請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78473完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管永恕(Yung-Shu Kuan) | |
| dc.contributor.author | CHON-LONG MUI | en |
| dc.contributor.author | 梅駿朗 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:58:56Z | - |
| dc.date.available | 2026-02-03 | |
| dc.date.copyright | 2021-03-02 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-01 | |
| dc.identifier.citation | Adamah-Biassi, Zhang, Jung, Vissapragada, Miller, Dubocovich. (2014). Distribution of MT1 melatonin receptor promoter-driven RFP expression in the brains of BAC C3H/HeN transgenic mice. J Histochem Cytochem, 62(1), 70-84. doi:10.1369/0022155413507453 Agís-Balboa, Pinna, Zhubi, Maloku, Veldic, Costa, Guidotti. (2006). Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci U S A, 103(39), 14602-14607. doi:10.1073/pnas.0606544103 Amo, Aizawa, Takahoko, Kobayashi, Takahashi, Aoki, Okamoto. (2010). Identification of the zebrafish ventral habenula as a homolog of the mammalian lateral habenula. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(4), 1566-1574. doi:10.1523/JNEUROSCI.3690-09.2010 Appelbaum, Wang, Maro, Mori, Tovin, Marin, . . . Mourrain. (2009). Sleep–wake regulation and hypocretin–melatonin interaction in zebrafish. Proceedings of the National Academy of Sciences, 106(51), 21942. doi:10.1073/pnas.906637106 Baño-Otálora, Piggins. (2017). Contributions of the lateral habenula to circadian timekeeping. Pharmacology Biochemistry and Behavior, 162, 46-54. doi:https://doi.org/10.1016/j.pbb.2017.06.007 Banno, Akihisa, Yasukawa, Tokuda, Tabata, Nakamura, . . . Suzuki. (2006). Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri. Journal of Ethnopharmacology, 107(2), 249-253. doi:https://doi.org/10.1016/j.jep.2006.03.006 Bianco, Wilson. (2009). The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 364(1519), 1005-1020. doi:10.1098/rstb.2008.0213 Brown, Park, Marx, Hynan, Gardner, Davila, . . . Holmes. (2014). A randomized, double-blind, placebo-controlled trial of pregnenolone for bipolar depression. Neuropsychopharmacology, 39(12), 2867-2873. doi:10.1038/npp.2014.138 Buckley, Marguerie, Roach, Goldsmith, Fleming, Alderton, Franklin. (2010). Drug reprofiling using zebrafish identifies novel compounds with potential pro-myelination effects. Neuropharmacology, 59(3), 149-159. doi:https://doi.org/10.1016/j.neuropharm.2010.04.014 Burstein, Gut. (1976). Intermediates in the conversion of cholesterol to pregnenolone: kinetics and mechanism. Steroids, 28(1), 115-131. doi:10.1016/0039-128x(76)90131-8 Chapela, Sousa, Martins, Cristóvão, Pinto, Corte-Real, Saúde. (2019). A zebrafish drug screening platform boosts the discovery of novel therapeutics for spinal cord injury in mammals. Scientific Reports, 9(1), 10475. doi:10.1038/s41598-019-47006-w Chen, Li, Xiao, Zhang, Liu. (2013). Phytochemical and pharmacological studies on Radix Angelica sinensis. Chinese Journal of Natural Medicines, 11(6), 577-587. doi:https://doi.org/10.1016/S1875-5364(13)60067-9 Cheng, Chang, Chang, Wu, Lin, Chen. (2012). Ferulic Acid, an Angelica sinensis-Derived Polyphenol, Slows the Progression of Membranous Nephropathy in a Mouse Model. Evidence-based complementary and alternative medicine : eCAM, 2012, 161235-161235. doi:10.1155/2012/161235 Cheng, Krishnan, Lin, Hildebrand, Bianco, Kibat, Jesuthasan. (2016). The thalamus drives light-evoked activity in the habenula of larval zebrafish. bioRxiv, 047936. doi:10.1101/047936 Clemente, Porteros, Weruaga, Alonso, Arenzana, Aijón, Arévalo. (2004). Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis. Journal of Comparative Neurology, 474(1), 75-107. doi:10.1002/cne.20111 Cocchiaro, Rawls. (2013). Microgavage of zebrafish larvae. Journal of visualized experiments : JoVE(72), e4434-e4434. doi:10.3791/4434 Dreosti, Vendrell Llopis, Carl, Yaksi, Wilson. (2014). Left-Right Asymmetry Is Required for the Habenulae to Respond to Both Visual and Olfactory Stimuli. Current Biology, 24(4), 440-445. doi:https://doi.org/10.1016/j.cub.2014.01.016 Duchossoy, David, Baulieu, Robel. (2011). Treatment of experimental spinal cord injury with 3beta-methoxy-pregnenolone. Brain Res, 1403, 57-66. doi:10.1016/j.brainres.2011.05.065 Elbaz, Levitas-Djerbi, Appelbaum. (2017). The Hypocretin/Orexin Neuronal Networks in Zebrafish. In A. J. Lawrence L. de Lecea (Eds.), Behavioral Neuroscience of Orexin/Hypocretin (pp. 75-92). Cham: Springer International Publishing. Evely, Hudson, Dubocovich, Haj-dahmane. (2016). Melatonin receptor activation increases glutamatergic synaptic transmission in the rat medial lateral habenula. Synapse, 70(5), 181-186. doi:https://doi.org/10.1002/syn.21892 Fakhoury. (2017). The habenula in psychiatric disorders: More than three decades of translational investigation. Neuroscience Biobehavioral Reviews, 83, 721-735. doi:https://doi.org/10.1016/j.neubiorev.2017.02.010 Feng, Lu, Wu, Zhao, Li, Peng, . . . Zhu. (2012). Ligustilide alleviates brain damage and improves cognitive function in rats of chronic cerebral hypoperfusion. Journal of Ethnopharmacology, 144(2), 313-321. doi:https://doi.org/10.1016/j.jep.2012.09.014 Franken, Thomason, Heller, O'Hara. (2007). A non-circadian role for clock-genes in sleep homeostasis:a strain comparison. BMC neuroscience, 8(1), 87. doi:10.1186/1471-2202-8-87 Freudenmacher, von Twickel, Walkowiak. (2020). The habenula as an evolutionary conserved link between basal ganglia, limbic, and sensory systems—A phylogenetic comparison based on anuran amphibians. Journal of Comparative Neurology, 528(5), 705-728. doi:https://doi.org/10.1002/cne.24777 Hikosaka. (2010a). The habenula: from stress evasion to value-based decision-making. Nature reviews. Neuroscience, 11(7), 503-513. doi:10.1038/nrn2866 Hikosaka. (2010b). The habenula: from stress evasion to value-based decision-making. Nature Reviews Neuroscience, 11(7), 503-513. doi:10.1038/nrn2866 Holst, Soldin, Guo, Soldin. (2004). Steroid hormones: relevance and measurement in the clinical laboratory. Clin Lab Med, 24(1), 105-118. doi:10.1016/j.cll.2004.01.004 Jiang, Ma, Wei, Feng, Qiao, Liu, . . . Yu. (2016). Effect of Frankincense Extract on Nerve Recovery in the Rat Sciatic Nerve Damage Model. Evidence-Based Complementary and Alternative Medicine, 2016, 3617216. doi:10.1155/2016/3617216 Karima, Riazi, Yousefi, Movahedi. (2010). The enhancement effect of beta-boswellic acid on hippocampal neurites outgrowth and branching (an in vitro study). Neurological Sciences, 31(3), 315-320. doi:10.1007/s10072-010-0220-x Katz, Roth, Carroll. (1981). Acute and chronic stress effects on open field activity in the rat: Implications for a model of depression. Neuroscience Biobehavioral Reviews, 5(2), 247-251. doi:https://doi.org/10.1016/0149-7634(81)90005-1 Korzh, Teh, Kondrychyn, Chudakov, Lukyanov. (2011). Visualizing Compound Transgenic Zebrafish in Development: A Tale of Green Fluorescent Protein and KillerRed. Zebrafish, 8(1), 23-29. doi:10.1089/zeb.2011.0689 Kuang, Yao, Du, Liu, Wang, Qian. (2006). Neuroprotective role of Z-ligustilide against forebrain ischemic injury in ICR mice. Brain Research, 1102(1), 145-153. doi:https://doi.org/10.1016/j.brainres.2006.04.110 