請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78470
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳志毅 | |
dc.contributor.author | Chieh-Ning Chen | en |
dc.contributor.author | 陳婕濘 | zh_TW |
dc.date.accessioned | 2021-07-11T14:58:46Z | - |
dc.date.available | 2025-01-21 | |
dc.date.copyright | 2020-01-21 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2020-01-13 | |
dc.identifier.citation | 1 Cabello, F. C. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental Microbiology 8, 1137-1144 (2006).
2 FAO. The State of World Fisheries and Aquaculture 2018. (FAO Rome, Italy, 2018). 3 Pérez-Sánchez, T., Mora-Sánchez, B. & Balcázar, J. L. Biological approaches for disease control in aquaculture: advantages, limitations and challenges. Trends in Microbiology 26, 896-903 (2018). 4 Sahoo, T. K., Jena, P. K., Patel, A. K. & Seshadri, S. Bacteriocins and their applications for the treatment of bacterial diseases in aquaculture: a review. Aquaculture Research 47, 1013-1027 (2016). 5 Mishra, A., Nam, G. H., Gim, J. A., Lee, H. E., Jo, A., & Kim, H. S. Current challenges of Streptococcus infection and effective molecular, cellular, and environmental control methods in aquaculture. Molecules and Cells 41, 495 (2018). 6 Liu, X., Steele, J. C. & Meng, X. Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review. Environmental Pollution 223, 161-169 (2017). 7 Rico, A., Phu, T. M., Satapornvanit, K., Min, J., Shahabuddin, A. M., Henriksson, P. J., ... & Van den Brink, P. J. Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture 412, 231-243 (2013). 8 Austin, B., Austin, D. & Munn, C. Bacterial fish pathogens: Disease in farmed and wild fish. Reviews in Fish Biology and Fisheries 5, 123-124 (1995). 9 Romero, J., Feijoó, C. G. & Navarrete, P. Antibiotics in aquaculture–use, abuse and alternatives. Health and Environment in Aquaculture 159 ( 2012). 10 Cabello, F. C., Godfrey, H. P., Buschmann, A. H. & Dölz, H. J. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. The Lancet Infectious Diseases 16, e127-e133 (2016). 11 Boyd, C. E. & Massaut, L. Risks associated with the use of chemicals in pond aquaculture. Aquacultural Engineering 20, 113-132 (1999). 12 Barrows, F. & Hardy, R. Feed manufacturing technology. Encyclopedia of Aquaculture, 354-359 (2000). 13 Ringø, E., Løvmo, L., Kristiansen, M., Bakken, Y., Salinas, I., Myklebust, R., ... & Mayhew, T. M. Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review. Aquaculture Research 41, 451-467 (2010). 14 Balcázar, J. L., De Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., & Muzquiz, J. L. The role of probiotics in aquaculture. Veterinary Microbiology 114, 173-186 (2006). 15 Dawood, M. A., Koshio, S. & Esteban, M. Á. Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture (2017). 16 Linh, N. T. H., Nagai, S., Nagasaka, N., Okane, S. & Taoka, Y. Effect of Lactococcus lactis K-C2 on the growth performance, amino acid content and gut microflora of amberjack Seriola dumerili. Fisheries Science 84, 1051-1062 (2018). 17 Dawood, M. A., Koshio, S., Ishikawa, M., Yokoyama, S., El Basuini, M. F., Hossain, M. S., ... & Moss, A. S. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish & Shellfish Immunology 49, 275-285 (2016). 18 Adel, M., El-Sayed, A. F. M., Yeganeh, S., Dadar, M., & Giri, S. S. Effect of potential probiotic Lactococcus lactis subsp. lactis on growth performance, intestinal microbiota, digestive enzyme activities, and disease resistance of Litopenaeus vannamei. Probiotics and Antimicrobial Proteins 9, 150-156 (2017). 