Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78414
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙本秀
dc.contributor.authorBor-Lin Huangen
dc.contributor.author黃柏霖zh_TW
dc.date.accessioned2021-07-11T14:55:45Z-
dc.date.available2025-03-06
dc.date.copyright2020-04-29
dc.date.issued2020
dc.date.submitted2020-04-24
dc.identifier.citation1 Welfare, M. o. H. a. 2018 Cause of Death Statistics. (2019).
2 Organization, W. H. World Health Statistics 2018: Monitoring health for the SDGs. (2018)
3 Clément, M. et al. Vascular Smooth Muscle Cell Plasticity and Autophagy in Dissecting Aortic Aneurysms. Arteriosclerosis, thrombosis, and vascular biology 39, 1149-1159 (2019)
4 Touyz, R. M. et al. Vascular smooth muscle contraction in hypertension. Cardiovascular Research 114, 529-539 (2018)
5 Frismantiene, A., Philippova, M., Erne, P. Resink, T. J. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal 52, 48-64 (2018)
6 Ahmed, S. Warren, D. T. Vascular smooth muscle cell contractile function and mechanotransduction. Vessel Plus 2, 36 (2018)
7 Singh, C., Wong, C. S. Wang, X. Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries. J Funct Biomater 6, 500-525 (2015)
8 Beamish, J. A., He, P., Kottke-Marchant, K. Marchant, R. E. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng Part B Rev 16, 467-491 (2010)
9 Yassine, N. M., Shahram, J. T. Body, S. C. Pathogenic Mechanisms of Bicuspid Aortic Valve Aortopathy. Front Physiol 8, 687 (2017)
10 Lacolley, P., Regnault, V. Avolio, A. P. Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovasc Res 114, 513-528 (2018)
11 Li, S. H., Sims, S., Jiao, Y., Chow, L. H. Pickering, J. G. Evidence from a novel human cell clone that adult vascular smooth muscle cells can convert reversibly between noncontractile and contractile phenotypes. Circulation Research 85, 338-348 (1999)
12 Li, X. et al. Vascular smooth muscle cells grown on Matrigel. A model of the contractile phenotype with decreased activation of mitogen-activated protein kinase. The Journal of biological chemistry 269, 19653-19658 (1994)
13 Thyberg, J. Hultgardh-Nilsson, A. Fibronectin and the basement membrane components laminin and collagen type IV influence the phenotypic properties of subcultured rat aortic smooth muscle cells differently. Cell and tissue research 276, 263-271 (1994)
14 Qiu, J. et al. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. J R Soc Interface 11, 20130852 (2014)
15 Wang, Z. et al. Geometric anisotropy on biomaterials surface for vascular scaffold design: engineering and biological advances. Journal of Physics: Materials 2, 032003 (2019)
16 Amiel, D., Frank, C., Harwood, F., Fronek, J. Akeson, W. Tendons and ligaments: a morphological and biochemical comparison. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 1, 257-265 (1984)
17 Yi, B. et al. Stiffness of Aligned Fibers Regulates the Phenotypic Expression of Vascular Smooth Muscle Cells. ACS Applied Materials Interfaces 11, 6867-6880 (2019)
18 Tay, C. Y. et al. Bio-inspired micropatterned hydrogel to direct and deconstruct hierarchical processing of geometry-force signals by human mesenchymal stem cells during smooth muscle cell differentiation. NPG Asia Materials 7, e199-e199 (2015)
19 Williams, C. et al. The use of micropatterning to control smooth muscle myosin heavy chain expression and limit the response to transforming growth factor beta1 in vascular smooth muscle cells. Biomaterials 32, 410-418 (2011)
20 Chang, S. et al. Phenotypic modulation of primary vascular smooth muscle cells by short-term culture on micropatterned substrate. PLoS One 9, e88089 (2014)
21 Chaterji, S. et al. Synergistic effects of matrix nanotopography and stiffness on vascular smooth muscle cell function. Tissue Eng Part A 20, 2115-2126 (2014)
22 Tijore, A., Behr, J. M., Irvine, S. A., Baisane, V. Venkatraman, S. Bioprinted gelatin hydrogel platform promotes smooth muscle cell contractile phenotype maintenance. Biomed Microdevices 20, 32 (2018)
23 Fritze, O. et al. Age-related changes in the elastic tissue of the human aorta. J Vasc Res 49, 77-86 (2012)
24 Sugita, S. Matsumoto, T. Multiphoton microscopy observations of 3D elastin and collagen fiber microstructure changes during pressurization in aortic media. Biomech Model Mechanobiol 16, 763-773 (2017)
25 Humphrey, J. D., Schwartz, M. A., Tellides, G. Milewicz, D. M. Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ Res 116, 1448-1461 (2015)
26 Liu, W. et al. Generation of electrospun nanofibers with controllable degrees of crimping through a simple, plasticizer-based treatment. Adv Mater 27, 2583-2588 (2015)
27 Grace Chao, P. H., Hsu, H. Y. Tseng, H. Y. Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype. Biofabrication 6, 035008 (2014)
28 Surrao, D. C., Fan, J. C., Waldman, S. D. Amsden, B. G. A crimp-like microarchitecture improves tissue production in fibrous ligament scaffolds in response to mechanical stimuli. Acta Biomater 8, 3704-3713 (2012)
29 Baptista, D., Teixeira, L., van Blitterswijk, C., Giselbrecht, S. Truckenmuller, R. Overlooked? Underestimated? Effects of Substrate Curvature on Cell Behavior. Trends Biotechnol 37, 838-854 (2019)
30 Callens, S. J. P., Uyttendaele, R. J. C., Fratila-Apachitei, L. E. Zadpoor, A. A. Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials 232, 119739 (2020)
31 Assoian, R. K., Bade, N. D., Cameron, C. V. Stebe, K. J. Cellular sensing of micron-scale curvature: a frontier in understanding the microenvironment. Open Biol 9, 190155 (2019)
32 Bade, N. D., Xu, T., Kamien, R. D., Assoian, R. K. Stebe, K. J. Gaussian Curvature Directs Stress Fiber Orientation and Cell Migration. Biophys J 114, 1467-1476 (2018)
33 Lee, J., Abdeen, A. A., Wycislo, K. L., Fan, T. M. Kilian, K. A. Interfacial geometry dictates cancer cell tumorigenicity. Nat Mater 15, 856-862 (2016)
34 Werner, M. et al. Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation via Altered Attachment Morphology and Nuclear Deformation. Adv Sci (Weinh) 4, 1600347 (2017)
35 Li, Z. et al. Integrin β1 activation by micro-scale curvature promotes pro-angiogenic secretion of human mesenchymal stem cells. Journal of Materials Chemistry B 5, 7415-7425 (2017)
36 Tojkander, S., Gateva, G. Lappalainen, P. Actin stress fibers--assembly, dynamics and biological roles. J Cell Sci 125, 1855-1864 (2012)
37 Ladoux, B., Mege, R. M. Trepat, X. Front-Rear Polarization by Mechanical Cues: From Single Cells to Tissues. Trends Cell Biol 26, 420-433 (2016)
38 Vogel, V. Sheetz, M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7, 265-275 (2006)
39 Parsons, J. T., Horwitz, A. R. Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11, 633-643 (2010)
40 Burridge, K. Wennerberg, K. Rho and Rac take center stage. Cell 116, 167-179 (2004)
41 Versaevel, M., Grevesse, T. Gabriele, S. Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun 3, 671 (2012)
42 Chaudhuri, P. K., Pan, C. Q., Low, B. C. Lim, C. T. Topography induces differential sensitivity on cancer cell proliferation via Rho-ROCK-Myosin contractility. Sci Rep 6, 19672 (2016)
43 Thakar, R. G. et al. Cell-shape regulation of smooth muscle cell proliferation. Biophys J 96, 3423-3432 (2009)
44 James, J., Goluch, E. D., Hu, H., Liu, C. Mrksich, M. Subcellular curvature at the perimeter of micropatterned cells influences lamellipodial distribution and cell polarity. Cell Motil Cytoskeleton 65, 841-852 (2008)
45 Murugesan, S. et al. Formin-generated actomyosin arcs propel T cell receptor microcluster movement at the immune synapse. J Cell Biol 215, 383-399 (2016)
46 Burnette, D. T. et al. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. J Cell Biol 205, 83-96 (2014)
47 Tojkander, S. et al. A molecular pathway for myosin II recruitment to stress fibers. Curr Biol 21, 539-550 (2011)
48 Molinie, N. et al. Cortical branched actin determines cell cycle progression. Cell Res 29, 432-445 (2019)
49 Alisafaei, F., Jokhun, D. S., Shivashankar, G. V. Shenoy, V. B. Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proceedings of the National Academy of Sciences 116, 13200 (2019)
50 Pieuchot, L. et al. Curvotaxis directs cell migration through cell-scale curvature landscapes. Nat Commun 9, 3995 (2018)
51 Heo, S.-J., Cosgrove, B. D., Dai, E. N. Mauck, R. L. Mechano-adaptation of the stem cell nucleus. Nucleus 9, 9-19 (2018)
52 Wang, Y., Nagarajan, M., Uhler, C. Shivashankar, G. V. Orientation and repositioning of chromosomes correlate with cell geometry-dependent gene expression.
53 Jain, N., Iyer, K. V., Kumar, A. Shivashankar, G. V. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proceedings of the National Academy of Sciences 110, 11349 (2013)
54 Qin, D., Xia, Y. Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat Protoc 5, 491-502 (2010)
55 Szymanski, J. M. Feinberg, A. W. Fabrication of freestanding alginate microfibers and microstructures for tissue engineering applications. Biofabrication 6, 024104 (2014)
56 Kang, G., Lee, J. H., Lee, C. S. Nam, Y. Agarose microwell based neuronal micro-circuit arrays on microelectrode arrays for high throughput drug testing. Lab Chip 9, 3236-3242 (2009)
57 Lammerding, J. et al. Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J Cell Biol 170, 781-791 (2005)
58 Diaz, G., Zuccarelli, A., Pelligra, I. Ghiani, A. Elliptic fourier analysis of cell and nuclear shapes. Computers and biomedical research, an international journal 22, 405-414 (1989)
59 Horzum, U., Ozdil, B. Pesen-Okvur, D. Step-by-step quantitative analysis of focal adhesions. MethodsX 1, 56-59 (2014)
60 Rao, R. S., Miano, J. M., Olson, E. N. Seidel, C. L. The A10 cell line: a model for neonatal, neointimal, or differentiated vascular smooth muscle cells? Cardiovascular Research 36, 118-126 (1997)
61 Kennedy, E. et al. Embryonic rat vascular smooth muscle cells revisited - a model for neonatal, neointimal SMC or differentiated vascular stem cells? Vascular Cell 6, 6 (2014)
62 Huang, B.-L., Huang, C.-H., Assoian, R. K. Chao, P. G. in SB3C. (2019)
63 Thery, M. Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 123, 4201-4213 (2010)
64 Chen, T. et al. Large-scale curvature sensing by directional actin flow drives cellular migration mode switching. Nature Physics 15, 393-402 (2019)
65 Hotulainen, P. Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. The Journal of cell biology 173, 383-394 (2006)
66 Hung, W. C. et al. Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J Cell Biol 202, 807-824 (2013)
67 Mih, J. D., Marinkovic, A., Liu, F., Sharif, A. S. Tschumperlin, D. J. Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. Journal of Cell Science 125, 5974 (2012)
68 Franchi, M., Trirè, A., Quaranta, M., Orsini, E. Ottani, V. Collagen structure of tendon relates to function. ScientificWorldJournal 7, 404-420 (2007)
69 Sokolis, D. P. Sassani, S. G. Microstructure-based constitutive modeling for the large intestine validated by histological observations. Journal of the Mechanical Behavior of Biomedical Materials 21, 149-166 (2013)
70 Murakumo, M. et al. Three-dimensional arrangement of collagen and elastin fibers in the human urinary bladder: a scanning electron microscopic study. The Journal of urology
71 Mukherjee, K. et al. Cytochrome P450 1B1 Is Critical for Neointimal Growth in Wire‐Injured Carotid Artery of Male Mice. Journal of the American Heart Association 7, e010065 (2018)
72 Hynes, R. O. Integrins: Bidirectional, Allosteric Signaling Machines. Cell 110, 673-687 (2002)
73 Clyman, R. I., McDonald, K. A. Kramer, R. H. Integrin receptors on aortic smooth muscle cells mediate adhesion to fibronectin, laminin, and collagen. Circulation Research 67, 175-186 (1990)
74 Chen, H. et al. From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation. Nanoscale 11, 14312-14321 (2019)
75 Crowder, S. W., Leonardo, V., Whittaker, T., Papathanasiou, P. Stevens, M. M. Material Cues as Potent Regulators of Epigenetics and Stem Cell Function. Cell Stem Cell 18, 39-52 (2016)
