, A. Bessaudou, R. Mayet, J. Cornette, J. Jauberteau, P. Carles, T. Merle-Méjean, Molybdenum Nitride Films: Crystal Structures, Synthesis, Mechanical, Electrical and Some Other Properties, Coatings, 5 (2015) 656-687. [131] B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano, 5 (2011) 9934-9938. [132] K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C.Y. Su, C.S. Chang, H. Li, Y. Shi, H. Zhang, C.S. Lai, L.J. Li, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates, Nano Lett, 12 (2012) 1538-1544. [133] H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, A. Javey, High-performance single layered WSe2 p-FETs with chemically doped contacts, Nano Lett, 12 (2012) 3788-3792. [134] D. Sarkar, W. Liu, X. Xie, A.C. Anselmo, S. Mitragotri, K. Banerjee, MoS2 field-effect transistor for next-generation label-free biosensors, ACS Nano, 8 (2014) 3992-4003. [135] Y. Yoon, K. Ganapathi, S. Salahuddin, How good can monolayer MoS2 transistors be?, Nano Lett, 11 (2011) 3768-3773. [136] D.J. Late, B. Liu, H.S. Matte, V.P. Dravid, C.N. Rao, Hysteresis in single-layer MoS2 field effect transistors, ACS Nano, 6 (2012) 5635-5641. [137] H.S. Lee, S.W. Min, M.K. Park, Y.T. Lee, P.J. Jeon, J.H. Kim, S. Ryu, S. Im, MoS2 nanosheets for top-gate nonvolatile memory transistor channel, Small, 8 (2012) 3111-3115. [138] H. Liu, M. Si, Y. Deng, A.T. Neal, Y. Du, S. Najmaei, P.M. Ajayan, J. Lou, P.D. Ye, Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers, ACS Nano, 8 (2014) 1031-1038. [139] D. Kim, T. Nam, J. Park, J. Gatineau, H. Kim, Growth characteristics and properties of indium oxide and indium-doped zinc oxide by atomic layer deposition, Thin Solid Films, 587 (2015) 83-87. [140] J.W. Elam, M.D. Groner, S.M. George, Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition, Review of Scientific Instruments, 73 (2002) 2981-2987. [141] K. Choi, Y.T. Lee, S. Im, Two-dimensional van der Waals nanosheet devices for future electronics and photonics, Nano Today, 11 (2016) 626-643. [142] J. Kang, W. Liu, D. Sarkar, D. Jena, K. Banerjee, Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors, Physical Review X, 4 (2014). [143] S. Gierałtowska, D. Sztenkiel, E. Guziewicz, M. Godlewski, G. Łuka, B.S. Witkowski, Ł. Wachnicki, E. Łusakowska, T. Dietl, M. Sawicki, Properties and Characterization of ALD Grown Dielectric Oxides for MIS Structures, Acta Physica Polonica A, 119 (2011) 692-695. [144] W. Yang, Q.Q. Sun, Y. Geng, L. Chen, P. Zhou, S.J. Ding, D.W. Zhang, The Integration of Sub-10 nm Gate Oxide on MoS2 with Ultra Low Leakage and Enhanced Mobility, Sci Rep, 5 (2015) 11921. [145] T.J.M. Bayer, A. Wachau, A. Fuchs, J. Deuermeier, A. Klein, Atomic Layer Deposition of Al2O3 onto Sn-Doped In2O3: Absence of Self-Limited Adsorption during Initial Growth by Oxygen Diffusion from the Substrate and Band Offset Modification by Fermi Level Pinning in Al2O3, Chemistry of Materials, 24 (2012) 4503-4510. [146] T. Baron, A. Fernandes, J.F. Damlencourt, B. De Salvo, F. Martin, F. Mazen, S. Haukka, Growth of Si nanocrystals on alumina and integration in memory devices, Applied Physics Letters, 82 (2003) 4151-4153. [147] H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From Bulk to Monolayer MoS2: Evolution of Raman Scattering, Advanced Functional Materials, 22 (2012) 1385-1390. [148] C. Rice, R.J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, K.S. Novoselov, Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2, Physical Review B, 87 (2013). [149] S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, Thermal effects on the characteristic Raman spectrum of molybdenum disulfide MoS2 of varying thicknesses, Applied Physics Letters, 100 (2012) 013106. [150] B.C. Windom, W.G. Sawyer, D.W. Hahn, A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems, Tribology Letters, 42 (2011) 301-310. [151] N.M.D. Brown, N.Y. Cui, A. McKinley, An XPS study of the surface modification of natural MoS2 following treatment in an RF-oxygen plasma, Applied Surface Science, 134 (1998) 11-21. [152] J. Lefebvre, J. Ding, Z. Li, F. Cheng, N. Du, P.R.L. Malenfant, Hysteresis free carbon nanotube thin film transistors comprising hydrophobic dielectrics, Applied Physics Letters, 107 (2015) 243301. [153] W. Xu, H. Wang, L. Ye, J. Xu, The role of solution-processed high-κ gate dielectrics in electrical performance of oxide thin-film transistors, Journal of Materials Chemistry C, 2 (2014) 5389. [154] J.M. Ko, Y.H. Kang, C. Lee, S.Y. Cho, Electrically and thermally stable gate dielectrics from thiol–ene cross-linked systems for use in organic thin-film transistors, Journal of Materials Chemistry C, 1 (2013) 3091. [155] C.D. English, K.K.H. Smithe, R.L. Xu, E. Pop, Approaching ballistic transport in monolayer MoS2 transistors with self-aligned 10 nm top gates, Electron Devices Meeting, (2016) 5.6.1-5.6.4. [156] P. Zhao, A. Azcatl, P. Bolshakov-Barrett, R.M. Wallace, C.D. Young, P.K. Hurley, Top-gated MoS2 capacitors and transistors with high-k dielectrics for interface study, International Conference on Microelectronic Test Structures, (2016) 172-175. [157] J.G. Song, S.J. Kim, W.J. Woo, Y. Kim, I.K. Oh, G.H. Ryu, Z. Lee, J.H. Lim, J. Park, H. Kim, Effect of Al2O3 Deposition on Performance of Top-Gated Monolayer MoS2-Based Field Effect Transistor, ACS Appl Mater Interfaces, (2016). [158] Y. Cui, R. Xin, Z. Yu, Y. Pan, Z.Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y.W. Zhang, X. Wang, High-Performance Monolayer WS2 Field-Effect Transistors on High-kappa Dielectrics, Adv Mater, 27 (2015) 5230-5234. [159] M.W. Iqbal, M.Z. Iqbal, M.F. Khan, M.A. Shehzad, Y. Seo, J.H. Park, C. Hwang, J. Eom, High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films, Sci Rep, 5 (2015) 10699. [160] C.D. Young, P. Zhao, P. Bolshakov-Barrett, A. Azcatl, P.K. Hurley, Y.Y. Gomeniuk, M. Schmidt, C.L. Hinkle, R.M. Wallace, (Invited) Evaluation of Few-Layer MoS2 Transistors with a Top Gate and HfO2 Dielectric, ECS Transactions, 75 (2016) 153-162. [161] J. Wang, S. Li, X. Zou, J. Ho, L. Liao, X. Xiao, C. Jiang, W. Hu, J. Wang, J. Li, Integration of High-k Oxide on MoS2 by Using Ozone Pretreatment for High-Performance MoS2 Top-Gated Transistor with Thickness-Dependent Carrier Scattering Investigation, Small, 11 (2015) 5932-5938. [162] A. Azcatl, S. McDonnell, S. K. C, X. Peng, H. Dong, X. Qin, R. Addou, G.I. Mordi, N. Lu, J. Kim, M.J. Kim, K. Cho, R.M. Wallace, MoS2 functionalization for ultra-thin atomic layer deposited dielectrics, Applied Physics Letters, 104 (2014) 111601. [163] Q.V. Le, T.P. Nguyen, S.Y. Kim, UV/ozone-treated WS2 hole-extraction layer in organic photovoltaic cells, physica status solidi (RRL) - Rapid Research Letters, 8 (2014) 390-394. [164] M.J. Kim, S.J. Jeon, T.W. Kang, J.M. Ju, D. Yim, H.I. Kim, J.H. Park, J.H. Kim, 2H-WS2 Quantum Dots Produced by Modulating the Dimension and Phase of 1T-Nanosheets for Antibody-Free Optical Sensing of Neurotransmitters, ACS Appl Mater Interfaces, 9 (2017) 12316-12323. [165] F. Perrozzi, S.M. Emamjomeh, V. Paolucci, G. Taglieri, L. Ottaviano, C. Cantalini, Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2, Sensors and Actuators B: Chemical, 243 (2017) 812-822. [166] T.A.J. Loh, Y.J. Ooi, D.H.C. Chua, WS2 Nano-petals and Nano-bristles Supported on Carbon Nanotubes for Electron Emission Applications, Sci Rep, 9 (2019) 3672. [167] A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches, Nature, 479 (2011) 329-337. [168] D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P.M. Ajayan, K. Banerjee, A subthermionic tunnel field-effect transistor with an atomically thin channel, Nature, 526 (2015) 91-95. [169] K. Gopalakrishnan, P.B. Griffin, J.D. Plummer, Impact Ionization MOS (I-MOS)—Part I: Device and Circuit Simulations, IEEE Transactions on Electron Devices, 52 (2005) 69-76. [170] A. Jain, M.A. Alam, Stability Constraints Define the Minimum Subthreshold Swing of a Negative Capacitance Field-Effect Transistor, IEEE Transactions on Electron Devices, 61 (2014) 2235-2242. [171] S. Salahuddin, S. Datta, Use of negative capacitance to provide voltage amplification for low power nanoscale devices, Nano Lett, 8 (2008) 405-410. [172] S. Dasgupta, A. Rajashekhar, K. Majumdar, N. Agrawal, A. Razavieh, S. Trolier-Mckinstry, S. Datta, Sub-kT/q Switching in Strong Inversion in PbZr0.52Ti0.48O3 Gated Negative Capacitance FETs, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 1 (2015) 43-48. [173] J. Jo, W.Y. Choi, J.D. Park, J.W. Shim, H.Y. Yu, C. Shin, Negative Capacitance in Organic/Ferroelectric Capacitor to Implement Steep Switching MOS Devices, Nano Lett, 15 (2015) 4553-4556. [174] J. Xu, S.-Y. Jiang, M. Zhang, H. Zhu, L. Chen, Q.-Q. Sun, D.W. Zhang, Ferroelectric HfZrOx-based MoS2 negative capacitance transistor with ITO capping layers for steep-slope device application, Applied Physics Letters, 112 (2018). [175] C. Woo Young, P. Byung-Gook, L. Jong Duk, L. Tsu-Jae King, Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec, IEEE Electron Device Letters, 28 (2007) 743-745. [176] S. Riedel, P. Polakowski, J. Müller, A thermally robust and thickness independent ferroelectric phase in laminated hafnium zirconium oxide, AIP Advances, 6 (2016). [177] Y.-S. Lin, I. Kwak, T.-F. Chung, J.-R. Yang, A.C. Kummel, M.-J. Chen, Nucleation engineering for atomic layer deposition of uniform sub-10 nm high-K dielectrics on MoTe2, Applied Surface Science, 492 (2019) 239-244. [178] L.-S. Johansson, J.M. Campbell, P. Fardim, A.H. Hultén, J.-P. Boisvert, M. Ernstsson, An XPS round robin investigation on analysis of wood pulp fibres and filter paper, Surface Science, 584 (2005) 126-132. [179] Y.-S. Lin, K.-W. Huang, H.-C. Lin, M.-J. Chen, Effective work function modulation of the bilayer metal gate stacks by the Hf-doped thin TiN interlayer prepared by the in-situ atomic layer doping technique, Solid State Communications, 258 (2017) 49-53. [180] D.-H. Min, S.Y. Kang, S.-E. Moon, S.-M. Yoon, Impact of Thickness Control of Hf0.5Zr0.5O2 Films for the Metal–Ferroelectric–Insulator–Semiconductor Capacitors, IEEE Electron Device Letters, 40 (2019) 1032-1035. [181] S. Shibayama, T. Nishimura, S. Migita, A. Toriumi, Thermodynamic control of ferroelectric-phase formation in HfxZr1−xO2 and ZrO2, Journal of Applied Physics, 124 (2018). [182] L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, A. Toriumi, Kinetic pathway of the ferroelectric phase formation in doped HfO2 films, Journal of Applied Physics, 122 (2017). [183] D. Kwon, K. Chatterjee, A.J. Tan, A.K. Yadav, H. Zhou, A.B. Sachid, R.D. Reis, C. Hu, S. Salahuddin, Improved Subthreshold Swing and Short Channel Effect in FDSOI n-Channel Negative Capacitance Field Effect Transistors, IEEE Electron Device Letters, 39 (2018) 300-303. [184] P.J. McWhorter, P.S. Winokur, Simple technique for separating the effects of interface traps and trapped‐oxide charge in metal‐oxide‐semiconductor transistors, Applied Physics Letters, 48 (1986) 133-135. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78477 | - |
| dc.description.abstract | 本論文中,我們製造了上閘極過渡金屬二硫化物電晶體,並透過原子層沉積技術沉積閘極介電層。第一部分討論了原位原子層摻雜技術用於精確控制鉿摻雜入氮化鈦中間層,以調控鉑/氮化鈦鉿雙層金屬閘極堆疊的等效功函數。鉑/氮化鈦鉿雙層金屬閘極堆疊的等效功函數,可藉由插入摻有鉿的氮化鈦中間層,使之在4.54 eV至5.17 eV的範圍內調控,以代替單層鉑閘電極的等效功函數(~5.7 eV)。結果顯示:原位原子層摻雜技術可以有效調控金氧半電容元件中的金屬閘極之功函數。
第二部分探討在過渡金屬二硫化物上,使用原子層沉積技術成長均勻的次10奈米高介電係數介電層的成核工程。在這一部分中,由於已有許多材料在二硫化鉬進行成核工程研究,因此我們選擇二鍗化鉬作為過渡金屬二硫化物材料,成功在二維二鍗化鉬上,透過臭氧基製程、氮化鋁插入層和低溫物理吸附的原子層沉積製程來製備成核層,實現了連續、均勻且厚度低於10奈米的氧化鋁高介電係數電介質。成核層的存在使得次10奈米氧化鋁高介電係數電介質的漏電流明顯降低。然而,X射線光電子能譜顯示臭氧基製程會造成二鍗化鉬的氧化,這對於二鍗化鉬的電性是有害的。對於氮化鋁插入層而言,X射線光電子能譜顯示在沒有鉬-氧鍵的生成,但形成了鉬-氮鍵,且在鍗-3d能级也沒有出現化學位移,這表示氮化鋁插入層不會造成二鍗化鉬的氧化。用低溫物理吸附成核層覆蓋的二鍗化鉬,其X射線光電子能譜則與使用機械剝離法所製備的二鍗化鉬相同,這顯示了在低溫物理吸附的過程中沒有發生任何化學反應。結果顯示,低溫物理吸附和氮化鋁插入層製備的成核層,對於在二鍗化鉬電晶體上的成長高品質高介電係數介電層是有效且良好的方法。 在過渡金屬二硫化物上成功沉積連續、均勻和低於10奈米的氧化鋁高介電係數介電層後,我們在第三部分中製作了上閘極次10奈米高介電係數介電層的過渡金屬二硫化物電晶體。在這一部分中,我們分別使用現今製程較為成熟的兩種過渡金屬二硫化物:二硫化鉬與二硫化鎢,作為過渡金屬二硫化物通道材料。次10奈米高介電係數閘極介電層對於過渡金屬二硫化物電晶體而言,至關重要,研究結果顯示具有低溫成核層的次10奈米氧化鋁閘極介電層,可以顯著抑制閘極漏電流,並且不會發生氧化反應。利用高品質的次10奈米氧化鋁高介電係數閘極介電層,在上閘極二硫化鉬與二硫化鎢電晶體中,皆得到了低閘極漏電流以及低次臨界擺幅。 最後,我們整合鐵電負電容進入過渡金屬二硫化物場效電晶體的上閘極結構。在本論文最後一部分中,遠程電漿原子層沉積技術將用來實現不需退火製程,就呈現出鐵電性質的氧化鋯鉿薄膜。這是成功製作過渡金屬二硫化物負電容場效電晶體的一個重要因素,因為通常需要後退火製程(約600~1000°C)才能獲得具有鐵電性質的氧化鋯鉿薄膜,此溫度高於二硫化鎢的穩定溫度。透過使用具有鐵電性質的氧化鋯鉿薄膜,呈現出過渡金屬二硫化物負電容場效電晶體的性質,並展示了次臨界擺幅的改善。 | zh_TW |
| dc.description.abstract | In this thesis, top-gated transition metal dichalcogenides (TMD) transistor was fabricated. The gate dielectric was deposited by Atomic Layer Deposition (ALD). The in In this thesis, top-gated transition metal dichalcogenides (TMD) transistor was fabricated and investigated. The high-K gate dielectrics were prepared by atomic layer deposition (ALD). The in-situ atomic layer doping technique was studied in the first part, which was used to precisely control the Hf doping percentage into the thin TiN interlayer for tailoring the effective work function (EWF) of the Pt/TixHfyN bilayer metal gate stack. As compared with the EWF (~5.7 eV) of the single-layer Pt gate electrode, the EWF of the Pt/TixHfyN bilayer metal gate stacks is tunable with the range from 4.54 eV to 5.17 eV by the insertion of the thin TixHfyN interlayer. The result indicates that the in-situ atomic layer doping technique is an effective approach to modulate the EWF of metal gate in future MOS devices.
In the second part of this thesis, we report the nucleation engineering for atomic layer deposition of uniform sub-10 nm high-K gate dielectrics on TMD. Continuous, uniform, and sub-10nm Al2O3 high-K dielectrics upon two-dimensional MoTe2 are realized by ALD based on a nucleation layer (NL) prepared by the ozone-based process, interfacial AlN, and low-temperature (low-T) physical adsorption. The NLs gives rise to significant reduction of the leakage current in the sub-10nm Al2O3 high-K gate dielectrics. However, X-ray photoelectron spectroscopy (XPS) reveals the oxidation of MoTe2 as the NL was prepared by the ozone-based process, which is detrimental to the electrical properties of MoTe2. As for the AlN NL, the Mo−N bonds were formed without the presence of the Mo-O bonds and no chemical shift appeared in Te-3d XPS spectrum, indicating the AlN NL did not result in the MoTe2 oxidation. The XPS spectra of MoTe2 covered with the low-T NL is the same as those of the as-exfoliated MoTe2 flake, revealing the absence of chemical reactions during low-T physical adsorption. The result demonstrates that the NLs prepared by the low-T physical adsorption and the interfacial AlN are effective and favorable for the high-quality high-K gate dielectrics on MoTe2. With successful deposition of continuous, uniform, and sub-10nm Al2O3 high-K gate dielectrics upon TMD, top-gated TMD transistors with sub-10nm high-K gate dielectrics were fabricated and characterized using MoS2 and WS2 as the TMD channel materials, respectively. The results reveal significant suppression of the gate leakage current in the sub-10 nm Al2O3 gate dielectrics with the nucleation layer prepared by the low-T physical adsorption method. No oxidation occurred during the deposition of the low-temperature Al2O3 nucleation layer on MoS2 and WS2. With the high-quality sub-10nm Al2O3 high-K gate dielectrics, low gate leakage current and low subthreshold swing were demonstrated on both the top-gated MoS2 and WS2 transistors. Finally, ferroelectric negative capacitance (NC) material was integrated into the gate stack of top-gated TMD transistors. The remote plasma atomic layer deposition was used to achieve the ferroelectricity in as-deposited HfZrO2 (HZO) thin films without any post-annealing treatment. This is an important for the TMD NC transistors since the post-annealing process at ∼600–1000 °C was usually required to obtain ferroelectric HZO thin films, which is detrimental to WS2. This ferroelectric HZO thin film leads to demonstration of the top-gated WS2 NC transistors with the improvement in the subthreshold swing. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:59:09Z (GMT). No. of bitstreams: 1 ntu-108-F03527040-1.pdf: 3470085 bytes, checksum: 7d64f4e59f5517df20e41d28e4310e0a (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract VI Contents IX List of Figures XII List of Tables XXI Chapter 1 1 Introduction 1 1.1 Introduction-CMOS Scaling 1 1.2 High-K Gate Dielectric Materials 3 1.3 Atomic Layer Deposition 7 1.4 Transition Metal Dichalcogenides 11 1.5 Challenge of ALD High-K on Transition Metal Dichalcogenides 14 1.6 Outline of the thesis 17 Chapter 2 20 Effective work function modulation of the bilayer metal gate stacks by the Hf-doped thin TiN interlayer prepared by the in-situ atomic layer doping technique 20 2.1 Introduction 20 2.2 Experimental 22 2.3 Results and discussion 26 2.4 Conclusions 33 Chapter 3 34 Nucleation engineering for atomic layer deposition of uniform sub-10 nm high-K dielectrics on MoTe2 34 3.1 Introduction 34 3.2 Experimental section 36 3.3 Results and discussion 39 3.4 Conclusions 52 Chapter 4 54 Atomic layer deposition of sub-10nm high-K gate dielectrics on top-gated MoS2 transistors without surface functionalization 54 4.1 Introduction 54 4.2 Experimental section 56 4.3 Results and discussion 60 4.4 Conclusions 75 Chapter 5 76 Top-gated WS2 transistor with sub-10nm high-K gate stack 76 5.1 Introduction 76 5.2 Experimental section 78 5.3 Results and discussion 81 5.4 Conclusions 93 Chapter 6 95 Top-gated WS2 negative capacitance field effect transistor 95 6.1 Introduction 95 6.2 Experimental section 97 6.3 Results and discussion 100 6.4 Conclusions 105 Chapter 7 107 Summary 107 7.1 Summary 107 7.2 References 111 | - |
| dc.language.iso | en | - |
| dc.subject | 功函數 | zh_TW |
| dc.subject | 場效電晶體 | zh_TW |
| dc.subject | 原子層沉積 | zh_TW |
| dc.subject | 過渡金屬二硫化物 | zh_TW |
| dc.subject | 二維材料 | zh_TW |
| dc.subject | 高介電係數閘極介電層 | zh_TW |
| dc.subject | 金屬閘極 | zh_TW |
| dc.subject | metal gate | en |
| dc.subject | field-effect transistors | en |
| dc.subject | transition metal dichalcogenides | en |
| dc.subject | Atomic layer deposition | en |
| dc.subject | high-K gate dielectrics | en |
| dc.subject | work function | en |
| dc.subject | two-dimensional materials | en |
| dc.title | 上閘極二維過渡金屬硫族化物電晶體之高介電係數 金屬閘極堆疊之研究 | zh_TW |
| dc.title | Study of High-K/Metal Gate Stacks for Top-Gated Two Dimensional Transition Metal Dichalcogenides Transistor | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 108-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林時彥;李峻霣;吳肇欣;李敏鴻 | zh_TW |
| dc.contributor.oralexamcommittee | ;;; | en |
| dc.subject.keyword | 原子層沉積,功函數,金屬閘極,高介電係數閘極介電層,二維材料,過渡金屬二硫化物,場效電晶體, | zh_TW |
| dc.subject.keyword | Atomic layer deposition,work function,metal gate,high-K gate dielectrics,two-dimensional materials,transition metal dichalcogenides,field-effect transistors, | en |
| dc.relation.page | 143 | - |
| dc.identifier.doi | 10.6342/NTU201904398 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-12-17 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2024-12-26 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