19 Macey, B. M. & Coyne, V. E. Colonization of the gastrointestinal tract of the farmed South African abalone Haliotis midae by the probionts Vibrio midae SY9, Cryptococcus sp. SS1, and Debaryomyces hansenii AY1. Marine Biotechnology 8, 246-259 (2006). 20 Lazado, C. C., Caipang, C. M. A., Brinchmann, M. F. & Kiron, V. In vitro adherence of two candidate probiotics from Atlantic cod and their interference with the adhesion of two pathogenic bacteria. Veterinary Microbiology 148, 252-259 (2011). 21 Iyapparaj, P., Maruthiah, T., Ramasubburayan, R., Prakash, S., Kumar, C., Immanuel, G., & Palavesam, A. Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens. Aquatic Biosystems 9, 12 (2013). 22 Nikoskelainen, S., Ouwehand, A., Salminen, S. & Bylund, G. Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture 198, 229-236 (2001). 23 Nikoskelainen, S., Ouwehand, A. C., Bylund, G., Salminen, S. & Lilius, E. M. Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish & Shellfish Immunology 15, 443-452 (2003). 24 Son, V. M., Chang, C. C., Wu, M. C., Guu, Y. K., Chiu, C. H., & Cheng, W. Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses, and disease resistance of the grouper Epinephelus coioides. Fish & Shellfish Immunology 26, 691-698 (2009). 25 Giri, S. S., Sukumaran, V. & Oviya, M. Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish & Shellfish Immunology 34, 660-666 (2013). 26 Venkatalakshmi, S. & Ebanasar, J. Immunostimulatory effect of Lactobacillus sporogenes on the nonspecific defense mechanisms of Oreochromis mossambicus (Peters). International Journal of Fisheries and Aquatic Biology 2, 362-369 (2015). 27 Peng, Z., Wang, A., Xie, L., Song, W., Wang, J., Yin, Z., ... & Li, F. Use of recombinant porcine β-defensin 2 as a medicated feed additive for weaned piglets. Scientific Reports 6, 26790 (2016). 28 Forkus, B., Ritter, S., Vlysidis, M., Geldart, K. & Kaznessis, Y. N. Antimicrobial probiotics reduce salmonella enterica in Turkey gastrointestinal tracts. Scientific Reports 7, 40695 (2017). 29 Yoon, J. H., Ingale, S. L., Kim, J. S., Kim, K. H., Lee, S. H., Park, Y. K., ... & Chae, B. J. Effects of dietary supplementation of antimicrobial peptide-A3 on growth performance, nutrient digestibility, intestinal and fecal microflora and intestinal morphology in weanling pigs. Animal Feed Science and Technology 177, 98-107 (2012). 30 Liu, Q., Yao, S., Chen, Y., Gao, S., Yang, Y., Deng, J., ... & Ma, X. Use of antimicrobial peptides as a feed additive for juvenile goats. Scientific Reports 7, 12254 (2017). 31 Wu, S., Zhang, F., Huang, Z., Liu, H., Xie, C., Zhang, J., ... & Qiao, S. Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides 35, 225-230 (2012). 32 Dong, X. Q., Qu, G. J., Chen, Y. K., Wang, G. Q. & Jiang, D. Effects of antimicrobial peptides on growth, morphology of foregut villi and related genes mRNA expression in the common carp (Cyprinus carpio). Aquaculture Research (2019). 33 Pan, C. Y., Huang, T. C., Wang, Y. D., Yeh, Y. C., Hui, C. F., & Chen, J. Y. Oral administration of recombinant epinecidin-1 protected grouper (Epinephelus coioides) and zebrafish (Danio rerio) from Vibrio vulnificus infection and enhanced immune-related gene expressions. Fish & Shellfish Immunology 32, 947-957 (2012). 34 Ting, C. H., Chen, Y. C., & Chen, J. Y. Nile tilapia fry fed on antimicrobial peptide Epinecidin-1-expressing Artemia cyst exhibit enhanced immunity against acute bacterial infection. Fish & Shellfish Immunology 81, 37-48 (2018). 35 Huang, H. N., Su, B. C., Tsai, T. Y., Rajanbabu, V., Pan, C. Y., & Chen, J. Y. Dietary supplementation of recombinant tilapia piscidin 4-expressing yeast enhances growth and immune response in Lates calcarifer. Aquaculture Reports 16, 100254 (2020). 36 Ting, C. H., Pan, C. Y., Chen, Y. C., Lin, Y. C., Chen, T. Y., Rajanbabu, V., & Chen, J. Y. Impact of Tilapia hepcidin 2-3 dietary supplementation on the gut microbiota profile and immunomodulation in the grouper (Epinephelus lanceolatus). Scientific Reports 9, 1-17 (2019). 37 Liu, M., Wang, B., Jiang, K., Gong, K., Sun, S., Wang, L., ... & Fu, Y. Rice bran expressing a shrimp antimicrobial peptide confers delayed spoilage of fish feed and resistance of tilapia to Aeromonas hydrophila. Journal of the World Aquaculture Society 45, 269-278 (2014). 38 Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389 (2002). 39 Peters, B. M., Shirtliff, M. E. & Jabra-Rizk, M. A. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathogens 6, e1001067 (2010). 40 Shai, Y. From innate immunity to de-novo designed antimicrobial peptides. Current Pharmaceutical Design 8, 715-725 (2002). 41 Jenssen, H., Hamill, P. & Hancock, R. E. Peptide antimicrobial agents. Clinical Microbiology Reviews 19, 491-511 (2006). 42 Seo, M. D., Won, H. S., Kim, J. H., Mishig-Ochir, T., & Lee, B. J. Antimicrobial peptides for therapeutic applications: a review. Molecules 17, 12276-12286 (2012). 43 Peng, K. C., Lee, S. H., Hour, A. L., Pan, C. Y., Lee, L. H., & Chen, J. Y. Five different piscidins from Nile tilapia, Oreochromis niloticus: analysis of their expressions and biological functions. PloS One 7, e50263 (2012). 44 Pan, C. Y., Tsai, T. Y., Su, B. C., Hui, C. F., & Chen, J. Y. Study of the antimicrobial activity of tilapia piscidin 3 (TP3) and TP4 and their effects on immune functions in hybrid tilapia (Oreochromis spp.). PloS One 12, e0169678 (2017). 45 Narayana, J. L., Huang, H. N., Wu, C. J., & Chen, J. Y. Efficacy of the antimicrobial peptide TP4 against Helicobacter pylori infection: in vitro membrane perturbation via micellization and in vivo suppression of host immune responses in a mouse model. Oncotarget 6, 12936 (2015). 46 Fjell, C. D., Hiss, J. A., Hancock, R. E. & Schneider, G. Designing antimicrobial peptides: form follows function. Nature Reviews Drug Discovery 11, 37 (2012). 47 Hädicke, A. & Blume, A. Binding of cationic peptides (KX) 4K to DPPG bilayers. Increasing the hydrophobicity of the uncharged amino acid X drives formation of membrane bound β-sheets: A DSC and FT-IR study. Biochimica et Biophysica Acta (BBA)-Biomembranes 1858, 1196-1206 (2016). 48 Glinel, K., Thebault, P., Humblot, V., Pradier, C.-M. & Jouenne, T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomaterialia 8, 1670-1684 (2012). 49 Wimley, W. C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chemical Biology 5, 905-917 (2010). 50 Mojsoska, B. & Jenssen, H. Peptides and peptidomimetics for antimicrobial drug design. Pharmaceuticals 8, 366-415 (2015). 51 Hollmann, A., Martínez, M., Noguera, M. E., Augusto, M. T., Disalvo, A., Santos, N. C., ... & Maffía, P. C. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide–membrane interactions of three related antimicrobial peptides. Colloids and Surfaces B: Biointerfaces 141, 528-536 (2016). 52 Dong, N., Ma, Q. Q., Shan, A. S., Lv, Y. F., Hu, W., Gu, Y., & Li, Y. Z. Novel design of short antimicrobial peptides derived from the bactericidal domain of avian β-defensin-4. Protein and Peptide Letters 19, 1212-1219 (2012). 53 Wieprecht, T., Dathe, M., Krause, E., Beyermann, M., Maloy, W. L., MacDonald, D. L., & Bienert, M. Modulation of membrane activity of amphipathic, antibacterial peptides by slight modifications of the hydrophobic moment. FEBS Letters 417, 135-140 (1997). 54 Pan, C. Y., Chen, J. C., Chen, T. L., Wu, J. L., Hui, C. F., & Chen, J. Y. Piscidin is highly active against carbapenem-resistant Acinetobacter baumannii and NDM-1-producing Klebsiella pneumonia in a systemic septicaemia infection mouse model. Marine Drugs 13, 2287-2305 (2015). 55 Lin, W. C., Chang, H. Y. & Chen, J. Y. Electrotransfer of the tilapia piscidin 3 and tilapia piscidin 4 genes into skeletal muscle enhances the antibacterial and immunomodulatory functions of Oreochromis niloticus. Fish & Shellfish Immunology 50, 200-209 (2016). 56 Huang, H. N., Chan, Y. L., Wu, C. J. & Chen, J. Y. Tilapia Piscidin 4 (TP4) stimulates cell proliferation and wound closure in MRSA-Infected wounds in mice. Marine Drugs 13, 2813-2833 (2015). 57 Li, Y. Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnology and Applied Biochemistry 54, 1-9 (2009). 58 Terpe, K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology 72, 211 (2006). 59 Kane, J. F. & Hartley, D. L. Formation of recombinant protein inclusion bodies in Escherichia coli. Trends in Biotechnology 6, 95-101 (1988). 60 Sequeiros, C., Garcés, M. E., Vallejo, M., Marguet, E. R. & Olivera, N. L. Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae. Archives of microbiology 197, 449-458 (2015). 61 Płowiec, A., Sławińska, A., Siwek, M. Z. & Bednarczyk, M. F. Effect of in ovo administration of inulin and Lactococcus lactis on immune-related gene expression in broiler chickens. American Journal of Veterinary Research 76, 975-982 (2015). 62 Xia, Y., Lu, M., Chen, G., Cao, J., Gao, F., Wang, M., ... & Yi, M. Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology 76, 368-379 (2018). 63 Leroy, F. & De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology 15, 67-78 (2004). 64 EFSA. Opinion of the Scientific Committee on a request from EFSA on the introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA. The EFSA Journal 587, 1-16 (2007). 65 Mierau, I., Leij, P., Van Swam, I., Blommestein, B., Floris, E., Mond, J., & Smid, E. J. Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: the case of lysostaphin. Microbial Cell Factories 4, 15 (2005). 66 Mierau, I. & Kleerebezem, M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Applied Microbiology and Biotechnology 68, 705-717 (2005). 67 Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G., Luesink, E. J. & de Vos, W. M. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. Journal of Biological Chemistry 270, 27299-27304 (1995). 68 Kuipers, O. P., de Ruyter, P. G., Kleerebezem, M. & de Vos, W. M. Quorum sensing-controlled gene expression in lactic acid bacteria. Journal of Biotechnology 64, 15-21 (1998). 69 De Ruyter, P., Kuipers, O. P., Beerthuyzen, M. M., van Alen-Boerrigter, I. & de Vos, W. M. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. Journal of Bacteriology 178, 3434-3439 (1996). 70 Zhou, X. X., Li, W. F., Ma, G. X. & Pan, Y. J. The nisin-controlled gene expression system: construction, application and improvements. Biotechnology Advances 24, 285-295 (2006). 71 Dieye, Y., Usai, S., Clier, F., Gruss, A. & Piard, J. C. Design of a protein-targeting system for lactic acid bacteria. Journal of Bacteriology 183, 4157-4166 (2001). 72 Platteeuw, C., van Alen-Boerrigter, I., van Schalkwijk, S. & De Vos, W. Food-grade cloning and expression system for Lactococcus lactis. Applied and Environmental Microbiology 62, 1008-1013 (1996). 73 Schägger, H. Tricine–SDS-PAGE. Nature Protocols 1, 16 (2006). 74 Mitraki, A. & King, J. Protein folding intermediates and inclusion body formation. Biotechnology 7, 690 (1989). 75 Borrero, J., Jiménez, J. J., Gútiez, L., Herranz, C., Cintas, L. M., & Hernández, P. E. Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis. Applied Microbiology and Biotechnology 89, 131-143 (2011). 76 Loera-Arias, M. J., Villatoro-Hernández, J., Parga-Castillo, M. A., Salcido-Montenegro, A., Barboza-Quintana, O., Munoz-Maldonado, G. E., ... & Saucedo-Cárdenas, O. Secretion of biologically active human interleukin 22 (IL-22) by Lactococcus lactis. Biotechnology Letters 36, 2489-2494 (2014). 77 Wang, D., Xu, S., Lin, Y., Fang, Z., Che, L., Xue, B., & Wu, D. Recombinant porcine epidermal growth factor-secreting Lactococcus lactis promotes the growth performance of early-weaned piglets. BMC Veterinary Research 10, 171 (2014). 78 Borchert, T. V. & Nagarajan, V. Effect of signal sequence alterations on export of levansucrase in Bacillus subtilis. Journal of Bacteriology 173, 276-282 (1991). 79 von Heijne, G. The signal peptide. The Journal of Membrane Biology 115, 195-201 (1990). 80 Brockmeier, U., Caspers, M., Freudl, R., Jockwer, A., Noll, T., & Eggert, T. Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. Journal of Molecular Biology 362, 393-402 (2006). 81 Maclntyre, S., Eschbach, M. L. & Mutschler, B. Export incompatibility of N-terminal basic residues in a mature polypeptide of Eschericbia coli can be alleviated by optimising the signal peptide. Molecular and General Genetics MGG 221, 466-474 (1990). 82 Driessen, A. J. & Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. Annual Review of Biochemistry 77, 643-667 (2008). 83 Choi, J. & Lee, S. Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology and Biotechnology 64, 625-635 (2004). 84 Kontinen, V. P. & Sarvas, M. The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high‐level secretion. Molecular Microbiology 8, 727-737 (1993). 85 Wang, X., Junior, J. C. B., Mishra, B., Lushnikova, T., Epand, R. M., & Wang, G. Arginine-lysine positional swap of the LL-37 peptides reveals evolutional advantages of the native sequence and leads to bacterial probes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1859, 1350-1361 (2017). 86 Kandasamy, S. K. & Larson, R. G. Effect of salt on the interactions of antimicrobial peptides with zwitterionic lipid bilayers. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758, 1274-1284 (2006). 87 Nfor, B. K., Verhaert, P. D., van der Wielen, L. A., Hubbuch, J. & Ottens, M. Rational and systematic protein purification process development: the next generation. Trends in Biotechnology 27, 673-679 (2009). 88 Schiffer, M. & Edmundson, A. B. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophysical Journal 7, 121-135 (1967). 89 Cornut, I., Büttner, K., Dasseux, J.-L. & Dufourcq, J. The amphipathic α‐helix concept: Application to the de novo design of ideally amphipathic Leu, Lys peptides with hemolytic activity higher than that of melittin. FEBS Letters 349, 29-33 (1994). 90 Tossi, A., Sandri, L. & Giangaspero, A. Amphipathic, α‐helical antimicrobial peptides. Peptide Science 55, 4-30 (2000). 91 Oda, Y., Saito, K., Yamauchi, H. & Mori, M. Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae. Current Microbiology 45, 1-4 (2002). 92 Greenacre, E. & Brocklehurst, T. The acetic acid tolerance response induces cross-protection to salt stress in Salmonella typhimurium. International Journal of Food Microbiology 112, 62-65 (2006). 93 Vermeulen, A., Gysemans, K. P., Bernaerts, K., Geeraerd, A. H., Van Impe, J. F., Debevere, J., & Devlieghere, F. Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 C: data collection for the development of a growth/no growth model. International Journal of Food Microbiology 114, 332-341 (2007). 94 Peláez, A. L., Cataño, C. S., Yepes, E. Q., Villarroel, R. G., De Antoni, G. L., & Giannuzzi, L. Inhibitory activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Control 24, 177-183 (2012). 95 Moll, G. N., Konings, W. N. & Driessen, A. J. Bacteriocins: mechanism of membrane insertion and pore formation. Antonie van Leeuwenhoek 76, 185-198 (1999). 96 Cheikhyoussef, A., Cheikhyoussef, N., Chen, H., Zhao, J., Tang, J., Zhang, H., & Chen, W. Bifidin I–A new bacteriocin produced by Bifidobacterium infantis BCRC 14602: Purification and partial amino acid sequence. Food Control 21, 746-753 (2010). 97 Motes, M. L., DePaola, A., Cook, D. W., Veazey, J. E., Hunsucker, J. C., Garthright, W. E., ... & Chirtel, S. J. Influence of water temperature and salinity on Vibrio vulnificus in northern gulf and atlantic coast oysters (Crassostrea virginica). Applied and Environmental Microbiology 64, 1459-1465 (1998). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78470 | - |
dc.description.abstract | 因應海洋漁業資源匱乏,水產養殖業日益興盛,成為食用水產品的主要供應來源。然而高密度養殖及環境管理不當,容易使養殖生物緊迫,導致水產養殖面臨許多疾病爆發的挑戰,進而造成極大的經濟損失,並使產業發展受到限制。面對細菌性病原,養殖業者通常於飼料中添加抗生素作為預防,感染亦施用抗生素及消毒劑進行治療,過度依賴抗生素的情況,造成抗藥性菌株產生以及藥物殘留的問題,故歐盟、美國及日本等經濟體近年來逐步或全面性禁止食用動物飼料中添加抗生素。抗生素之禁用,可能使得養殖動物較容易受到細菌感染,因此開發提升養殖動物抗病力之機能性添加物作為因應措施是極為需要的。
在自然環境中,生物體為了避免受到病原的侵害,發展出多種對抗及保護機制。除了傳統的免疫調控機制外,抗菌肽 (antimicrobial peptide)在先天性免疫系統中也扮演著重要的角色。抗菌肽廣泛存在於各種生物體中,具有殺死細菌、真菌或是病毒等微生物之功能。此外許多研究中也指出在病原菌感染過程,抗菌肽具有免疫調節之功能,因此是良好的飼料機能性添加物候選之一。 本研究選用開發成本低廉、具可食用性及生物安全性的乳酸乳球菌NIsin Controlled gene Expression system (NICE expression system)表達系統生產吳郭魚抗菌肽Tilapia piscidin 4 (TP4),並研究最佳誘導條件與抗菌活性,以評估重組抗菌肽TP4作為飼料添加劑的發展潛力。 | zh_TW |
dc.description.abstract | With a lack of natural marine resources, aquaculture has become the main source of fish in the food supply. However, high-density breeding and improper environmental management often results in disease outbreaks that cause great economic losses and limit industrial development. Breeders usually use antibiotics in animal feed as preventive agents and administer antibiotics and disinfectants for treatment of infections. However, overreliance on antibiotics has led to the emergence of drug-resistant strains and persistent exposure to drug residues. Therefore, the European Union, the United States, Japan, and other economies have gradually or comprehensively banned the use of antibiotics in animal feeds in recent years. The ban on antibiotics may make the farmed animals more susceptible to bacterial infections, so the development of functional additives can increase disease resistance should be considered as a countermeasure. In the environment, organisms have developed various operational and protective mechanisms to respond to attacks by pathogens. In addition to traditional immunomodulatory mechanisms, antimicrobial peptides also play an important role in the innate immune system. Antimicrobial peptides are widely present in various organisms and exhibit antibacterial, antifungal and/or antiviral activity. Furthermore, many studies have shown that antimicrobial peptides have immunoregulatory functions during pathogen infection. Thus, these molecules are good candidates for feed functional additives.
In this study, we utilize the NIsin-controlled gene expression system, which has low development cost, edible products and good biosafety, for production of the antimicrobial peptide tilapia piscidin 4 (TP4). We investigate the optimal induction conditions and antimicrobial activity, which are key considerations for feed additives. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:58:46Z (GMT). No. of bitstreams: 1 ntu-108-R05b45009-1.pdf: 7863961 bytes, checksum: 5c621c328db9581250a8e8ae49252409 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 i
目錄 ii 圖目錄 vi 表目錄 viii 摘要 ix Abstract x 第一章 前言 1 1.1 水產養殖現況 1 1.2 抗生素在水產養殖的使用 1 1.3 飼料添加物的發展 2 1.4 抗菌肽概述 4 1.5 抗菌肽作用機制 4 1.6 吳郭魚抗菌肽Tilapia piscidin 4 (TP4) 5 1.7 原核系統表達抗菌肽 6 1.8 乳酸乳酸菌與Nisin controlled gene expression system 7 1.9 研究目的 8 第二章 實驗材料與方法 9 2.1 實驗材料 9 2.1.1 實驗菌株 9 2.1.2 質體 9 2.1.3 人工合成抗菌肽 10 2.1.4 專一性引子 (primer) 10 2.1.5 培養基 10 2.1.6 試劑與藥品 11 2.1.7 抗體 12 2.1.8 酵素 13 2.1.9 緩衝液 (Buffer) 13 2.1.10 市售套組 13 2.1.11 耗材 14 2.1.12 儀器設備 14 2.1.13 使用軟體 15 2.2 實驗方法 16 2.2.1 培養基及培養液製備 16 2.2.2 聚合酶連鎖反應 (Polymerase chain reaction) 16 2.2.3 DNA 切膠純化 (Gel extraction) 17 2.2.4 質體DNA萃取 17 2.2.5 Tricine-SDS-PAGE 18 2.2.6 Western blot 18 2.2.7 三氯醋酸沉澱 (Trichloroacetic acid precipitation,TCA precipitation) 19 2.2.8 菌株保存及活化培養 19 2.2.9 乳酸菌轉型溶液配置 19 2.2.10 L. lactis NZ3900 勝任細胞製作 20 2.2.11 表達抗菌肽TP4之質體建構與轉型 20 2.2.12 L. lactis轉型株重組TP4之表達 22 2.2.13 重組TP4表達最適條件 22 2.2.14 重組TP4抗菌活性測試 23 2.2.15 統計分析 23 第三章 實驗結果 24 3.1 抗菌肽TP4質體建構與轉型 24 3.2 抗菌肽TP4轉型株之誘導表達 24 3.3 抗菌肽TP4轉型株誘導表達最適條件 25 3.4 抗菌活性測試 26 第四章 討論 28 4.1 胞外分泌轉型株於培養液中無法偵測重組TP4之探討 28 4.2 重組TP4所需濃度高於合成TP4濃度才能達到抑菌效果因素之探討 28 4.3 重組6His-TP4抑菌活性較為不佳之因素探討 29 4.4 非重組TP4轉型株仍具抗菌活性之因素探討 30 第五章 結論與展望 31 第六章 參考文獻 32 圖 45 表 76 附錄 81 | |
dc.language.iso | zh-TW | |
dc.title | 乳酸菌表達重組吳郭魚抗菌肽Tilapia piscidin 4之功能性分析 | zh_TW |
dc.title | Functional analysis of recombinant antimicrobial peptide Tilapia piscidin 4 expressed by Lactococcus lactis | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 潘婕玉,蘇柏全 | |
dc.subject.keyword | 蛋白質表達,NICE expression system,Tilapia piscidin 4 (TP4), | zh_TW |
dc.subject.keyword | Protein expression,NICE expression system,Tilapia piscidin 4 (TP4), | en |
dc.relation.page | 86 | |
dc.identifier.doi | 10.6342/NTU202000083 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-01-14 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
dc.date.embargo-lift | 2025-01-21 | - |
顯示於系所單位: | 漁業科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R05b45009-1.pdf 目前未授權公開取用 | 7.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。