Lee, Goto. (2013). Habenula and ADHD: Convergence on time. Neuroscience Biobehavioral Reviews, 37(8), 1801-1809. doi:https://doi.org/10.1016/j.neubiorev.2013.07.006 Lei, Li, Fang, Lin, Wang, Xiao, . . . Liao. (2014). Polysaccharides from Angelica sinensis alleviate neuronal cell injury caused by oxidative stress. Neural regeneration research, 9(3), 260-267. doi:10.4103/1673-5374.128218 Leonelli, Ballabio, Consoli, Roglio, Magnaghi, Melcangi. (2006). Neuroactive steroids. Journal of Molecular Neuroscience, 28(1), 65-76. doi:10.1385/JMN:28:1:65 Lin, Jesuthasan. (2017). Masking of a circadian behavior in larval zebrafish involves the thalamo-habenula pathway. Scientific Reports, 7(1), 4104. doi:10.1038/s41598-017-04205-7 MacRae, Peterson. (2015). Zebrafish as tools for drug discovery. Nature Reviews Drug Discovery, 14(10), 721-731. doi:10.1038/nrd4627 Mathuru, Jesuthasan. (2013). The medial habenula as a regulator of anxiety in adult zebrafish. Frontiers in Neural Circuits, 7(99). doi:10.3389/fncir.2013.00099 Meyers. (2018). Zebrafish: Development of a Vertebrate Model Organism. Current Protocols Essential Laboratory Techniques, 16(1), e19. doi:10.1002/cpet.19 Murphy, DiCamillo, Haun, Murray. (1996). Lesion of the habenular efferent pathway produces anxiety and locomotor hyperactivity in rats: a comparison of the effects of neonatal and adult lesions. Behavioural Brain Research, 81(1), 43-52. doi:https://doi.org/10.1016/S0166-4328(96)00041-1 Numakawa, Odaka, Adachi. (2017). Actions of Brain-Derived Neurotrophic Factor and Glucocorticoid Stress in Neurogenesis. International journal of molecular sciences, 18(11), 2312. doi:10.3390/ijms18112312 Pandey, Shekhar, Regev, Schier. (2018). Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq. Current Biology, 28(7), 1052-1065.e1057. doi:https://doi.org/10.1016/j.cub.2018.02.040 Pandi-Perumal, Trakht, Spence, Srinivasan, Dagan, Cardinali. (2008). The roles of melatonin and light in the pathophysiology and treatment of circadian rhythm sleep disorders. Nat Clin Pract Neurol, 4(8), 436-447. doi:10.1038/ncpneuro0847 Prober, Rihel, Onah, Sung, Schier. (2006). Hypocretin/Orexin Overexpression Induces An Insomnia-Like Phenotype in Zebrafish. The Journal of Neuroscience, 26(51), 13400. doi:10.1523/JNEUROSCI.4332-06.2006 Purushothaman, Saxena, Meghah, Meena Lakshmi, Singh, Brahmendra Swamy, Idris. (2015). Proteomic and gene expression analysis of zebrafish brain undergoing continuous light/dark stress. Journal of Sleep Research, 24(4), 458-465. doi:https://doi.org/10.1111/jsr.12287 Rennekamp, Peterson. (2015). 15 years of zebrafish chemical screening. Current Opinion in Chemical Biology, 24, 58-70. doi:https://doi.org/10.1016/j.cbpa.2014.10.025 Rimmer. (2020). The Physiological and Functional Characterisation of the Subpallial Dopaminergic Neurons in Larval Zebrafish: University of Leicester. Rodriguez, Zhang, Klaminder, Brodin, Andersson, Andersson. (2018). ToxTrac: A fast and robust software for tracking organisms. Methods in Ecology and Evolution, 9(3), 460-464. doi:10.1111/2041-210X.12874 Seo, Patrick, Kennealy. (2008). Role of Serotonin and Dopamine System Interactions in the Neurobiology of Impulsive Aggression and its Comorbidity with other Clinical Disorders. Aggression and violent behavior, 13(5), 383-395. doi:10.1016/j.avb.2008.06.003 Sharma. (2007). Phytochemical Profile of Boswellia serrata: An overview. Shen, Zhang, Deng, Liu, Hu, Zhang. (2016). The Antidepressant Effect of <i>Angelica sinensis</i> Extracts on Chronic Unpredictable Mild Stress-Induced Depression Is Mediated via the Upregulation of the BDNF Signaling Pathway in Rats. Evidence-Based Complementary and Alternative Medicine, 2016, 7434692. doi:10.1155/2016/7434692 Siddiqui. (2011). Boswellia serrata, a potential antiinflammatory agent: an overview. Indian journal of pharmaceutical sciences, 73(3), 255-261. doi:10.4103/0250-474X.93507 Sutherland. (1982). The dorsal diencephalic conduction system: A review of the anatomy and functions of the habenular complex. Neuroscience Biobehavioral Reviews, 6(1), 1-13. doi:https://doi.org/10.1016/0149-7634(82)90003-3 Thisse, Thisse. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nature Protocols, 3(1), 59-69. doi:10.1038/nprot.2007.514 Tran, Gerlai. (2016). The Novel Tank Test: Handling Stress and the Context Specific Psychopharmacology of Anxiety. Current Psychopharmacology, 05, 1-1. doi:10.2174/2211556005666160519144414 Umar, Umar, Sarwar, Khan, Ahmad, Ahmad, . . . Khan. (2014). Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine, 21(6), 847-856. doi:https://doi.org/10.1016/j.phymed.2014.02.001 Vallee, Mayo, Le Moal. (2001). Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in cognitive aging. Brain Res Brain Res Rev, 37(1-3), 301-312. doi:10.1016/s0165-0173(01)00135-7 von Schantz, Archer. (2003). Clocks, genes and sleep. Journal of the Royal Society of Medicine, 96(10), 486-489. doi:10.1258/jrsm.96.10.486 Wang, Hou, Sun, Zhang, Bai, Zhao, Feng. (2014). Behavioural screening of zebrafish using neuroactive traditional Chinese medicine prescriptions and biological targets. Scientific Reports, 4(1), 5311. doi:10.1038/srep05311 Wisor, Pasumarthi, Gerashchenko, Thompson, Pathak, Sancar, . . . Kilduff. (2008). Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains (Journal of Neuroscience (July 9, 2008) (7193-7201)). 28. Wu, Hsieh. (2011). Pharmacological effects of Radix Angelica Sinensis (Danggui) on cerebral infarction. Chinese medicine, 6, 32-32. doi:10.1186/1749-8546-6-32 Xin, Zhang, Yang, Deng, Xie. (2013). Radix Angelica Sinensis that Contains the Component Z-Ligustilide Promotes Adult Neurogenesis to Mediate Recovery from Cognitive Impairment. Current Neurovascular Research, 10, 304-315. doi:10.2174/15672026113109990023 Yang, Wang, Hu, Hu. (2018). Lateral habenula in the pathophysiology of depression. Current Opinion in Neurobiology, 48, 90-96. doi:https://doi.org/10.1016/j.conb.2017.10.024 Zee, Attarian, Videnovic. (2013). Circadian rhythm abnormalities. Continuum (Minneapolis, Minn.), 19(1 Sleep Disorders), 132-147. doi:10.1212/01.CON.0000427209.21177.aa Zhang, Yao, Zhang, Kawakami, Du. (2017). Left Habenula Mediates Light-Preference Behavior in Zebrafish via an Asymmetrical Visual Pathway. Neuron, 93(4), 914-928.e914. doi:https://doi.org/10.1016/j.neuron.2017.01.011 Zhao, Rusak. (2005). Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro. Neuroscience, 132(2), 519-528. doi:https://doi.org/10.1016/j.neuroscience.2005.01.012 Zhong, Wang, Huang, Zhang, Wang. (2017). Molecular Genetic and Genomic Analyses of Zebrafish Circadian Rhythmicity. In (pp. 193-209). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78473 | - |
| dc.description.abstract | 脊椎動物的韁核(habenula nuclei)是位於間腦,毗鄰松果體(pineal gland)左側和右側。韁核在生理上以及心理上皆扮演很重要的角色,如:調節疼痛﹑獎勵系統﹑焦慮和睡眠等行為。在以往的研究中,發現對小鼠或斑馬魚的韁核進行破壞,會出現睡眠障礙並引起晝夜節律紊亂,嚴重會導致抑鬱症或焦慮症。然而,韁核受損所引起之行為異常在分子層面上仍尚不清楚。 有研究已經證明成年和10天大幼魚的韁核神經元在分化程度上高度相似。因此本研究利用雙側電消融對10天大幼魚的韁核造成損傷然後研究韁核受損後於幼年斑馬魚的腦中之分子變化。 在先前實驗室研究中,在4-6天接受韁核雷射消融的成魚中觀察到睡眠障礙。此外,在先前實驗室研究中亦發現clocka 和chat在消融的成魚全腦中也出現變化。然而,clocka和chat在韁核消融的少年斑馬魚尚未被研究。因此,本研究使用原位雜交(In Situ Hybridization)來研究 clocka 和chat在韁核消融的少年斑馬魚的全腦表現。結果發現chat在內側縱筋膜(mlf)和外側核瓣(nlv)沒有明顯變化。此外clocka在少年消融斑馬魚中腹側端腦和視頂蓋的腦室周圍灰質中出現上調。這些分子變化可能是韁核損傷引起的脊椎動物睡眠障礙的原因。 為了進一步鑑定由韁核受損於幼年斑馬魚的基因變化,我的實驗是針對韁核受損和未經處理的幼魚的全腦進行了核糖核酸測序(RNA-sequencing)。測序結果顯示有6個參與晝夜節律途徑的基因產生了變化。為了驗證核糖核酸測序的結果,本研究利用反轉錄即時聚合酶連鎖(qRT-PCR)反應,發現per1a﹑per1b和 per3出現明顯的上升。但在原位雜交(In Situ Hybridization)染色結果比較中發現,韁核受損和和未經處理的幼魚的全腦在這三個基因的表現上並沒有明顯的差異。 除了探究分子變化外,本研究還使用這種雙側韁核電消融斑馬魚模型進行再生藥物之初探,初步測試了孕烯醇酮(Pregnenolone;P5),當歸(Radix Angelicae Sinensis)以及乳香(Frankincense)在韁核受損後再生的功效和行為的影響。 在新魚缸實驗(NTD)中經1微摩爾濃度(uM)的孕烯醇酮,每毫升1000毫克(1000mg/ml)的當歸處理後沒有明顯影響斑馬魚的行為,而每毫升150毫克(150mg/ml)的乳香(Frankincense)處理後使正常斑馬魚花更多時間在魚缸底部,表明乳香處理後使斑馬魚感到更焦慮。而經1微摩爾濃度(uM)的孕烯醇酮,每毫升1000毫克(1000mg/ml)的當歸及,每毫150毫克(150mg/ml)的乳香處理後在韁核再生方面沒有作用。 | zh_TW |
| dc.description.abstract | The vertebrate habenular nuclei are located in the dorsal diencephalon, adjacent to the left and right sides of the pineal gland. It plays an important role in regulating pain, reward, anxiety, and sleep. Many studies have indicated that destruction of the rat and zebrafish habenula led to disconcerted circadian rhythms and resulted in sleep disturbance, as well as depression and anxiety. However, the molecular alterations of habenula ablation zebrafish remained less understanding. Habenula neuronal differentiation is found to be highly similar between adults and larvae at 10 days post fertilization (10 dpf). Therefore, electrolytic ablation is used to create bilateral habenula damages on 10 dpf larvae and the post-ablation molecular alterations of 42 dpf juvenile zebrafish are investigated. Our previous finding indicated that sleep disturbance is exhibited in 3 to 6 month-old adult zebrafish whose habenula are ablated at 4-6 dpf. Moreover, the clock circadian regulator a (clocka) and choline acetyltransferase (chat) are altered in habenula-ablated adult zebrafish. However, the alterations of clocka and chat have not been reported in habenula-ablated juvenile zebrafish. Therefore, ISH is used to investigate the expressions of clocka and chat in the whole brain of habenula-ablated juvenile zebrafish. The results from whole brain sections showed that no significant chat expression difference in medial longitudinal fasciculus (MLF) and nucleus lateralis valvulae (NLV). And the results from whole brain sections showed that clocka expression was upregulated in ventral telencephalic and periventricular grey zone (PGZ) of the tectum opticum (TeO). These alterations may be associated with the sleep disturbance observed in mammal with habenular impairment. Whole brain RNA sequencing is used to further investigate the alteration of gene expression in habenula-ablated juvenile zebrafish. The results demonstrated that the 6 circadian rhythm genes are altered after electrolytic ablation in juvenile stage. The expressions of per1a, per1b and per3 are upregulated in habenula-ablated juvenile zebrafish compared with the control by qRT-PCR. However, In situ hybridization (ISH) results show that no significant difference in per1a, per1b and per3 expression in the whole brain. In addition , the effects of Pregnenolone (P5), RAS (當歸) and Frankincense (乳香) on habenula regeneration and behavior alteration are also investigated in this study. In the NTDT, there are no notably behavioral difference in zebrafish after P5 and RAS treatments. Surprisingly, the control group spent less time in the tank’s upper ½ portion after the 150μg/ml Frankincense treatment. This suggested that 150ug/ml Frankincesnse treatment may increase anxiety behavior. On the other hand, ablated zebrafish treated with 1uM P5,150 μg /ml Frankincense and 1000 μg /ml RAS for 2 hours once on every other day until 39dpf showed no effect on the regeneration of habenula. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:58:56Z (GMT). No. of bitstreams: 1 U0001-2501202117223300.pdf: 2275055 bytes, checksum: 571b0df668ed8c1e10fba20204e2dec5 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | List of Abbreviations III 中文摘要 VI Abstract VIII Table of content XI Chapter 1 Introduction 1 1.1 Habenula-Interpeduncular circuit 1 1.2 Habenula in emotion disorder 1 1.3 Habenula in sleep and circadian rhythm 2 1.4 Molecular alteration in habenula lesion adult zebrafish 3 1.5 Zebrafish-based drug screening and drug 4 1.5.1 Pregnenolone(P5) 5 1.5.2 Radix Angelicae Sinensis (當歸) 6 1.5.3 Frankincense(乳香) 7 1.6 Aim of this study 8 Chapter 2 Material and Methods 9 2.1 Zebrafish 9 2.2 Bilateral Electrolytic Ablation of Habenula 9 2.3 Confocal Microscopy Imaging Analysis 9 2.4 Fixation and Pigment removal of Zebrafish Larvae 10 2.5 Dissection and Fixation of Zebrafish Brain 10 2.6 RNA Extraction and RNA Sequence Analysis 11 2.7 Quantitative reverse transcription PCR (qRT-PCR) 11 2.8 Probe Synthesis 12 2.9 In situ hybridization 12 2.9.1. zebrafish larvae 12 2.9.2. Juvenile zebrafish brains tissue 14 2.10 Pregnenolone(P5) treatment 15 2.11 Radix Angelicae Sinensis (當歸)treatment 15 2.12 Frankincense(乳香)treatment 16 2.13 Novel tank diving test (NTD) 17 Chapter 3 Results 18 3.1 Juvenile zebrafish show low regeneration rate after 10dpf bilateral electrolytic ablation 18 3.2 Bilateral electronic ablation shows no significant difference in choline acetyltransferase (chat) expression in rhombencephalon 19 3.3 The expression of clock circadian regulator a (clocka) is upregulated in ventral telencephalon (VT) and the periventricular grey zone (PGZ) of the optic tectum (TeO) 19 3.4 Circadian rhythm genes were altered after bilateral electrolytic ablation 20 3.5 The expression of per1a, per1b and per3 show no significant difference in the whole brain section 21 3.6 Control zebrafish treated with Frankincense (乳香) spent more time in the bottom 22 3.7 Drug treatment of Pregnenolone(P5), radix angelicae sinensis (當歸) and Frankincense(乳香) cannot enhance the regeneration of habenula 23 Chapter 4 Conclusions and Discussion 25 References 31 Figures 37 Supplementary Figures 56 | |
| dc.language.iso | en | |
| dc.subject | 行為測試 | zh_TW |
| dc.subject | 韁核 | zh_TW |
| dc.subject | 雙側電消融 | zh_TW |
| dc.subject | 晝夜節律 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | 韁核再生 | zh_TW |
| dc.subject | bilateral electrolytic habenula | en |
| dc.subject | habenula | en |
| dc.subject | behavior test | en |
| dc.subject | habenula regeneration | en |
| dc.subject | zebrafish | en |
| dc.subject | circadian rhythm | en |
| dc.title | 韁核損傷對睡眠干擾之機制與再生藥物之初探 | zh_TW |
| dc.title | Molecular Mechanism Underlying Habenula Damage-Induced Sleep Disturbance and Preliminary Exploration of Drugs on Habenula Regeneration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃聲蘋(Sheng-Ping Hwang),胡清華(Chin-Hwa Hu),蕭崇德(Chung-Der Hsiao) | |
| dc.subject.keyword | 韁核,雙側電消融,晝夜節律,斑馬魚,韁核再生,行為測試, | zh_TW |
| dc.subject.keyword | habenula,bilateral electrolytic habenula,circadian rhythm,zebrafish,habenula regeneration,behavior test, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202100162 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-02-02 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-02-03 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2501202117223300.pdf 未授權公開取用 | 2.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
