Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78412Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳湘鳳 | |
| dc.contributor.author | Ching-Han Huang | en |
| dc.contributor.author | 黃靖涵 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:55:38Z | - |
| dc.date.available | 2025-06-11 | |
| dc.date.copyright | 2020-07-01 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-05-18 | |
| dc.identifier.citation | Anakal, S., Sandhya, P. (2017). Clinical decision support system for chronic obstructive pulmonary disease using machine learning techniques. Paper presented at the Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 1-5. Appiah, R., Panford, J., Riverson, K. (2015). Implementation of adaptive neuro fuzzy Inference system for malaria diagnosis (case study: kwesimintsim polyclinic). International Journal of Computer Applications, Vol. 115(7), 33-37. doi:10.5120/20166-2284 Arunkumar, N., Mohamed Sirajudeen, K. M. (2011). Approximate entropy based ayurvedic pulse diagnosis for diabetics - a case study. Paper presented at the The 3rd International Conference on Trendz in Information Sciences Computing (TISC2011), Chennai, India, 133-135. Chen, Y., Zhang, L., Zhang, D., Zhang, D. (2011). Computerized wrist pulse signal diagnosis using modified auto-regressive models. J. Med. Syst., Vol. 35(3), 321-328. doi:10.1007/s10916-009-9368-4 Costa, M., Goldberger, A. L., Peng, C.-K. (2002). Multiscale entropy analysis of complex physiologic time series. Physical review letters, Vol. 89(6), 068102. Cvetkovic, D., Übeyli, E. D., Cosic, I. (2008). Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: a pilot study. Digital Signal Processing, Vol. 18(5), 861-874. doi:https://doi.org/10.1016/j.dsp.2007.05.009 Du, Y.-C., Stephanus, A. (2018). Levenberg-marquardt neural network algorithm for degree of arteriovenous fistula stenosis classification using a dual optical photoplethysmography sensor. Sensors (Basel, Switzerland), Vol. 18(7), 2322. doi:10.3390/s18072322 Goyal, K., Agarwal, R. (2017). Pulse based sensor design for wrist pulse signal analysis and health diagnosis. Biomedical Research, Vol. 28(12), 5187-5195. Guo, Q.-L., Wang, K.-Q., Zhang, D.-Y., Li, N.-M. (2008). A wavelet packet based pulse waveform analysis for cholecystitis and nephrotic syndrome diagnosis. Paper presented at the International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, China, 513-517. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Royal Society of London A: mathematical, physical and engineering sciences, Vol. 454(1971), 903-995. Lee, J.-Y., Jang, M., Shin, S.-H. (2017). Study on the depth, rate, shape, and strength of pulse with cardiovascular simulator. Evidence-Based Complementary and Alternative Medicine, Vol. 2017, 1-11. Leonard, P., Beattie, T. F., Addison, P. S., Watson, J. N. (2004). Wavelet analysis of pulse oximeter waveform permits identification of unwell children. Emergency Medicine Journal (EMJ), Vol. 21, 59-60. Liu, L., Li, N., Zuo, W., Zhang, D., Zhang, H. (2013). Multiscale sample entropy analysis of wrist pulse blood flow signal for disease diagnosis. Paper presented at the Intelligent Science and Intelligent Data Engineering, Berlin, Heidelberg, 475-482. Nie, J., Ji, M., Chu, Y., Meng, X., Wang, Y., Zhong, J., Lin, L. (2019). Human pulses reveal health conditions by a piezoelectret sensor via the approximate entropy analysis. Nano Energy, Vol. 58, 528-535. doi:https://doi.org/10.1016/j.nanoen.2019.01.092 Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, Vol. 88(6), 2297-2301. doi:10.1073/pnas.88.6.2297 Rachim, V. P., Li, G., Chung, W.-Y. (2014). Sleep apnea classification using ECG-signal wavelet-PCA features. Bio-Medical Materials and Engineering, Vol. 24(6), 2875-2882. doi:10.3233/BME-141106 Richman, J. S., Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, Vol. 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.H2039 Saad, S. M., Andrew, A. M., Shakaff, A. Y. M., Saad, A. R. M., Kamarudin, A. M. Y., Zakaria, A. (2015). Classifying sources influencing indoor air quality (IAQ) using artificial neural network (ANN). Sensors (Basel, Switzerland), Vol. 15(5), 11665-11684. doi:10.3390/s150511665 Shu, J.-J., Sun, Y. (2007). Developing classification indices for Chinese pulse diagnosis. Complement Ther Med, Vol. 15(3), 190-198. doi:10.1016/j.ctim.2006.06.004 Tang, C. Y., Chung, W. Y., Wong, K. S. (2012). Validation of a novel traditional chinese medicine pulse diagnostic model using an artificial neural network. Evidence-Based Complementary and Alternative Medicine, Vol. 2012, 1-7. doi:10.1155/2012/685094 Teng, X. F., Zhang, Y. T. (2003). Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach. Paper presented at the IEEE Engineering in Medicine and Biology Society, Cancun, Mexico, 3153-3156. Wang, D., Zhang, D., Lu, G. (2016). An optimal pulse system design by multichannel sensors fusion. IEEE Journal of Biomedical and Health Informatics, Vol. 20(2), 450-459. doi:10.1109/JBHI.2015.2392132 Wang, G., Chen, X., Qiao, F.-L., Wu, Z., Huang, N. (2010). On intrinsic mode function. Advances in Adaptive Data Analysis, Vol. 2, 277-293. doi:10.1142/S1793536910000549 Wang, H., Cheng, Y. (2005). A quantitative system for pulse diagnosis in traditional Chinese medicine. Paper presented at the IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 5676-5679. Wang, K., Wang, L., Wang, D., Xu, L. (2005). SVM classification for discriminating cardiovascular disease patients from non-cardiovascular disease controls using pulse waveform variability analysis. Paper presented at the Advances in Artificial Intelligence, Berlin, Heidelberg, 109-119. Wang, L., Zhou, W., Xing, Y., Zhou, X. (2018). A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram. Journal of healthcare engineering, Vol. 2018, 1-9. Wang, N., Yu, Y., Huang, D., Xu, B., Liu, J., Li, T., Xue, L., Shan, Z., Chen, Y., Wang, J. (2015). Pulse diagnosis signals analysis of fatty liver disease and cirrhosis patients by using machine learning. The Scientific World Journal, Vol. 2015, 1-9. Wang, P., Zuo, W., Zhang, D. (2014). A compound pressure signal acquisition system for multichannel wrist pulse signal analysis. IEEE Transactions on Instrumentation and Measurement, Vol. 63(6), 1556-1565. doi:10.1109/tim.2013.2267458 Xu, L., Meng, M. Q. H., Wang, K., Lu, W., Li, N. (2009). Pulse images recognition using fuzzy neural network. Expert Systems with Applications, Vol. 36(2), 3805-3811. doi:https://doi.org/10.1016/j.eswa.2008.02.028 Xu, L., Zhang, D., Wang, K., Wang, L. (2006). Arrhythmic pulses detection using lempel-ziv complexity analysis. EURASIP Journal on Applied Signal Processing, Vol. 2006(1), 1-12. doi:10.1155/asp/2006/18268 Xu, L. S., Meng, M. Q., Wang, K. Q. (2007). Pulse image recognition using fuzzy neural network. Paper presented at the IEEE Engineering in Medicine and Biology Society, Lyon, France, 3148-3151. Xu, L. S., Wang, K. Q., Wang, L. (2005). Pulse waveforms classification based on wavelet network. Paper presented at the IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 4596-4599. Zhang, D.-Y., Zuo, W.-M., Zhang, D., Zhang, H.-Z., Li, N.-M. (2010). Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features. Journal of Biomedical Science and Engineering, Vol. 3(4), 361-366. doi:10.4236/jbise.2010.34050 Zhang, D., Zhang, L., Zhang, D., Zheng, Y. (2008). Wavelet based analysis of doppler ultrasonic wrist-pulse signals. Paper presented at the International Conference on BioMedical Engineering and Informatics, Sanya, China, 539-543. Zhang, Z., Zhang, Y., Yao, L., Song, H., Kos, A. (2018). A sensor-based wrist pulse signal processing and lung cancer recognition. Journal of Biomedical Informatics, Vol. 79, 107-116. doi:https://doi.org/10.1016/j.jbi.2018.01.009 金偉. (2014). 我的脈學探索: 中國中醫藥出版社. 陳建元. (2010). 脈理醫理學 34:〝單脈〞與〝複合脈〞. Retrieved from https://blog.xuite.net/drjychen/twblog/112530830109 黃進明. (2015). 中醫脈診學: 知音出版社. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78412 | - |
| dc.description.abstract | 本研究利用ANSWatch儀器收集了10種脈種,其中包含5種單一脈種以及5種複合脈種,並在訊號處理時綜合8種特徵產生方法,其中包括時(time domain)、頻域(frequency domain)、伽瑪密度方程式(Gamma density function)、希爾伯特黃轉換(Hilbert Huang transform)、近似熵(approximate entropy)、多模態樣本熵(multiscale sample entropy)、小波轉換(wavelet transform)及小波包轉換(wavelet packet transform)來分析量測到的手腕脈搏訊號,並搭配主成分分析(principal component analysis)將冗餘的資訊去除,保留含有重要資訊的特徵。最後,使用類神經網路(artificial neural network)將 10 種脈搏進行分類。 在實驗中,利用類神經網絡對五個模型進行訓練: 模型一使用的數據為利用主成分分析取得含有原始特徵資料的70%的累積變異數資料,模型二使用的數據為利用主成分分析取得含有原始特徵資料的80%的累積變異數資料,模型三使用的數據為利用主成分分析取得含有原始特徵資料的90%的累積變異數資料,模型四使用的數據為利用主成分分析取得含有原始特徵資料的95%的累積變異數資料,而模型五使用的數據為沒有經過主成分分析降維的原始高維度特徵資料。實驗結果顯示,模型一可達到92.8%的平均分類準確率,模型二可達到94.6%的平均分類準確率,模型三可達到97.4%的平均分類準確率,模型四可達到98.2%的平均分類準確率,模型五可達到96.6%的平均分類準確率。實驗結果發現,原始的高維度特徵資料可達到不錯的分類結果,然而透過主成份分析篩選重要特徵能夠再提升分類結果。 本研究提出了高維度特徵方法對中醫脈搏進行分類,實驗結果顯示,本研究的方法分類脈搏能力佳,並且避免了多數研究只適用診斷特殊疾病的模式,預計本結果能有效提升中醫脈診之診斷能力。 | zh_TW |
| dc.description.abstract | This research used ANSWatch device to collect 10 kinds of pulse patterns, including 5 single pulse patterns, and 5 complex pulse patterns. In terms of signal processing, eight feature generation methods were used to analyze the recorded wrist pulse patterns, including time domain, frequency domain, Gamma density function, Hilbert Huang transform (HHT), approximate entropy (ApEn), multiscale sample entropy (Multi-SampEn), wavelet transform (WT), and wavelet packet transform (WPT). Then, principal component analysis (PCA) was used to remove redundant information and retain features with important information. Finally, the 10 pulse patterns were classified using artificial neural network (ANN). In the experiment, five models were trained by ANN: model 1 used the data applying PCA with 70% of cumulative variance, model 2 used the data applying PCA with 80% of cumulative variance, model 3 used the data applying PCA with 90% of cumulative variance, model 4 used the data applying PCA with 95% of cumulative variance, and model 5 used the data with original features without applying PCA. The results showed that model 1 reached 92.8% average accuracy of pulse classification, model 2 reached 94.6% average accuracy of pulse classification, model 3 reached 97.4% average accuracy of pulse classification, model 4 reached 98.2% average accuracy of pulse classification, and model 5 reached 96.6% average accuracy of pulse classification. The results illustrated that the original high-dimensional features achieved good classification results, but through PCA could further improve the results of the experiment. This study proposed a high-dimensional features method to classify traditional Chinese medicine (TCM) pulse patterns. The experimental results showed that the method proposed by this research had better pulse classification ability than other prior research. The results of this research are expected to effectively improve the accuracy of Chinese medicine pulse diagnosis (TCPD). | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:55:38Z (GMT). No. of bitstreams: 1 ntu-109-R06522612-1.pdf: 3169331 bytes, checksum: ab849db47676ecf12e1763fc3d790eaa (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 致謝 I 摘要 II Abstract IV Contents VI List of figures VIII List of tables XI Chapter 1 Introduction 1 1.1 Research background 1 1.2 Research motivation and aim 2 1.3 Organization 5 Chapter 2 Literature review 6 2.1 Non-transform-based feature generation 6 2.2 Transform-based feature generation 13 2.3 Comparison of the prior research and the proposed research 20 2.4 Research outline 21 Chapter 3 Preprocess 22 3.1 Data collection 22 3.2 Baseline drift removal 28 Chapter 4 Feature generation 34 4.1 Time domain 34 4.2 Frequency domain 37 4.3 Gamma density function 42 4.4 Hilbert-Huang transform (HHT) 45 4.5 Approximate entropy (ApEn) 52 4.6 Multiscale sample entropy (Multi-SampEn) 54 4.7 Wavelet transform (WT) 58 4.8 Wavelet packet transform (WPT) 64 Chapter 5 Dimension reduction 69 5.1 Original high dimension feature vector 69 5.2 Principal component analysis (PCA) 74 Chapter 6 Classification 82 6.1 Artificial neural network (ANN) 82 6.2 ANN models 83 Chapter 7 Results and discussion 85 7.1 Classification results of model 1 85 7.2 Classification results of model 2 87 7.3 Classification results of model 3 89 7.4 Classification results of model 4 91 7.5 Classification results of model 5 93 7.6 Comparison 95 Chapter 8 Conclusions and future work 98 8.1 Conclusions 98 8.2 Research limitations 99 8.3 Future work 100 References 101 | |
| dc.language.iso | en | |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 中醫 | zh_TW |
| dc.subject | 脈搏診斷系統 | zh_TW |
| dc.subject | 基線偏移移除 | zh_TW |
| dc.subject | 特徵產生 | zh_TW |
| dc.subject | 主成分分析 | zh_TW |
| dc.subject | Pulse diagnosis system | en |
| dc.subject | Artificial neural network | en |
| dc.subject | Baseline drift removal | en |
| dc.subject | Traditional Chinese medicine | en |
| dc.subject | Principle component analysis | en |
| dc.subject | Feature generation | en |
| dc.title | 中醫脈搏診斷系統之開發 | zh_TW |
| dc.title | Development of a Pulse Diagnosis System for Chinese Medicine | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭浩明,詹魁元 | |
| dc.subject.keyword | 中醫,脈搏診斷系統,基線偏移移除,特徵產生,主成分分析,類神經網路, | zh_TW |
| dc.subject.keyword | Traditional Chinese medicine,Pulse diagnosis system,Baseline drift removal,Feature generation,Principle component analysis,Artificial neural network, | en |
| dc.relation.page | 105 | |
| dc.identifier.doi | 10.6342/NTU201900748 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-05-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-06-11 | - |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-109-R06522612-1.pdf Restricted Access | 3.1 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