76 Ruprecht, V. et al. How cells respond to environmental cues - insights from bio-functionalized substrates. J Cell Sci 130, 51-61 (2017)
77 Geiger, B., Spatz, J. P. Bershadsky, A. D. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10, 21-33 (2009)
78 Chin-Hsun Huang, P.-h. G. C. Effect of Crimp Morphology on Cell Traction Force. (2019)
79 Vicente-Manzanares, M. Horwitz, A. R. Adhesion dynamics at a glance. J Cell Sci 124, 3923-3927 (2011)
80 Schiller, H. B. Fassler, R. Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep 14, 509-519 (2013)
81 Hotulainen, P. Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol 173, 383-394 (2006)
82 Henson, J. H. et al. Arp2/3 complex inhibition radically alters lamellipodial actin architecture, suspended cell shape, and the cell spreading process. Molecular biology of the cell 26, 887-900 (2015)
83 Lee, S., Kassianidou, E. Kumar, S. Actomyosin stress fiber subtypes have unique viscoelastic properties and roles in tension generation. Molecular biology of the cell 29, 1992-2004 (2018)
84 Breitsprecher, D. Goode, B. L. Formins at a glance. J Cell Sci 126, 1-7 (2013)
85 Stephens, A. D. et al. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Molecular biology of the cell 29, 220-233 (2018)
86 Koppaka, V., Lakshman, N. Petroll, W. M. Effect of HDAC Inhibitors on Corneal Keratocyte Mechanical Phenotypes in 3-D Collagen Matrices. Molecular Vision 21, 502-514 (2015)
87 Damodaran, K. et al. Compressive force induces reversible chromatin condensation and cell geometry-dependent transcriptional response. Molecular biology of the cell 29, 3039-3051 (2018)
88 Li, Y. et al. Biophysical regulation of histone acetylation in mesenchymal stem cells. Biophysical journal 100, 1902-1909 (2011)
89 Ihalainen, T. O. et al. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nat Mater 14, 1252-1261 (2015)
90 Nagayama, K., Hamaji, Y., Sato, Y. Matsumoto, T. Mechanical trapping of the nucleus on micropillared surfaces inhibits the proliferation of vascular smooth muscle cells but not cervical cancer HeLa cells. J Biomech 48, 1796-1803 (2015)
91 Li, Q., Kumar, A., Makhija, E. Shivashankar, G. V. The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry. Biomaterials 35, 961-969 (2014)
92 Zhang, M. et al. HDAC6 Regulates the MRTF-A/SRF Axis and Vascular Smooth Muscle Cell Plasticity. JACC: Basic to Translational Science 3, 782 (2018)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78414-
dc.description.abstract彈性動脈組織內富含捲曲的細胞外間質纖維束,這些纖維束會控制組織的力學性質,組織中的血管平滑肌細胞也會沿著波浪狀纖維生長,並調節組織的恆定。隨著人體的老化、疾病以及損傷,此類細胞外間質結構會受到破壞,並伴隨著血管平滑肌細的表現型的轉變。本研究發展微溝槽系統來模仿健康的組織結構,並假設彎曲結構可以調控血管平滑肌細胞表現型。在波浪狀結構中,細胞擁有較高的收縮蛋白表現量與較低的細胞生長率,顯示出血管平滑肌細胞的表現型轉變;同時,波浪狀細胞具有似偽足結構,並藉由肌動蛋白的收縮力使細胞核形變,藉此抑制細胞增生並改變染色質結構。本研究提供了調控血管平滑肌細胞表現型與治療心血管疾病潛在目標的新觀點。zh_TW
dc.description.abstractElastic arteries are rich in tortuous ECM bundles that contribute to tissue mechanics. Vascular smooth muscle cells (VSMCs) reside in the wavy structure, follow the wavy morphology, and regulate tissue homeostasis. During aging, disease, and injury, the ECM structure deteriorates, which is accompanied by phenotypic switch of VSMCs. In this study, we developed a microgroove system to mimic the wavy structures in healthy tissues and hypothesized that waviness regulates VSMC phenotype. Enhanced contractile apparatus expression and suppressed proliferation in the wavy cells suggested the improvement of contractile VSMC phenotype. We also described the lamellipodia-like structures in the wavy cells. The structures were found to negatively regulate proliferation and change chromatin organization by compressing and deforming the nuclei via actin contractility. Our study provides new insights in the regulation of VSMC phenotype and potential target for treatment of cardiovascular diseases.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:55:45Z (GMT). No. of bitstreams: 1
ntu-109-R06548034-1.pdf: 4906658 bytes, checksum: 6cb014f4226910a1f498e05e54d2ad29 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 II
中文摘要 III
Abstract IV
Contents V
List of Figures VII
List of Tables VIII
Chapter 1 Introduction 1
1.1 Phenotypic switch of vascular smooth muscle cells 1
1.2 Effects of substrate curvature on cell behaviors 2
1.3 Role of actin networks in cellular detection and response to the microenvironment 3
1.4 Aims of study 5
Chapter 2 Materials and Methods 6
2.1 Cell culture 6
2.2 Microfabrication 6
2.3 Agarose microgroove casting 7
2.4 EdU proliferation assay 11
2.5 Immunofluorescence staining and microscopy 11
2.6 Microscopy 13
2.7 Inhibitor treatment 13
2.8 Image analysis 15
2.9 Statistics 17
Chapter 3 Results 19
3.1 Microfabrication techniques produced straight and wavy cell shapes. 19
3.2 Waviness regulated VSMC proliferation and αSMA expression. 19
3.3 Wavy structures changed focal adhesion, actin, and nuclear organizations. 25
3.4 Actin nucleators stabilized lamellipodia-like structure and regulated lateral cell expansion in wavy cells. 31
3.5 Myosin II did not regulate the expansion of lamellipodia-like structure. 35
3.6 Rac1-Arp2/3 complex regulated the expansion of lamellipodia-like structure. 38
3.7 Contractility deformed nuclear shape and cell proliferation of wavy cells. 42
3.8 Actin contractility remodeled nuclear deformation in wavy cells via heterochromatin organization. 47
Chapter 4 Discussion 53
4.1 Substrate waviness influences VSMC phenotype. 53
4.2 Wavy structures result in uneven focal adhesion distribution. 54
4.3 Wavy cells develop staggered, lamellipodia-like and arcs of actin structures mediated by two distinct groups of regulators. 55
4.4 Actin network controls cell proliferation by exerting contractile force on wavy nuclei. 57
4.5 Actin contractility remodels heterochromatin organization in wavy cells. 59
4.6 Conclusions and future work. 59
Appendix 63
References 66
dc.language.isoen
dc.subject細胞核zh_TW
dc.subject黏著斑zh_TW
dc.subject偽足zh_TW
dc.subject波浪狀zh_TW
dc.subject血管平滑肌細胞zh_TW
dc.subject異染色質zh_TW
dc.subjectheterochromatinen
dc.subjectvascular smooth muscle cellsen
dc.subjectwavinessen
dc.subjectlamellipodiaen
dc.subjectfocal adhesionen
dc.subjectnucleusen
dc.title波浪狀型態調控血管平滑肌細胞之肌動蛋白結構與表現型zh_TW
dc.titleWavy Morphology Regulates Actin Structure and Phenotype in Vascular Smooth Muscle Cellsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee紀雅惠,許聿翔,朱業修
dc.subject.keyword血管平滑肌細胞,波浪狀,偽足,黏著斑,細胞核,異染色質,zh_TW
dc.subject.keywordvascular smooth muscle cells,waviness,lamellipodia,focal adhesion,nucleus,heterochromatin,en
dc.relation.page72
dc.identifier.doi10.6342/NTU202000713
dc.rights.note有償授權
dc.date.accepted2020-04-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
dc.date.embargo-lift2025-03-06-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-R06548034-1.pdf
  未授權公開取用
4.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved