Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78391
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳進庭(Chin-Tin Chen)
dc.contributor.authorYu-Chieh Linen
dc.contributor.author林雨潔zh_TW
dc.date.accessioned2021-07-11T14:54:34Z-
dc.date.available2025-07-17
dc.date.copyright2020-07-17
dc.date.issued2020
dc.date.submitted2020-07-14
dc.identifier.citationGupta, S.C., S. Patchva, and B.B. Aggarwal, Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J, 2013. 15(1): p. 195-218.
Tonnesen, H.H., Solubility, chemical and photochemical stability of curcumin in surfactant solutions - Studies of curcumin and curcuminolds, XXVIII. Pharmazie, 2002. 57(12): p. 820-824.
Priyadarsini, K.I., The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules, 2014. 19(12): p. 20091-20112.
Mazumder, A., et al., Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action. J Med Chem, 1997. 40(19): p. 3057-63.
Jankun, J., et al., Determining whether curcumin degradation/condensation is actually bioactivation (Review). International Journal of Molecular Medicine, 2016. 37(5): p. 1151-1158.
Vollono, L., et al., Potential of Curcumin in Skin Disorders. Nutrients, 2019. 11(9).
Nardo, V.D., et al., Use of Curcumin in Psoriasis. Open Access Maced J Med Sci, 2018. 6(1): p. 218-220.
Varma, S.R., et al., Imiquimod-induced psoriasis-like inflammation in differentiated Human keratinocytes: Its evaluation using curcumin. Eur J Pharmacol, 2017. 813: p. 33-41.
Kang, D., et al., Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie, 2016. 123: p. 73-80.
Kurd, S.K., et al., Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: a prospective clinical trial (vol 58, pg 625, 2008). Journal of the American Academy of Dermatology, 2008. 58(6): p. 1050-1050.
Sharma, S., G.S. Sethi, and A.S. Naura, Curcumin Ameliorates Ovalbumin-Induced Atopic Dermatitis and Blocks the Progression of Atopic March in Mice. Inflammation, 2020. 43(1): p. 358-369.
Bielefeld, K.A., S. Amini-Nik, and B.A. Alman, Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci, 2013. 70(12): p. 2059-81.
Ffrench-Constant, C., et al., Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. J Cell Biol, 1989. 109(2): p. 903-14.
Leask, A. and D.J. Abraham, TGF-beta signaling and the fibrotic response. FASEB J, 2004. 18(7): p. 816-27.
Clark, R.A., Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J Invest Dermatol, 1990. 94(6 Suppl): p. 128S-134S.
Song, K., et al., Curcumin suppresses TGF-beta signaling by inhibition of TGIF degradation in scleroderma fibroblasts. Biochem Biophys Res Commun, 2011. 411(4): p. 821-5.
Alman, B.A., S.P. Kelley, and D. Nam, Heal thyself: using endogenous regeneration to repair bone. Tissue Eng Part B Rev, 2011. 17(6): p. 431-6.
Gopinath, D., et al., Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials, 2004. 25(10): p. 1911-7.
Zhang, Y.E., Non-Smad pathways in TGF-beta signaling. Cell Res, 2009. 19(1): p. 128-39.
Han, G., et al., Smad7-induced beta-catenin degradation alters epidermal appendage development. Dev Cell, 2006. 11(3): p. 301-12.
Puolakkainen, P.A., et al., Acceleration of wound healing in aged rats by topical application of transforming growth factor-beta(1). Wound Repair Regen, 1995. 3(3): p. 330-9.
Kim, J., et al., Therapeutic effect of topical application of curcumin during treatment of radiation burns in a mini-pig model. J Vet Sci, 2016. 17(4): p. 435-444.
Mohammadi, Z., et al., The effect of chrysin-curcumin-loaded nanofibres on the wound-healing process in male rats. Artif Cells Nanomed Biotechnol, 2019. 47(1): p. 1642-1652.
Basnet, P. and N. Skalko-Basnet, Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules, 2011. 16(6): p. 4567-98.
Prasad, S., A.K. Tyagi, and B.B. Aggarwal, Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat, 2014. 46(1): p. 2-18.
Hassaninasab, A., et al., Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proc Natl Acad Sci U S A, 2011. 108(16): p. 6615-20.
Xu, X.Y., et al., Bioactivity, Health Benefits, and Related Molecular Mechanisms of Curcumin: Current Progress, Challenges, and Perspectives. Nutrients, 2018. 10(10).
Garg, A.X., et al., Bioavailability of oral curcumin. CMAJ, 2019. 191(15): p. E428.
Han, H.K., The effects of black pepper on the intestinal absorption and hepatic metabolism of drugs. Expert Opin Drug Metab Toxicol, 2011. 7(6): p. 721-9.
Shoba, G., et al., Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med, 1998. 64(4): p. 353-6.
Shaikh, J., et al., Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci, 2009. 37(3-4): p. 223-30.
Joseph, A.I., et al., Stability and anti-inflammatory activity of the reduction-resistant curcumin analog, 2,6-dimethyl-curcumin. Org Biomol Chem, 2018. 16(17): p. 3273-3281.
Tamvakopoulos, C., et al., Metabolism and anticancer activity of the curcumin analogue, dimethoxycurcumin. Clin Cancer Res, 2007. 13(4): p. 1269-77.
Wang, Y., et al., Androgen receptor regulates cardiac fibrosis in mice with experimental autoimmune myocarditis by increasing microRNA-125b expression. Biochem Biophys Res Commun, 2018. 506(1): p. 130-136.
Chong, C., et al., An electrospun scaffold loaded with anti-androgen receptor compound for accelerating wound healing. Burns Trauma, 2013. 1(2): p. 95-101.
Lai, J.J., et al., The role of androgen and androgen receptor in skin-related disorders. Arch Dermatol Res, 2012. 304(7): p. 499-510.
Singh, G., Recent considerations in nonsteroidal anti-inflammatory drug gastropathy. Am J Med, 1998. 105(1B): p. 31S-38S.
Tan, X., et al., Topical drug delivery systems in dermatology: a review of patient adherence issues. Expert Opin Drug Deliv, 2012. 9(10): p. 1263-71.
Brown, K.K., W.E. Rehmus, and A.B. Kimball, Determining the relative importance of patient motivations for nonadherence to topical corticosteroid therapy in psoriasis. J Am Acad Dermatol, 2006. 55(4): p. 607-13.
Feldman, S.R. and T.S. Housman, Patients' vehicle preference for corticosteroid treatments of scalp psoriasis. Am J Clin Dermatol, 2003. 4(4): p. 221-4.
Mohanty, C. and S.K. Sahoo, Curcumin and its topical formulations for wound healing applications. Drug Discovery Today, 2017. 22(10): p. 1582-1592.
Afshariani, R., et al., Effectiveness of topical curcumin for treatment of mastitis in breastfeeding women: a randomized, double-blind, placebo-controlled clinical trial. Oman Med J, 2014. 29(5): p. 330-4.
Phillips, J., et al., Curcumin inhibits UV radiation-induced skin cancer in SKH-1 mice. Otolaryngol Head Neck Surg, 2013. 148(5): p. 797-803.
Mehrabani, D., et al., The healing effect of curcumin on burn wounds in rat. World J Plast Surg, 2015. 4(1): p. 29-35.
Agrawal, R., et al., Development and Evaluation of Curcumin-loaded Elastic Vesicles as an Effective Topical Anti-inflammatory Formulation. Aaps Pharmscitech, 2015. 16(2): p. 364-374.
Benson, H.A., Skin structure, function, and permeation. 2012.
Elias, P.M., Epidermal lipids, membranes, and keratinization. Int J Dermatol, 1981. 20(1): p. 1-19.
Bouwstra, J.A., et al., Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res, 2003. 42(1): p. 1-36.
Prausnitz, M.R., Microneedles for transdermal drug delivery. Adv Drug Deliv Rev, 2004. 56(5): p. 581-7.
Scheuplein, R.J.J.A.i.b.o.s., Properties of the skin as a membrane. 1972. 12: p. 125-152.
Otberg, N., et al., Variations of hair follicle size and distribution in different body sites. Journal of Investigative Dermatology, 2004. 122(1): p. 14-19.
Lademann, J., et al., Penetration and storage of particles in human skin: perspectives and safety aspects. Eur J Pharm Biopharm, 2011. 77(3): p. 465-8.
Scheuplein, R.J., Mechanism of percutaneous adsorption. I. Routes of penetration and the influence of solubility. J Invest Dermatol, 1965. 45(5): p. 334-46.
Scheuplein, R.J. and I.H. Blank, Permeability of the skin. Physiol Rev, 1971. 51(4): p. 702-47.
Harada, K., et al., Role of intercellular lipids in stratum corneum in the percutaneous permeation of drugs. J Invest Dermatol, 1992. 99(3): p. 278-82.
Bodde, H.E., et al., Visualization of Invitro Percutaneous Penetration of Mercuric-Chloride - Transport through Intercellular Space Versus Cellular Uptake through Desmosomes. Journal of Controlled Release, 1991. 15(3): p. 227-236.
Kim, Y.H., A.H. Ghanem, and W.I. Higuchi, Model studies of epidermal permeability. Semin Dermatol, 1992. 11(2): p. 145-56.
Cooper, E.R. and G.J.J.o.C.R. Kasting, Transport across epithelial membranes. 1987. 6(1): p. 23-35.
Misra, A. and A. Shahiwala, Novel Drug Delivery Technologies.
Anderson, B.D., W.I. Higuchi, and P.V. Raykar, Heterogeneity effects on permeability-partition coefficient relationships in human stratum corneum. Pharm Res, 1988. 5(9): p. 566-73.
Barry, B.W., S.M. Harrison, and P.H. Dugard, Vapour and liquid diffusion of model penetrants through human skin; correlation with thermodynamic activity. J Pharm Pharmacol, 1985. 37(4): p. 226-36.
Pugh, W.J., I.T. Degim, and J. Hadgraft, Epidermal permeability-penetrant structure relationships: 4, QSAR of permeant diffusion across human stratum corneum in terms of molecular weight, H-bonding and electronic charge. Int J Pharm, 2000. 197(1-2): p. 203-11.
Albery, W.J. and J. Hadgraft, Percutaneous absorption: in vivo experiments. J Pharm Pharmacol, 1979. 31(3): p. 140-7.
Nemanic, M.K. and P.M. Elias, In situ precipitation: a novel cytochemical technique for visualization of permeability pathways in mammalian stratum corneum. J Histochem Cytochem, 1980. 28(6): p. 573-8.
Bodde, H.E., et al., Visualizing Percutaneous Drug Transport - an Analytical Electron-Microscopic Study. Clinical and Experimental Dermatology, 1987. 12(3): p. 235-236.
Lian, G., L. Chen, and L. Han, An evaluation of mathematical models for predicting skin permeability. J Pharm Sci, 2008. 97(1): p. 584-98.
Hadgraft, J., Skin deep. Eur J Pharm Biopharm, 2004. 58(2): p. 291-9.
Pugh, W.J., I.T. Degim, and J. Hadgraft, Epidermal permeability-penetrant structure relationships: 4, QSAR of permeant diffusion across human stratum corneum in terms of molecular weight, H-bonding and electronic charge. International Journal of Pharmaceutics, 2000. 197(1-2): p. 203-211.
Pugh, W.J., M.S. Roberts, and J. Hadgraft, Epidermal permeability - Penetrant structure relationships .3. The effect of hydrogen bonding interactions and molecular size on diffusion across the stratum corneum. International Journal of Pharmaceutics, 1996. 138(2): p. 149-165.
Lane, M.E., Skin penetration enhancers. Int J Pharm, 2013. 447(1-2): p. 12-21.
Chang, R.K., et al., Generic development of topical dermatologic products: formulation development, process development, and testing of topical dermatologic products. AAPS J, 2013. 15(1): p. 41-52.
Garg, T., G. Rath, and A.K. Goyal, Comprehensive review on additives of topical dosage forms for drug delivery. Drug Deliv, 2015. 22(8): p. 969-987.
Buhse, L., et al., Topical drug classification. Int J Pharm, 2005. 295(1-2): p. 101-12.
Hughes, J. and M. Rustin, Corticosteroids. Clin Dermatol, 1997. 15(5): p. 715-21.
Rosen, J., A. Landriscina, and A.J. Friedman, Principles and approaches for optimizing therapy with unique topical vehicles. J Drugs Dermatol, 2014. 13(12): p. 1431-5.
Shah, K.A., et al., Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm, 2007. 345(1-2): p. 163-71.
Bellefroid, C., et al., In vitro skin penetration enhancement techniques: A combined approach of ethosomes and microneedles. International Journal of Pharmaceutics, 2019. 572.
Ayres, J.W., Dermatological Formulations - Percutaneous-Absorption - Barry,Bw. American Journal of Pharmaceutical Education, 1984. 48(1): p. 107-107.
Chauhan, S.J.J.o.A.P., Penetration enhancement techniques. 2017. 9(1): p. 1-5.
Grether-Beck, S., et al., Urea Uptake Enhances Barrier Function and Antimicrobial Defense in Humans by Regulating Epidermal Gene Expression. Journal of Investigative Dermatology, 2012. 132(6): p. 1561-1572.
Trommer, H. and R.H.H. Neubert, Overcoming the stratum corneum: The modulation of skin penetration - A review. Skin Pharmacology and Physiology, 2006. 19(2): p. 106-121.
Williams, A.C. and B.W. Barry, Penetration enhancers. Advanced Drug Delivery Reviews, 2004. 56(5): p. 603-618.
Albèr, C., Humectants and skin: effects of hydration from molecule to man. 2015: Malmö University.
Cornwell, P.A., et al., Modes of action of terpene penetration enhancers in human skin differential scanning calorimetry, small-angle X-ray diffraction and enhancer uptake studies. International Journal of Pharmaceutics, 1996. 127(1): p. 9-26.
Mueller, J., et al., The effect of urea and taurine as hydrophilic penetration enhancers on stratum corneum lipid models. Biochimica Et Biophysica Acta-Biomembranes, 2016. 1858(9): p. 2006-2018.
Tupker, R.A., J. Pinnagoda, and J.P. Nater, The Transient and Cumulative Effect of Sodium Lauryl Sulfate on the Epidermal Barrier Assessed by Transepidermal Water-Loss - Inter-Individual Variation. Acta Dermato-Venereologica, 1990. 70(1): p. 1-5.
Kurihara-Bergstrom, T., G.L. Flynn, and W.I. Higuchi, Physicochemical study of percutaneous absorption enhancement by dimethyl sulfoxide: kinetic and thermodynamic determinants of dimethyl sulfoxide mediated mass transfer of alkanols. J Pharm Sci, 1986. 75(5): p. 479-86.
Sarpotdar, P.P. and J.L. Zatz, Evaluation of penetration enhancement of lidocaine by nonionic surfactants through hairless mouse skin in vitro. J Pharm Sci, 1986. 75(2): p. 176-81.
Eichner, A., et al., Influence of the penetration enhancer isopropyl myristate on stratum corneum lipid model membranes revealed by neutron diffraction and H-2 NMR experiments. Biochimica Et Biophysica Acta-Biomembranes, 2017. 1859(5): p. 745-755.
Williams, A.C. and B.W. Barry, Terpenes and the lipid-protein-partitioning theory of skin penetration enhancement. Pharm Res, 1991. 8(1): p. 17-24.
Pham, Q.D., et al., Chemical penetration enhancers in stratum corneum - Relation between molecular effects and barrier function. Journal of Controlled Release, 2016. 232: p. 175-187.
Arellano, A., et al., Influence of propylene glycol and isopropyl myristate on the in vitro percutaneous penetration of diclofenac sodium from carbopol gels. European Journal of Pharmaceutical Sciences, 1999. 7(2): p. 129-135.
Engelbrecht, T.N., et al., Study of the Influence of the Penetration Enhancer Isopropyl Myristate on the Nanostructure of Stratum Corneum Lipid Model Membranes Using Neutron Diffraction and Deuterium Labelling. Skin Pharmacology and Physiology, 2012. 25(4): p. 200-207.
Thong, H.Y., H. Zhai, and H.I. Maibach, Percutaneous penetration enhancers: an overview. Skin Pharmacol Physiol, 2007. 20(6): p. 272-82.
Final Report on the Safety Assessment of Myristyl Myristate and Isopropyl Myristate. Journal of the American College of Toxicology, 1982. 1(4): p. 55-80.
Oertel, R.P., Protein conformational changes induced in human stratum corneum by organic sulfoxides: an infrared spectroscopic investigation. Biopolymers, 1977. 16(10): p. 2329-45.
Anigbogu, A.N.C., et al., Fourier-Transform Raman-Spectroscopy of Interactions between the Penetration Enhancer Dimethyl-Sulfoxide and Human Stratum-Corneum. International Journal of Pharmaceutics, 1995. 125(2): p. 265-282.
Williams, A.C. and B.W. Barry, Penetration enhancers. Advanced Drug Delivery Reviews, 2012. 64: p. 128-137.
Hadgraft, J. and M.E. Lane, Skin: the ultimate interface. Physical Chemistry Chemical Physics, 2011. 13(12): p. 5215-5222.
Osborne, D.W. and J. Musakhanian, Skin Penetration and Permeation Properties of Transcutol (R) Neat or Diluted Mixtures. Aaps Pharmscitech, 2018. 19(8): p. 3512-3533.
Akhtar, N., et al., Penetration Enhancing Effect of Polysorbate 20 and 80 on the In Vitro Percutaneous Absorption of L-Ascorbic Acid. Tropical Journal of Pharmaceutical Research, 2011. 10(3): p. 281-288.
Thong, H.Y., H. Zhai, and H.I. Maibach, Percutaneous penetration enhancers: An overview. Skin Pharmacology and Physiology, 2007. 20(6): p. 272-282.
Liu, C.H., F.Y. Chang, and D.K. Hung, Terpene microemulsions for transdermal curcumin delivery: effects of terpenes and cosurfactants. Colloids Surf B Biointerfaces, 2011. 82(1): p. 63-70.
Patel, N.A., N.J. Patel, and R.P. Patel, Formulation and evaluation of curcumin gel for topical application. Pharm Dev Technol, 2009. 14(1): p. 80-9.
Chen, Y., et al., Preparation of Curcumin-Loaded Liposomes and Evaluation of Their Skin Permeation and Pharmacodynamics. Molecules, 2012. 17(5): p. 5972-5987.
Johnson, M.E., et al., Synergistic effects of chemical enhancers and therapeutic ultrasound on transdermal drug delivery. J Pharm Sci, 1996. 85(7): p. 670-9.
Guillard, O., et al., An analytical procedure for the determination of aluminum used in antiperspirants on human skin in Franz (TM) diffusion cell. Toxicology Mechanisms and Methods, 2012. 22(3): p. 205-210.
Kligman, A.M., Topical Pharmacology and Toxicology of Dimethyl Sulfoxide. 1. JAMA, 1965. 193: p. 796-804.
Moribe, K., et al., Effect of particle size on skin permeation and retention of piroxicam in aqueous suspension. Chem Pharm Bull (Tokyo), 2010. 58(8): p. 1096-9.
Arunraj, T.R., et al., Synthesis, characterization and biological activities of curcumin nanospheres. J Biomed Nanotechnol, 2014. 10(2): p. 238-50.
Zhang, Y., et al., CD44 Assists the Topical Anti-Psoriatic Efficacy of Curcumin-Loaded Hyaluronan-Modified Ethosomes: A New Strategy for Clustering Drug in Inflammatory Skin. Theranostics, 2019. 9(1): p. 48-64.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78391-
dc.description.abstract皮膚結構可分為三層:表皮層、真皮層、皮下組織,其中最外層為沒有血管分佈的表皮層,而真皮層及皮下組織才有血管分佈。當以皮膚局部給藥時,藥物需先通過表皮層再到達真皮層才能進到循環系統中。此給藥途徑的穿透距離短、運用方便。然而表皮層中的角質層不只阻隔外界干擾也阻擋藥物穿透,導致此給藥途徑的療效有限。為了解決此問題,可以依Fick’s law延伸以下策略:(1)物理性破壞角質層進而減短藥物穿透所需距離、(2)被動性,其中分為提高給藥量或是添加滲透促進劑以幫助藥物分佈、擴散、(3)其它方式,例如:改變藥物結構、以疏水性物質包覆藥物等等,來提升藥物穿透效率。
本研究為了提高一種化合物主成分所製成局部塗抹劑型之穿透效率,分別或同時藉由「提高劑型的乘載藥量」和「添加滲透促進劑」這兩種被動性策略來進行此一劑型的改良,以提高穿透效率。在滲透促進劑的選擇上,根據藥物性質及劑型所需,我們選擇DMSO、Tween 80、Urea、Isopropyl myristate(IPM)這幾種並於一個月穩定性的離心試驗比較中篩選出IPM、DMSO組別,以進行穿透試驗。其中於0.1%藥物下,滲透促進劑無法提升穿透效率,不過在0.4%藥物下,兩組的穿透效率提升約20%,因此進一步提高IPM、DMSO濃度,以測試穿透效率能否再提升。不過IPM組效果並不明顯,而提高DMSO的量能提升一倍的穿透效率。我們發現單純提高承載藥量本身在in vitro穿透實驗中並無法提升穿透效率,必須配合滲透促進劑的添加,方能有效地增加藥物的穿透率。綜合以上,於此劑型中, IPM和DMSO的組合運用應為最適合濃度以幫助藥物達最佳分散效果,不過搭配兩者時,in vitro穿透效率沒有再提升。
zh_TW
dc.description.abstractThe structure of skin is classified to three layers: epidermis, dermis, subcutaneous tissue. Epidermis is the outermost, and there isn’t any blood vessel in epidermis as found in dermis and subcutaneous tissue. Therefore, drug in topical formulation should pass epidermis first, then reach dermis, and enter to circulation system finally. The stratum corneum of epidermis comprised of the dyed cells in the outmost layer protects the body from environment that also blocks the penetration of drugs in topical formulation. Therefore, the efficiency of topical formulation for skin disease is limited. To resolve the problems, several strategies have been developed according to Fick’s law. These strategies are divided into three parts: first, using physical force to damage the stratum corneum; second, increasing the drug amount or adding penetration enhancers to enhance the distribution and diffusion of drug; third, developing nanocarrier to encapsulate the drug, etc.
In this study, two passive strategies were adopted to enhance the penetration efficiency of one compound (named as CL) in topical formulation. One is to increase the amount of drug in formulation and the other is to add penetration enhancers. We found that simply increasing the concentration of CL didn’t increase the penetration efficiency. For the penetration enhancers, we examined the efficacy of DMSO, Tween 80, urea, and Isopropyl myristate (IPM). According to the results of centrifugation test, we further chose the group of IPM and DMSO for penetration test. The results of Franz cell study showed that the increase in the combination of IPM and DMSO in the formulation not only could help CL dispersing but also improve the penetration efficiency.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:54:34Z (GMT). No. of bitstreams: 1
U0001-0207202010494300.pdf: 14873606 bytes, checksum: 47cf4fb61c00cd93ce5a94f9e307eaf0 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 1
Abstract 3
圖目錄 8
表目錄 9
附圖目錄 10
第一章 緒論 11
1.1 薑黃素(Curcumin) 11
1.1.1薑黃素的物化、藥理特性 11
1.1.2薑黃素之治療方向 12
1.1.3薑黃素之安全性及臨床應用上的問題 13
1.1.4薑黃素衍生物之特性與運用 14
1.2 薑黃素用於皮膚疾病的局部治療(Topical treatment) 14
1.3皮膚 (Skin) 15
1.3.1表皮層(Epidermis) 16
1.3.2真皮層(Dermis) 16
1.4物質在皮膚穿透路徑(Skin permeation pathways) 17
1.4.1汗腺、毛囊 17
1.4.2經角質層的路徑 17
1.5藥物特性 18
1.5.1分配係數 18
1.5.2分子大小 19
1.5.3依藥物之物化性質以預測穿透效率之延伸公式 19
1.6 局部劑型(Topical formulation) 20
1.6.1乳膏(Cream) 20
1.7 促進穿透的策略(Penetration enhancement strategies) 21
1.7.1物理性 21
1.7.2被動性 21
1.7.3其他類 24
1.8研究動機與目的 24
第二章 材料與方法 25
2.1 儀器 25
2.2 測試乳膏的油相所能盛載的最大藥量(100 g的乳膏) 25
2.3 製備調整組成的CL乳膏(100 g的乳膏) 26
2.4 CL乳膏的長時間穩定性測試 26
2.4.1測試CL乳膏pH值 26
2.4.2測試CL乳膏油滴大小變化 27
2.4.3以離心試驗測試CL乳膏 27
2.4.4測試CL乳膏中的CL藥量變化 27
2.4.4.3 確立HPLC分析條件 28
2.4.4.3.1確認分析方式是否合適 28
2.4.4.3.2製備CL標準曲線(Standard curve establishment) 29
2.4.4.3.3精準度(Precision)以及精確度(Accuracy) 29
2.4.4.3.4重複性(Intra-day)、再現性(Inter-day) 29
2.5 In vitro穿透效率測試 30
2.5.1 Franz cell的膜條件篩選 30
2.5.2 Franz cell的receptor buffer條件篩選 31
2.6 統計分析(Statistical analyses) 31
2.6.1 Significance of differences 31
第三章 結果 32
3.1 找尋適合的CL乳膏配置條件 32
3.2 CL乳膏之最大藥物乘載量 33
3.2.1 配置提高乳膏的CL乘載量 33
3.3 找尋CL乳膏的長期穩定性測試條件 34
3.3.1測試乳膏的pH值 34
3.3.2找尋適合作為測試油滴大小的最佳稀釋濃度 34
3.3.3以離心試驗測試CL乳膏 35
3.3.4 HPLC的分析條件 36
3.4 測試提高CL乳膏之乘載藥量的長期穩定性 38
3.5 穿透效率試驗 39
3.5.1 Franz cell的條件篩選 39
3.5.2提高CL乳膏的乘載藥量是否提高穿透效率 40
3.6改變CL乳膏組成以加入滲透促進劑 40
3.6.1改變CL乳膏組成組別的長期穩定性測試 41
3.6.2測試添加滲透促進劑的穿透效率 42
3.6.3提高IPM或DMSO濃度 43
3.6.4提高IPM或DMSO濃度並調整CL濃度 44
3.65 於3%、5% DMSO之基礎下,提升乳膏的乘載藥量至0.6% 44
3.6.6 IPM搭配DMSO於0.4%CL下的穿透效率 45
3.7 挑選出具較佳穿透效率之組別以進行一個月之穿透效率穩定性 45
第四章 討論 47
4.1 找尋適合的CL乳膏配置條件 47
4.2 CL乳膏的長時間穩定性條件測試 47
4.2.1 以石蕊試紙測試pH變化 47
4.2.2找尋適合作為測試油滴大小的最佳稀釋濃度 48
4.3 找尋HPLC的分析條件 48
4.4 Franz cell的條件篩選 49
4.5提高CL乳膏的乘載藥量是否提高穿透效率 51
4.6改變CL乳膏組成組別的長期穩定性測試 52
4.7提高IPM濃度或添加DMSO 52
4.7.1於乘載不同濃度的CL乳膏中提高IPM或添加DMSO濃度 53
4.7.2 添加DMSO於乳膏 54
4.8滲透促進劑DMSO與IPM之促進穿透效果比較 54
4.9於0.4% CL中搭配3% DMSO、11% IPM 55
4.10挑選出具較佳穿透效率之組別以進行一個月之穿透效率穩定性 55
4.11 CL乳膏相較於其他乘載薑黃素之常見劑型 56
4.12 挑選乳膏之組成 57
第五章 結論 58
第六章 未來工作與展望 60
第七章 參考資料 101
dc.language.isozh-TW
dc.subject皮膚zh_TW
dc.subject乳膏zh_TW
dc.subject穿透效率zh_TW
dc.subjectCream formulationen
dc.subjectPenetration efficiencyen
dc.subjectSkinen
dc.title探討以乳膏劑型乘載薑黃素衍生物的穩定性以及穿透效率zh_TW
dc.titleInvestigate the stability and penetration efficiency of cream formulations containing curcumin derivativeen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周怡君(Yi-Chun Chou),簡雄飛(Hsiung-Fei Chien)
dc.subject.keyword皮膚,乳膏,穿透效率,zh_TW
dc.subject.keywordCream formulation,Penetration efficiency,Skin,en
dc.relation.page109
dc.identifier.doi10.6342/NTU202001264
dc.rights.note有償授權
dc.date.accepted2020-07-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
dc.date.embargo-lift2025-07-17-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
U0001-0207202010494300.pdf
  未授權公開取用
14.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved