請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78427完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘思樺(Szu-Hua Pan) | |
| dc.contributor.author | Pei-Shan Wu | en |
| dc.contributor.author | 吳佩珊 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:56:26Z | - |
| dc.date.available | 2025-03-03 | |
| dc.date.copyright | 2020-03-03 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-20 | |
| dc.identifier.citation | 1.A Mclntyre et al., Lung Cancer- A global perspective. Journal of Surgical Oncology, 2017; 115: 550–554.
2.RL Siegel et al., Cancer Statistics, 2019. CA Cancer Journal for Clinicians, 2019; 69:7–34. 3.H Lemjabbar-Alaoui et al., Lung Cancer: Biology and treatment options. Biochimica et Biophysica Acta, 2015; 1856:189–210. 4.Z Chan et al., Non-small cell lung cancers: a heterogeneous set of disease. Nature Review: Cancer, 2014; 14:535–546 5.BA Chan et al., Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Translational Lung Cancer Research, 2015; 4(1):36–54. 6.KM Latimer et al., Lung Cancer: Diagnosis, Treatment Principles, and Screening. American Family Physician, 2015; 91(4):250–257. 7.F Junku et al., Targeted therapy in non-small-cell lung cancer—is it becoming a reality? Nature Reviews: Clinical Oncology, 2010; 7: 414. 8.MA Lemon et al., Cell signaling by receptor tyrosine kinase. Cell, 2010; 141: 27–42. 9.AS Tsao et al., Scientific Advances in Lung Cancer 2015. Journal of Thoracic Oncology, 2015; 11(5): 613–638. 10.VD Cataldo et al., Treatment of Non-Small-Cell Lung Cancer with Erlotinib or Gefitinib. The New England Journal of Medicine, 2011; 364(10): 947–955. 11.J Haddad et al., Epidermal growth factor receptor (EGFR) in the era of Precision Medicine: The tale of a perfect example of targeted therapy. Meta Gene, 2017; 11: 157–163. 12.DH Lee, Treatment for EGFR-mutant non-small cell lung cancer (NSCLC): The road to a success, paved with failures. Pharmacology & Therapeutics, 2017; 174: 1–21. 13.SEDC Jorge et al., Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data. Brazilian Journal of Medical and Biological Research, 2014; 47(11): 929–939. 14.JY Wu et al., Gefitinib Therapy in Patients With Advanced Non-Small Cell Lung Cancer With or Without Testing for Epidermal Growth Factor Receptor (EGFR) Mutations. Medicine, 2011; 90(3): 159–167. 15.T Mitsudomi, Molecular epidemiology of lung cancer and geographic variations with special reference to EGFR mutations. Translational Lung Cancer Research, 2014; 3(4): 205–211. 16.Y Ahmed et al., Treatment of epidermal growth factor receptor mutations in non-small cell lung cancer: current role and the future perspective. Journal of Unexplored Medical Data, 2017; 2: 39–47. 17.A Midha et al., EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). American Journal of Cancer Research, 2015; 5(9): 2892–2911. 18.SZ Wang et al., Second-generation EGFR and ErbB tyrosine kinase inhibitors as first-line treatments for non-small cell lung cancer. OncoTargets and Therapy, 2019; 12: 6535–6548. 19.F Morgillo et al., Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open, 2016; 1: e000060. 20.XH Chenget al., Tumor heterogeneity and resistance to EGFR-targeted therapy in advanced nonsmall cell lung cancer: challenges and perspectives. Onco Targets and Therapy, 2014; 7: 1689–1704. 21.K Li et al., Determining EGFR-TKI sensitivity of G719X and other uncommon EGFR mutations in non-small cell lung cancer: Perplexity and solution (Review). Oncology Report, 2017; 37: 1347-1358. 22.J Wang et al., Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations. Onco Targets and Therapy, 2016; 9: 3711–3726. 23.A Passaro et al., Targeting EGFR T790M mutation in NSCLC: from biology to evaluation and treatment. Pharmacological Research, 2017; 117: 406–415. 24.DR Camidge et al., Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nature Reviews: Clinical Oncology, 2014; 11: 473–481. 25.M Floriana et al., Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open, 2016; 1: e000060. 26.SG Wu et al., The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget, 2016; 7(11): 12404–12413. 27.DL Gibbons et al., A HER 1-2 Punch: Dual EGFR Targeting Deals Resistance a Deadly Blow. Cancer Discovery, 2014; 4(9): 991–994. 28.H Hatim et al., Strategies to overcome bypass mechanisms mediating clinical resistance to EGFR tyrosine kinase inhibition in lung cancer. Molecular Cancer Therapeutics, 2017; 16(2): 265–272. 29.N Normanno et al., Targeting the EGFR T790M mutation in non-small cell lung cancer. Expert Option on Therapeutic Target, 2017; 21(2): 159–165. 30.D Callegari et al., L718Q mutant EGFR escapes covalent inhibition by stabilizing a non-reactive conformation of the lung cancer drug osimertinib. Chemical Science, 2018; 9: 2740–2749. 31.MY Hein et al., A Human Interactome in Three Quantitative Dimensions Organized by Stoichiometries and Abundances. Cell, 2015; 163: 712–723. 32.ZG Li et al., The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies. Nature Communication, 2017; 8: 14356. 33.V Vacic et al., Disease-Associated Mutations Disrupt Functionally Important Regions of Intrinsic Protein Disorder. PLoS One, 2012; 8(10): e1002709. 34.XH Li et al., Human Diseases from Gain-of-Function Mutations in Disordered Protein Regions. Cell, 2018; 175: 40–42. 35.A Lundby et al., Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell, 2019; 179: 543–560. 36.J Snider et al., Fundamentals of protein interaction network mapping. Molecular System biology, 2015; 11: 848. 37.AH Smitset al., Characterizing protein-protein interactions using mass spectrometry: challenges and opportunities. Trends in Biotechnology, 2016; 34(10): 825–834. 38.Z Yao et al., A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome. Molecular Cell, 2017; 65: 347–360. 39.WH Dunham et al., Affinity-purification coupled to mass spectrometry: Basic principles and strategies. Proteomics, 2012; 12: 1576–1590. 40.JN Li et al., Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms. Molecular Systems Biology, 2013; 9: 705. 41.J Tong et al., Proteomics Analysis of the Epidermal Growth Factor Receptor (EGFR) Interactome and Post-translational Modification Associated with Receptor Endocytosis in Response to EGF and Stress. Molecular and Cellular Proteomics, 2014; 13.7: 1644–1657. 42.H Saafan et al., Utilising the EGFR interactome to identify mechanism of drug resistance in non-small cell lung cancer – proof of concept towards a systems pharmacology approach. European Journal of Pharmaceutical Sciences, 2016; 94: 20–34. 43.EW Deutsch et al., A Guided Tour of the Trans-Proteomic Pipeline. Proteomics, 2010; 10(6): 1150–1159. 44.D Fermin et al., Abacus: A computational tool for extracting and pre-processing spectral count data for label-free quantitative proteomic analysis. Proteomics, 2011; 11(7): 1340–1345. 45.D Mellacheruvu et al., The CRAPome: a contaminant repository for affinity purification - mass spectrometry data. Nature Methods, 2013, 10(8), 730−736. 46.E Marcon et al., Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation. Nature Methods, 2015, 12(8), 725−731. 47.D Szklarczyk et al., The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research, 2017; 45: D362−D368. 48.A Bauer-Mehren et al., Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Molecular Systems Biology, 2009; 5: 290. 49.XL Jiao et al., DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Databases and ontologies, 2012; 28(13): 1805–1806. 50.M Ashburner et al., Gene Ontology: tool for the unification of biology. Nature Genetics, 2000; 25(1): 25–29. 51.D Croft et al., Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Research, 2011; 39: D691–D697. 52.S Okuda et al., KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Research, 2008; 36: W423–W426. 53.E Yamada et al., Mapping Autophagy on to Your Metabolic Radar. Diabetes, 2012; 61: 272–280. 54.JY Wu et al., Gefitinib Therapy in Patients with Advanced Non-Small Cell Lung Cancer With or Without Testing for Epidermal Growth Factor Receptor (EGFR) Mutations. Medicine, 2011; 90(3): 159–167. 55.S Tracy et al., Gefitinib Induces Apoptosis in the EGFRL858R Non–Small-Cell Lung Cancer Cell Line H3255. Cancer Research, 2004; 64: 7241–7244. 56.HY Yen et al., Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition. PNAS, 2015; 12(22): 6955–6960. 57.R Sordella, et al. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 2004; 305: 1163–1167. 58.S Foerster et al., Characterization of the EGFR interactome reveals associated protein complex networks and intracellular receptor dynamics. Proteomics, 2013; 13: 3131–3144. 59.P Lanzerstorfer et al., Quantification and Kinetic Analysis of Grb2-EGFR Interaction on Micro-Patterned Surfaces for the Characterization of EGFR-Modulating Substances. PLoS One, 2014; 9(3): e92151. 60.RM Mader et al., NSCLC cells adapted to EGFR inhibition accumulate EGFR interacting proteins and down-regulate microRNA related to epithelial-mesenchymal transition. International Journal of Clinical Pharmacology and Therapeutics, 2014; 52: 92–94. 61.S Pankow et al., Deep interactome profiling of membrane proteins by co-interacting protein identification technology. Nature Protocols, 2015; 11(12): 2515–2528. 62.H Choi et al., Significance Analysis of Spectral Count Data in Label-free Shotgun Proteomics. Molecular & Cellular Proteomics, 2008; 7(12): 2373–2385. 63.WH Dunham et al., Affinity-purification coupled to mass spectrometry: Basic principles and strategies. Proteomics, 2012; 12: 1576–1590. 64.E C Keilhauer et al., Accurate Protein Complex Retrieval by Affinity Enrichment Mass Spectrometry (AE-MS) Rather than Affinity Purification Mass Spectrometry (AP-MS). Molecular & Cellular Proteomics, 2015; 14(1): 120–135. 65.K Hodge et al., Cleaning up the masses: Exclusion lists to reduce contamination with HPLC-MS/MS. Journal of Proteomics, 2013; 88: 92–103. 66.RB Hazan et al., The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. Journal of Biological Chemistry, 1998; 273(15): 9078−9084. 67.G Viticchiè et al., c-Met and Other Cell Surface Molecules: Interaction, Activation and Functional Consequences. Biomedicines, 2015; 3: 46−70. 68.NO Dulin et al., Arachidonate-induced tyrosine phosphorylation of epidermal growth factor receptor and Shc-Grb2-Sos association. Hypertension, 1998; 32(6): 1089−1093. 69.YS Chang et al., Mechanisms of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance and Strategies to Overcome Resistance in Lung Adenocarcinoma. Tuberculosis and Respiratory Diseases, 2016; 79: 248-256. 70.T Ideker et al., Differential network biology. Molecular Systems Biology, 2011; 8: 565−874. 71.P Wee et al., Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers, 2017; 9: 52. 72.M Kaksonen et al., Mechanisms of clathrin-mediated endocytosis. Nature Review, 2018; 19: 313−326. 73.XJ Tan et al., Stress-Induced EGFR Trafficking: Mechanisms, Functions, and Therapeutic Implications. Trends in Cell Biology, 2016; 26(5): 352–366. 74.K Peng et al., Stress induced endocytosis and degradation of epidermal growth factor receptor are two independent processes. Cancer Cell International, 2016; 16:25. 75.CW Keller et al., Endocytosis regulation by autophagy proteins in MHC restricted antigen presentation. Current Opinion in Immunology, 2018; 52: 68–73. 76.L Kuan et al., Endocytosis of Receptor Tyrosine Kinases. Cold Spring Harbor Perspectives Biology, 2013; 5: 017459. 77.CW Yun et al., The Role of Autophagy in Cancer. International Journal of Molecular Sciences, 2018; 19: 3466. 78.I Dikic et al., Mechanism and medical implications of mammalian autophagy. Nature Reviews: Molecular Cell Biology, 2018; 19: 349–364 79.KK Mahapatra et al., Molecular interplay of autophagy and endocytosis in human health and diseases. Biological Reviews, 2019; 94: 1576–1590. 80.AMK Choi et al., Autophagy in Human Health and Disease. The New England Journal of Medicine, 2018; 368(7): 651–662. 81.YJ Kwon et al., Targeting Autophagy for Overcoming Resistance to Anti-EGFR Treatments. Cancers, 2019: 11: 1374. 82.L Ménard et al., Reactivation of Mutant-EGFR Degradation through Clathrin Inhibition Overcomes Resistance to EGFR Tyrosine Kinase Inhibitors. Cancer Research, 2018; 78(12): 3267–3279. 83.TS Wang et al., The exon 19-deleted EGFR undergoes ubiquitylation-mediated endocytic degradation via dynamin activity-dependent and -independent mechanisms. Cell Communication and Signaling, 2018; (16): 40. 84.HS Li et al., The roles of subcellularly located EGFR in autophagy. Cellular Signaling, 2017; 35: 223–230. 85.AV Vieira et al., Control of EGF receptor signaling by clathrin-mediated endocytosis. Science, 1996;274(5295):2086-2089. 86.YN Wang et al., Nuclear trafficking of the epidermal growth factor receptor family membrane proteins. Oncogene, 2010; 29(28): 3997–4006. 87.ML Demory et al., Epidermal Growth Factor Receptor Translocation to the Mitochondria. The Journal of Biological Chemistry, 2009; 284 (52): 36592–36604. 88.BP Ceresa, Regulation of EGFR endocytic trafficking by rab proteins. Histology and Histopathology, 2006; 21: 987–993. 89.CA Lamb et al., Endocytosis and autophagy: Shared machinery for degradation. Bioessays, 2012; 35: 34–45. 90.KK Mahapatra et al., Molecular interplay of autophagy and endocytosis in human health and diseases. Biological Review, 2019; 94: 1576–1590. 91.A Tomas et al., EGF receptor trafficking: consequences for signaling and cancer. Trends in Cell Biology, 2014; 24(1): 26–34. 92.I Mellman et al, Endocytosis and Cancer. Cold Spring Harbor Perspectives Biology, 2013; 5: a016949. 93.E Henson et al., EGFR Family Members’ Regulation of Autophagy Is at a Crossroads of Cell Survival and Death in Cancer. Cancer, 2017; 9: 27. 94.MA Sooro et al., Targeting EGFR-mediated autophagy as a potential strategy for cancer therapy. International Journal of Cancer, 2018; 143: 2116–2125. 95.S Nakamura et al., New insights into autophagosome-lysosome fusion. Journal of Cell Science, 2017; 130: 1209–1216. 96.YJ Li et al., Autophagy and multidrug resistance in cancer. Chinese Journal of Cancer, 2017; 36: 52. 97.AG Smith et al., Autophagy, cancer stem cells and drug resistance. Journal of Pathology, 2019; 247: 708–718. 98.JH Mao et al., Arsenic circumvents the gefitinib resistance by binding to P62 and mediating autophagic degradation of EGFR in non-small cell lung cancer. Cell Death and Disease, 2018; 9: 963. 99.JH Kim et al., Enhanced Glycolysis Supports Cell Survival in EGFR-Mutant Lung Adenocarcinoma by Inhibiting Autophagy-Mediated EGFR Degradation. Cancer Research, 2018; 78(16): 4482–4496. 100.N Mizushima et al., Methods in Mammalian Autophagy Research. Cell, 2010; 140: 313–326. 101.YT Wu et al., Dual Role of 3-Methyladenine in Modulation of autophagy via Different Temporal Patterns of Inhibition on Class I and III Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 2010; 285(14): 10850–10861. 102.M Rosner et al., mTOR phosphorylated at S2448 binds to raptor and rictor. Amino Acids, 2010; 38:223–228. 103.L Wilde et al., Autophagy in cancer: a complex relationship. Biochemical Journal, 2018; 475: 1939–1954. 104.A Petiot et al., Distinct Classes of Phosphatidylinositol 3*-Kinases Are Involved in Signaling Pathways That Control Macroautophagy in HT-29 Cells. The Journal of Biological Chemistry, 2000; 275(2): 992–998. 105.JMT Hyttinen et al., Maturation of autophagosomes and endosomes: A key role for Rab7. Biochemica et Biophysica Acta, 2013; 1833: 503–510. 106.Y Kuchitsu et al., Revisiting Rab7 Functions in Mammalian Autophagy: Rab7 Knockout Studies. Cells, 2018; 7: 215. 107.PP Song et al., Parkin Modulates Endosomal Organization and Function of the Endo-Lysosomal Pathway. The Journal of Neuroscience, 2016; 36(8): 2425–2437. 108.A Sapmaz et al., USP32 regulates late endosomal transport and recycling through deubiquitylation of Rab7. Nature Communication, 2019; 10: 1454. 109.AP McCann et al., USP17 is required for trafficking and oncogenic signaling of mutant EGFR in NSCLC cells. Cell Communication and Signaling, 2018; (16): 77. 110.P Goel et al., NEDD4-2 (NEDD4L): The ubiquitin ligase for multiple membrane proteins. Gene, 2015; 557: 1–10. 111.I Azmi et al., Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1. The Journal of Cell Biology, 2006; 172(5): 705–717. 112.S Pankiv et al., p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy. The Journal of Biological Chemistry, 2007; 282(33): 24131–24145. 113.C Gómez-Díaz et al., Roles of ubiquitin in autophagy and cell death. Seminars in Cell and Developmental Biology, 2019; 93: 125–135. 114.ZX Wang et al., NEDD4L Protein Catalyzes Ubiquitination of PIK3CA Protein and Regulates PI3K-AKT Signaling. The Journal of Biological Chemistry, 2016; 291(33): 17467–17477. 115.X Zou et al., Molecular functions of NEDD4 E3 ubiquitin ligases in cancer. Biochimica et Biophysica Acta, 2015; 1856: 91–106. 116.H Sakashita et al., Identification of the NEDD4L Gene as a Prognostic Marker by Integrated Microarray Analysis of Copy Number and Gene Expression Profiling in Non-Small Cell Lung Cancer. Annals of Surgical Oncology, 2013; 20: S590–S598. 117.M Yamauchi et al., Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma. PLoS ONE, 2012; 7: e43923. 118.JP Tanksley et al., NEDD4L Is Downregulated in Colorectal Cancer and Inhibits Canonical WNT Signaling. PLoS One, 2013; 8(11): e81514. 119.QY Yang et al., Nedd4L expression is decreased in ovarian epithelial cancer tissues compared to ovarian non-cancer tissue. The Journal of Obestetrics and Gynaecology Research, 2015; 41(12): 1959–1964. 120.K Suda et al., EGFR T790M Mutation: A Double Role in Lung Cancer Cell Survival? Journal of Thoracic Oncology, 2009; 4(1): 1–4. 121.XJ Gao et al., Poor Prognosis With Coexistence Of EGFR T790M Mutation And Common EGFR-Activating Mutation In Non-Small Cell Lung Cancer. Cancer Management and Research, 2019; 11: 9621–9630. 122.M Peng et al., Clinical Characteristics and Survival Outcomes for Non-Small-Cell Lung Cancer Patients with Epidermal Growth Factor Receptor Double Mutations. BioMed Research International, 2018; 2018: 1–9. 123.K Meyer et al., Mutation in Disordered Regiond Can Cause Disease by Creating Dileucine Motifs. Cell, 2018; 175: 239–253. 124.XZ Rong et al., Molecular Mechanisms of Tyrosine Kinase Inhibitor Resistance Induced by Membranou/Cytoplasmic/Nuclear Translocation of Epidermal Growth Factor Receptor. Journal of Thoracic Oncology, 2019; 10: 1766–1783. 125.SC Wang et al., Cytoplasmic/nuclear shuttling and tumor progression. Annals of The New York Academy of Sciences, 2005; 1059: 11–15. 126.K Dittamann et al., New roles for nuclear EGFR in regulating the sterility and translation of mRNA associated with vEGF signaling. PLoS One, 2017; 12: e0189087. 127.H Wei et al., Inhibition of EGFR shuttling decreases irradiation resistance in HeLa cells. Folia Histochemistry and Cytobiology, 2017; 5: 43–51. 128.XT Lin et al., Targeting autophagy potentiates antitumor activity of Met-TKIs against Met-amplified gastric cancer. Cell Death and Disease, 2019; 10: 139. 129.Y Zou et al., The autophagy inhibitor chloroquine overcomes the innate resistance of wild-type EGFR non-small-cell lung cancer cells to erlotinib. Journal of Thoracic Oncology, 2013; 8(6): 693-702. 130.WH Dragowska et al., Induction of autophagy is an early response to gefitinib and a potential therapeutic target in breast cancer. PLoS One, 2013; ;8(10): e76503. 131.Y Sakuma et al., Enhanced autophagy is required for survival in EGFR-independent EGFR-mutant lung adenocarcinoma cells. Laboratory Investigation, 2013; 93: 1137–1146. 132.C Chen et al., The WW domain containing E3 ubiquitin protein ligase 1 upregulates ErbB2 and EGFR through RING finger protein 11. Oncogene, 2008; 27: 6845–6855. 133.Y Li et al., WW domain containing E3 ubiquitin protein ligase 1 targets the full-length ErbB4 for ubiquitin-mediated degradation in breast cancer. Oncogene, 2009; 28: 2948–2958. 134.N Sugeno et al., Lys-63-linked Ubiquitination by E3 Ubiquitin Ligase Nedd4-1 Facilitates Endosomal Sequestration of Internalized α-Synuclein. The journal of Biological Chemistry, 2014; 289(26): 18137–18151. 135.M Yamauchi et al., Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma. PLoS ONE, 2012; 7: e43923. 136.F Nazio et al., Fine-tuning of ULK1 mRNA and protein levels is required for autophagy oscillation. Journal of Cell Biology, 2016; 215(6): 841–856. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78427 | - |
| dc.description.abstract | 表皮生長因子接受器(Epidermal Growth Factor Receptor,EGFR)為目前癌症治療常見之標靶癌蛋白。非小細胞肺癌(Non-Small Cell Lung Cancer, NSCLC)病人當其EGFR具有活化性突變, 如L858R及deletion at exon19, 以酪胺酸激酶抑制劑(Tyrosine Kinase Inhibitor,TKI)進行標靶治療,可有效抑制癌細胞生長,但時常伴隨第二個EGFR突變點(Secondary Mutation, T790M)的產生,導致病人於投藥後一年內產生抗藥性並復發腫瘤。EGFR於細胞中扮演相當重要的角色,包括調節細胞生長、存活、移動以及分化等能力,EGFR接受表皮生長因子(EGF)刺激而活化,並藉由形成二聚體,進而使磷酸酶功能活化並促進自身之酪氨酸磷酸化,最終啟動下游訊號傳遞路徑並影響細胞生理功能。T790M突變為抗藥性之EGFR亞型,其蛋白結構因突變而受到改變,推測與其交互作用之蛋白與訊息傳遞路徑將亦受影響。為了探討藉由T790M發生所改變的細胞生理特性並了解調節機轉,如細胞增生較緩慢以及對標靶治療產生抗藥性等,本研究利用兩對具不同EGFR突變亞型之NSCLC細胞株作為蛋白交互作用實驗模型,包含對TKI敏感與抗藥性之PC9 (Del19), H3255 (L858R), CL68 (Del19-T790M)與H1975 (L858R-T790M),並利用親和性純化策略與質譜技術(Affinity Purification Mass Spectrometry, AP-MS),鑑定出不同EGFR突變亞型之蛋白交互作用(Protein-Protein Interactions, PPIs)。此利用質譜分析技術探討蛋白間之交互作用、生物特性與關聯性之策略,則被稱之為交互作用體(Interactome)。
接著再利用與控制組進行量化上的比較,以及與非專一性結合蛋白資料庫進行比對篩選,共可提取出189個可信度較高的EGFR交互作用蛋白。ERBB2、JAK1、SHC1、EPHA2與NOTCH3等蛋白,可同時於四個實驗細胞株中被鑑定到,這些蛋白大多皆參與EGFR調控細胞傳遞訊息之路徑;除此之外,同時也可鑑定到與特定EGFR突變亞型具專一交互作用之蛋白,如AXL、SNX12與SMURF2僅出現在PC9 (Del19)細胞株當中,以及EHD1、SHC4與MTCH1則僅可於CL68 (EGFR-T790M)細胞株中被鑑定到。進一步的生物資訊分析結果可顯示EGFR交互作用蛋白之功能與調控路徑,於TKI敏感之細胞株當中(PC9與H3255),其交互作用蛋白多參與於PI3K-AKT signaling與adhesion junction,呼應活化之EGFR (Activated EGFR)普遍所調控之細胞生理現象;細胞內控制蛋白質運輸、位置與分解功能之相關調控路徑,如內噬作用(endocytosis)、胞內體或囊泡運輸(endosomal/ vacuolar pathway)以及自噬作用等,其參與調控路徑之蛋白多可於抗藥性肺癌細胞株中被鑑定到,此生物資訊分析結果強調,EGFR T790M突變其交互作用蛋白具有較多樣性的細胞組成與較活躍的細胞內運輸機制,同時也暗示具T790M突變之EGFR於細胞內之蛋白表現量與活性與此運輸機制有著密切關連。後續生物驗證顯示,經Gefitinib處理過後之NSCLC細胞株樣本,利用免疫螢光染色與蛋白質轉漬法進行分析,於抗藥性細胞株中可誘導自噬作用(Autophagy)活化,並進一步分解T790M突變亞型之EGFRs;反之,若以抑制劑阻斷自噬作用後,則可有效抑制自噬作用活化、減緩EGFR分解同時有效降低細胞增生能力,推測抗藥性細胞藉由自噬作用作為抵抗藥物治療之防禦機轉。而TKI敏感性之NSCLC細胞株於Gefitinib之作用下,Rab7可藉由泛素(ubiquitin)修飾調控其活性,並介導晚期包內體(late endosome)之運輸,將EGFR輸送至細胞膜周圍進行回流(recycling)作用,藉此機制降低EGFR受到TKI之抑制,同時維持EGFR於細胞內之含量。藉此研究結果可知,具T790M EGFR突變亞型之非小型肺癌細胞,可利用自噬作用維持細胞存活,並同時抵抗標靶藥物的治療,因此TKI治療合併抑制自噬作用可作為未來肺癌治療的新方向。藉由AP-MS策略分析EGFR突變亞型之交互作用蛋白,可用於了解不同突變亞型如何影響細胞內訊息傳遞與改變調控路徑,此研究結果將可提供未來藥物開發與癌症治療上新穎的方向與策略。 | zh_TW |
| dc.description.abstract | Epidermal growth factor receptor (EGFR) is one of the most popular oncoproteins for targeted cancer therapy. Activating mutations (L858R, deletion at exon 19) on EGFR are susceptible to therapy by tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) patients, yet resistance to TKI develops within one year mainly due to secondary mutation (T790M) of EGFR. EGFR regulates cancer pathogenesis by homo-/hetero-dimerization with EGFR family members, followed by complex interactions to recruit downstream associated proteins to subsequently activate signaling cascades. Thus, it is intriguing to study whether the oncogenic T790M mutation may recruit different interacting partners and alter the downstream signaling. To study the alternated cellular features leading by T790M, such as slower cell proliferation and resistant to target therapy, affinity purification coupled mass spectrometry (AP-MS) was applied to map the protein-protein interactions (PPIs) of different mutant EGFR. Two pairs of NSCLC cell lines with primary and secondary EGFR mutations, PC9 (Del19) and CL68 (Del19-T790M), as well as H3255 (L858R) and H1975 (L858R-T790M), were used as TKI-sensitive and -resistant NSCLC models.
The confident EGFR interactors were filtered by quantitative comparison with IgG control and non-specific binding proteins were systematically eliminated using contaminant frequency extracted from databases. The results reveals total of 189 EGFR interacting proteins, including ERBB2, JAK1, SHC1, EPHA2 and NOTCH3 known to involve in EGFR signaling pathway and commonly identified in four interactomes. Comparison between the NSCLC cell lines harboring primary- or secondary-mutation revealed EGFR subtype-specific interacting protein, such as AXL/ SNX12/ SMURF2 in PC9 (Del19) and EHD1/ SHC4/ MTCH1 in CL68 (Del19-T790M). Pathway enrichment analysis of EGFR interactors showed that PI3K-AKT signaling and adhesion junction were mapped in TKI-sensitive models (PC9 and H3255), presenting general signal regulation of activated EGFR. Functional annotation and pathway mapping reveals significant enrichment in endocytosis, endosomal/ vacuolar pathway and autophagy, in TKI-resistant EGFR interactomes, suggesting the more dynamic intracellular trafficking of protein. These results implied EGFR interactors of T790M-containing subtype may mediate mutant EGFR level and activity via endocytic trafficking. Biological validation by immunofluorescence and immunoblotting revealed that gefitinib induced autophagic activation and mediated EGFR degradation in T790M acquired TKI-resistant cells. We further evaluate synergetic effect by combined treatment of gefitinib and autophagy inhibitors. The inhibitors of autophagy dramatically suppressed the activation of autophagy, degradation of EGFR and cell proliferation in TKI-resistant cells. In addition, gefitinib treatment induced ubiquitination of Rab7 and regulated late endosome to translocate EGFRs to the cell periphery in TKI-sensitive cells, suggesting that endosomal recycling of activated EGFRs through ubiquitylated Rab7 was utilized by TKI-sensitive NSCLC cells to protect EGFRs from TKI blockage and sustain EGFR level. These finding suggested that autophagy may provide survival advantage to induce resistance to TKI inhibition in NSCLC cells bearing EGFR-T790M, and the combination of gefitinib with autophagy inhibitors may be a promising strategy to restore the TKI sensitivity in lung cancer treatment. In summary, the characterization of PPI of mutant EGFR provide insight on its association with EGFR internalization and trafficking and suggest novel therapeutic strategy to manage drug resistance in NSCLC. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:56:26Z (GMT). No. of bitstreams: 1 ntu-109-D04b48002-1.pdf: 10182786 bytes, checksum: 35f27f981effe88970cf3686fe303dbd (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………….…….……….…… i
中文摘要…………………………………………………………….…………………. ii Abstract …………………………………………………………..……………….….... iv 目錄...….…………………………………………………………….……….......……. vi 圖目錄…………………………………………………………….………….............. viii 表目錄……………………………………………………………….………....…….... xi 1. Introduction ……………………………………………….……………..………... 1 1.1 Lung Cancer and Epidermal Growth Factor Receptor (EGFR) ...……….…..... 1 1.2 EGFR Mutation and TKI-Resistance………………………………………...... 2 1.3 Affinity Purification Coupled Mass Spectrometry (AP-MS) and Protein-protein Interaction Study …………………………………….……………………………. 5 1.4 Thesis Objective ……………………………...……………...……..…………. 7 2. Materials and Methods ……………………….………………….………………. 8 2. 1 Cell Culture ………………….………..………………..…………………... 8 2.2 Reagents and Antibodies .……………………………………………………... 9 2.3 EGFR Complexes Pull-down by Immuno-precipitation (IP) ….……..........… 10 2.4 Protein Digestion and Peptide Processing ………….……………….......….... 11 2.5 Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) ……..… 12 2.6 Database search and quantification …......…………………………..……..… 12 2.7 Non-specific Binding Exclusion ………..……………………………..…..… 13 2.8 EGFR Interactome Data Analysis ………………..………………………..… 13 2.9 Western Blotting Analysis ……..…………………………………………...... 14 2.10 Co-immunoprecipitation ……………………………………………..…..… 15 2.11 Immunofluorescence and Confocal Microscopy ………………….………... 15 2.12 Subcellular Fractionation by High-speed Centrifugation …………………... 17 2.13 MTS Cell Proliferation Assay ……………………………………………… 17 2.14 Statistical Analysis …………………………………………………………. 18 3. Result and discussion …………………………………….……………………...… 19 3.1 The AP-MS of EGFR interactome in TKI-sensitive and -resistant NSCLC cells …………………………………………………………….…………...…… 19 3.2 Elimination of non-specific interactors in AP-MS-derived EGFR interactome ………………………………………………..………………..……. 20 3.3 Network construction and bioinformatics analysis of EGFR interactomes indicated vigorous protein translocation in T790M-acquired resistant NSCLC cells ………………………………………………………….……………...…… 24 3.4 Characterization of EGFR localization in TKI-sensitive and -resistant NSCLC cells ………………………………………….…………………………………... 28 3.5 Mutant EGFR trafficking induced by therapeutic molecule - tyrosine kinase inhibitor ……………………………………………..………………………..….. 30 3.6 Autophagy activation induced by gefitinib in T790M-acquired resistant NSCLC cells ………………………………………………….…………………………... 33 3.7 Inhibition of autophagy recover the TKI sensitivity in T790M-acquired resistant NSCLC ……………………………………………..……………………….…… 35 3.8 Effect of gefitinib on Rab7-mediated endosomal transportation in TKI-sensitive NSCLC ………………………………………………………..………….……… 38 3.9 NEDD4L indicates a regulatory role in autophagy-mediated EGFR degradation …………………………………………..……………..……………. 40 4. Conclusion ……………………………………...…..……………………………… 43 Reference …………………………………………………….………………….…….. 49 Appendix …………………………………………………….…………………...….... 99 | |
| dc.language.iso | en | |
| dc.subject | 交互作用體 | zh_TW |
| dc.subject | 自噬作用 | zh_TW |
| dc.subject | 內吞作用 | zh_TW |
| dc.subject | 酪胺酸?抑制劑抗藥性 | zh_TW |
| dc.subject | 體細胞突變 | zh_TW |
| dc.subject | 親和性純化策略與質譜 | zh_TW |
| dc.subject | 表皮生長因子接受器 | zh_TW |
| dc.subject | Endocytic trafficking | en |
| dc.subject | TKI resistance | en |
| dc.subject | Autophagy | en |
| dc.subject | EGFR Interactome | en |
| dc.subject | EGFR mutation | en |
| dc.subject | Affinity purification coupled mass spectrometry | en |
| dc.title | 從表皮生長因子接受器蛋白交互作用體研究肺腺癌抗藥性機轉與調控路徑 | zh_TW |
| dc.title | EGFR Interactome Reveals Multiple Pathways and Mechanism of Drug Resistance in Non-Small Cell Lung Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳玉如(Yu-Ju Chen),游佳融(Chia-Jung Yu),俞松良(Sung-Liang Yu),施金元(Jin-Yuan Shih) | |
| dc.subject.keyword | 表皮生長因子接受器,交互作用體,親和性純化策略與質譜,體細胞突變,酪胺酸?抑制劑抗藥性,內吞作用,自噬作用, | zh_TW |
| dc.subject.keyword | EGFR Interactome,Affinity purification coupled mass spectrometry,EGFR mutation,TKI resistance,Endocytic trafficking,Autophagy, | en |
| dc.relation.page | 132 | |
| dc.identifier.doi | 10.6342/NTU202000272 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-21 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 基因體與系統生物學學位學程 | zh_TW |
| dc.date.embargo-lift | 2025-03-03 | - |
| 顯示於系所單位: | 基因體與系統生物學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-D04b48002-1.pdf 未授權公開取用 | 9.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
