請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78361完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳建德(Chien-Te Wu) | |
| dc.contributor.author | Yi-Yuan Huang | en |
| dc.contributor.author | 黃翊媛 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:53:03Z | - |
| dc.date.available | 2025-08-05 | |
| dc.date.copyright | 2020-09-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-28 | |
| dc.identifier.citation | Arnal, L. H. (2012). Predicting “When” Using the Motor System’s Beta-Band Oscillations. Frontiers in Human Neuroscience, 6, 225. Arnal, L. H., Giraud, A. L. (2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16(7), 390–398. Baldeweg, T. (2006). Repetition effects to sounds: Evidence for predictive coding in the auditory system. Trends in Cognitive Sciences, 10(3), 93–94. Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., Friston, K. J. (2012). Canonical Microcircuits for Predictive Coding. Neuron, 76(4), 695–711. Bekinschtein, T. A., Dehaene, S., Rohaut, B., Tadel, F., Cohen, L., Naccache, L. (2009). Neural signature of the conscious processing of auditory regularities. Proceedings of the National Academy of Sciences, 106(5), 1672–1677. Campbell, T., Winkler, I., Kujala, T. (2007). N1 and the mismatch negativity are spatiotemporally distinct ERP components: Disruption of immediate memory by auditory distraction can be related to N1. Psychophysiology, 44(4), 530–540. Causeur, D., Chu, M. C., Hsieh, S., Sheu, C. F. (2012). A factor-adjusted multiple testing procedure for ERP data analysis. Behavior Research Methods, 44(3), 635–643. Chao, Z. C., Takaura, K., Wang, L., Fujii, N., Dehaene, S. (2018). Large-Scale Cortical Networks for Hierarchical Prediction and Prediction Error in the Primate Brain. Neuron, 100(5), 1252-1266. Chennu, S., Noreika, V., Gueorguiev, D., Blenkmann, A., Kochen, S., Ibáñez, A., Owen, A. M., Bekinschtein, T. A. (2013). Expectation and Attention in Hierarchical Auditory Prediction. Journal of Neuroscience, 33(27), 11194–11205. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. The Behavioral and Brain Sciences, 36(3), 181–204. Costa-Faidella, J., Baldeweg, T., Grimm, S., Escera, C. (2011). Interactions between “What” and “When” in the Auditory System: Temporal Predictability Enhances Repetition Suppression. Journal of Neuroscience, 31(50), 18590–18597. den Ouden, H. E. M., Kok, P., de Lange, F. P. (2012). How Prediction Errors Shape Perception, Attention, and Motivation. Frontiers in Psychology, 3, 548. Doeller, C. F., Opitz, B., Mecklinger, A., Krick, C., Reith, W., Schröger, E. (2003). Prefrontal cortex involvement in preattentive auditory deviance detection: Neuroimaging and electrophysiological evidence. NeuroImage, 20(2), 1270–1282. Drake, C. (1998). Psychological Processes Involved in the Temporal Organization of Complex Auditory Sequences: Universal and Acquired Processes. Music Perception, 16(1), 11–26. Duncan‐Johnson, C. C., Donchin, E. (1977). On Quantifying Surprise: The Variation of Event-Related Potentials With Subjective Probability. Psychophysiology, 14(5), 456–467. Dürschmid, S., Edwards, E., Reichert, C., Dewar, C., Hinrichs, H., Heinze, H.-J., Kirsch, H. E., Dalal, S. S., Deouell, L. Y., Knight, R. T. (2016). Hierarchy of prediction errors for auditory events in human temporal and frontal cortex. Proceedings of the National Academy of Sciences, 113(24), 6755–6760. El Karoui, I., King, J.-R., Sitt, J., Meyniel, F., Van Gaal, S., Hasboun, D., Adam, C., Navarro, V., Baulac, M., Dehaene, S., Cohen, L., Naccache, L. (2015). Event-Related Potential, Time-frequency, and Functional Connectivity Facets of Local and Global Auditory Novelty Processing: An Intracranial Study in Humans. Cerebral Cortex, 25(11), 4203–4212. Enns, J. T., Lleras, A. (2008). What’s next? New evidence for prediction in human vision. Trends in Cognitive Sciences, 12(9), 327–333. Fisher, D. J., Grant, B., Smith, D. M., Knott, V. J. (2011). Effects of deviant probability on the ‘optimal’ multi-feature mismatch negativity (MMN) paradigm. International Journal of Psychophysiology, 79(2), 311–315. Fletcher, P. C., Anderson, J. M., Shanks, D. R., Honey, R., Carpenter, T. A., Donovan, T., Papadakis, N., Bullmore, E. T. (2001). Responses of human frontal cortex to surprising events are predicted by formal associative learning theory. Nature Neuroscience, 4(10), 1043–1048. Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. Friston, K., Adams, R. A., Perrinet, L., Breakspear, M. (2012). Perceptions as Hypotheses: Saccades as Experiments. Frontiers in Psychology, 3, 151. Fujioka, T., Trainor, L. J., Large, E. W., Ross, B. (2012). Internalized Timing of Isochronous Sounds Is Represented in Neuromagnetic Beta Oscillations. Journal of Neuroscience, 32(5), 1791–1802. Garrido, M. I., Kilner, J. M., Stephan, K. E., Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453–463. Giard, M. H., Lavikahen, J., Reinikainen, K., Perrin, F., Bertrand, O., Pernier, J., Näätänen, R. (1995). Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: An event-related potential and dipole-model analysis. Journal of Cognitive Neuroscience, 7(2), 133–143. Gonsalvez, C. J., Polich, J. (2002). P300 amplitude is determined by target-to-target interval. Psychophysiology, 39(3), 388–396. Grossberg, S. (2009). Cortical and subcortical predictive dynamics and learning during perception, cognition, emotion and action. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1223–1234. Heilbron, M., Chait, M. (2018). Great Expectations: Is there Evidence for Predictive Coding in Auditory Cortex? Neuroscience, 389, 54–73. Jaaskelainen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levanen, S., Lin, F. H., May, P., Melcher, J., Stufflebeam, S., Tiitinen, H., Belliveau, J. W. (2004). Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences, 101(17), 6809–6814. Javitt, D. C., Grochowski, S., Shelley, A.-M., Ritter, W. (1998). Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/interdeviant interval. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 108(2), 143–153. Jiang, J., Summerfield, C., Egner, T. (2016). Visual Prediction Error Spreads Across Object Features in Human Visual Cortex. Journal of Neuroscience, 36(50), 12746–12763. Kiebel, S. J., Daunizeau, J., Friston, K. J. (2008). A Hierarchy of Time-Scales and the Brain. PLoS Computational Biology, 4(11), e1000209. Kuperberg, G. R., Jaeger, T. F. (2016). What do we mean by prediction in language comprehension? Language, Cognition and Neuroscience, 31(1), 32–59. Lecaignard, F., Bertrand, O., Gimenez, G., Mattout, J., Caclin, A. (2015). Implicit learning of predictable sound sequences modulates human brain responses at different levels of the auditory hierarchy. Frontiers in Human Neuroscience, 9. Lerner, Y., Honey, C. J., Silbert, L. J., Hasson, U. (2011). Topographic Mapping of a Hierarchy of Temporal Receptive Windows Using a Narrated Story. Journal of Neuroscience, 31(8), 2906–2915. Morlet, D., Fischer, C. (2014). MMN and Novelty P3 in Coma and Other Altered States of Consciousness: A Review. Brain Topography, 27(4), 467–479. Näätänen, R., Kujala, T., Escera, C., Baldeweg, T., Kreegipuu, K., Carlson, S., Ponton, C. (2012). The mismatch negativity (MMN) – A unique window to disturbed central auditory processing in ageing and different clinical conditions. Clinical Neurophysiology, 123(3), 424–458. Näätänen, R., Paavilainen, P., Rinne, T., Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544–2590. Näätänen, Risto. (2003). Mismatch negativity: Clinical research and possible applications. International Journal of Psychophysiology, 48(2), 179–188. Näätänen, Risto, Jacobsen, T., Winkler, I. (2005). Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 42(1), 25–32. Näätänen, Risto, Paavilainen, P., Reinikainen, K. (1989). Do event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man? Neuroscience Letters, 107(1), 347–352. Opitz, B., Rinne, T., Mecklinger, A., von Cramon, D. Y., Schröger, E. (2002). Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. NeuroImage, 15(1), 167–174. Pakarinen, S., Takegata, R., Rinne, T., Huotilainen, M., Näätänen, R. (2007). Measurement of extensive auditory discrimination profiles using the mismatch negativity (MMN) of the auditory event-related potential (ERP). Clinical Neurophysiology, 118(1), 177–185. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. Pincze, Z., Lakatos, P., Rajkai, C., Ulbert, I., Karmos, G. (2001). Separation of mismatch negativity and the N1 wave in the auditory cortex of the cat: A topographic study. Clinical Neurophysiology, 112(5), 778–784. Polich, J. (1986). Attention, probability, and task demands as determinants of P300 latency from auditory stimuli. Electroencephalography and Clinical Neurophysiology, 63(3), 251–259. Polich, J. (1987). Task difficulty, probability, and inter-stimulus interval as determinants of P300 from auditory stimuli. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 68(4), 311–320. Polich, J. (1990). P300, Probability, and Interstimulus Interval. Psychophysiology, 27(4), 396–403. Polich, J. (2007). Updating P300: An Integrative Theory of P3a and P3b. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 118(10), 2128–2148. Rao, R. P. N., Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87. Sabri, M., Campbell, K. B. (2001). Effects of sequential and temporal probability of deviant occurrence on mismatch negativity. Cognitive Brain Research, 12(1), 171–180. Sams, M, Paavilainen, P., Alho, K., Näätänen, R. (1985). Auditory frequency discrimination and event-related potentials. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 62(6), 437–448. Sams, Mikko, Alho, K., Näätänen, R. (1984). Short-Term Habituation and Dishabituation of the Mismatch Negativity of the ERP. Psychophysiology, 21(4), 434–441. Sato, Y., Yabe, H., Hiruma, T., Sutoh, T., Shinozaki, N., Nashida, T., Kaneko, S. (2000). The effect of deviant stimulus probability on the human mismatch process: NeuroReport, 11(17), 3703–3708. Sculthorpe, L. D., Campbell, K. B. (2011). Evidence that the mismatch negativity to pattern violations does not vary with deviant probability. Clinical Neurophysiology, 122(11), 2236–2245. Shipp, S. (2016). Neural Elements for Predictive Coding. Frontiers in Psychology, 7, 1792. Sonnadara, R. R., Alain, C., Trainor, L. J. (2006). Effects of spatial separation and stimulus probability on the event-related potentials elicited by occasional changes in sound location. Brain Research, 1071(1), 175–185. Sussman, E., Ritter, W., Vaughan, H. G. (1998). Predictability of stimulus deviance and the mismatch negativity. Neuroreport, 9(18), 4167–4170. Wacongne, C., Changeux, J. P., Dehaene, S. (2012). A Neuronal Model of Predictive Coding Accounting for the Mismatch Negativity. Journal of Neuroscience, 32(11), 3665–3678. Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proceedings of the National Academy of Sciences, 108(51), 20754–20759. Winkler, I., Czigler, I. (2012). Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. International Journal of Psychophysiology, 83(2), 132–143. Winkler, I., Denham, S. L., Nelken, I. (2009). Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13(12), 532–540. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78361 | - |
| dc.description.abstract | 預測是大腦的重要功能之一,能利於個體成功地應對環境變化。預測編碼理論是近期被視為能廣泛解釋大腦各種作用與現象的優勢理論。此理論認為大腦內預測訊號的產生與更新是一個雙向的階層性訊息處理過程:大腦一般會根據過去經驗產生一個由上而下傳遞的預測訊號;當外在之訊息進入大腦時,若外在訊息不符預測,預測誤差訊號會產生並由下而上傳遞,進而修正預測。預測與預測誤差之階層性交互關係為其理論之核心概念,然而其神經證據仍尚未被系統性地驗證。本研究著重探究人腦解讀聽覺序列訊息時,預測訊號與預測誤差訊號之階層性交互關係的神經機制。實驗設計採用新改良版的局部-整體聽覺刺激,透過操弄兩階層間之規則來建立不同強度的預測訊號強度:局部預測規則(單一刺激呈現頻率)與整體預測規則(序列刺激呈現頻率)。由腦電圖量測的預測誤差訊號之特性,能藉由分析違反局部預測規則之特異刺激與標準刺激所產生的腦波反應差異。本研究分別以事件相關電位了解階層性預測誤差處理之歷程: Mismatch negativity (MMN) 代表局部預測誤差訊號; P300 代表整體預測錯誤訊號。研究結果顯示:(一)MMN高峰振幅主要以單一刺激呈現頻率解釋兩者負關係;而延遲時間亦由單一刺激呈現頻率解釋兩者正關係。(二)P300高峰振幅主要由單一和序列刺激呈現頻率解釋其正相關;而延遲時間則由序列刺激呈現頻率解釋兩者正關係。(三)局部預測誤差訊號在時序上,先隨單一刺激呈現頻率而變化,後隨單一與序列刺激呈現頻率而變化。事件相關電位之調節結果表示,預測誤差處理於較低階層時受局部預測規則影響;而預測誤差訊號由下而上傳遞之較高階層時,其誤差由整體預測規則做解釋。此預測錯誤訊號之階層性神經證據將有助於佐證預測編碼之重要概念。 | zh_TW |
| dc.description.abstract | Human brains are thought to be a prediction machine enabling us to be adaptive to various environmental changes through minimizing adjusting predictions and minimizing prediction errorsor adjusting prediction. According to the predictive coding theory, a leading theory of brains, postulates such processes are achieved by the bidirectional cascades of cortical processes: predictions are constantly sent from higher to lower cortical areas to match incoming sensory inputs, and prediction errors are sent from lower to higher cortical areas to update predictions when a mismatch occurs. Neural interactions between these two streams of signals across hierarchies are the core hypothesis of the theory; however, their empirical evidence has not been systematically examined. This study aimed to investigate the neural interactions between prediction and prediction-error signals across two hierarchies during the processes of auditory sequences. We adopted the novel extension of the local-global auditory oddball paradigm in which strengths of predictions were established by the local regularity (the tone probability) and the global regularity (the sequence probability). Prediction-error signals from the EEG recording were measured by comparing neural responses to oddballs with standard stimuli. The two event-related potential (ERP) components were used to examine hierarchical prediction-error processes: mismatch negativity (MMN) indexed as local prediction-error signals, and P300 indexed as global prediction-error signals. There were several important findings. First, for the MMN components, the tone probability shows great significant contribution (negative effect) to the peak amplitudes, and also significant contribution (positive effect) to the latencies. Secondly, for the P300 component, both tone and sequence probabilities show great significant contribution (positive effect) to the peak amplitudes, whereas the sequence probability shows significant contribution ( positive effect) to the latencies. Third, the neural responses of prediction-error signals temporally changed with the tone probability in the early stage and with both probabilities in the late stage. In conclusion, the modulations of the ERP responses suggested that lower-level prediction-error processes may be influenced by the local regularity, and at a global level, the bottom-up error signals may be further explained away with the help of global regularity. This evidence of the neural representations of prediction-error signals across two hierarchical levels of regularities can support the concept of the hierarchical predictive coding theory. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:53:03Z (GMT). No. of bitstreams: 1 U0001-2407202011493400.pdf: 5168020 bytes, checksum: b705bf58736da0e2142a3778d58cfe23 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Table of Contents 口試委員會審定書 ............................................................................................i 誌謝 ...................................................................................................................ii 中文摘要 ..........................................................................................................iv 英文摘要 ........................................................................................................... v Chapter 1 Introduction....................................................................................1 1.1. The predictive coding theory: conceptual framework and its implications................. 1 1.2. Probing prediction errors at multiple processing hierarchies ...................................... 3 Mismatch negativity (MMN).......................................................................................6 P300- P3 family ........................................................................................................... 6 1.3. Current literatures about neural evidence of hierarchical prediction processes .......... 7 The interaction between prediction signals and prediction-error signals .................... 8 The prediction-error processing across hierarchies ..................................................... 9 1.4. Research questions and hypotheses ........................................................................... 11 Chapter 2 Methods ........................................................................................ 12 2.1. Participants ................................................................................................................ 12 2.2. Stimuli ....................................................................................................................... 13 Tones and tone sequences..........................................................................................13 Auditory blocks..........................................................................................................13 2.3. Procedures ................................................................................................................. 16 2.4. EEG recording ........................................................................................................... 17 2.5. EEG analyses.............................................................................................................18 Preprocessing ............................................................................................................. 18 Analyses for the prediction-error related event-related potential (ERP) responses... 18 Regression analyses...................................................................................................20 Chapter 3 Results................................................................................................................ 22 3.1. The MMN components vary with Ptone and Pseq .................................................... 22 Peak amplitudes of the MMN components ............................................................... 23 Peak latencies of the MMN components...................................................................23 3.2. The P300 components vary with Ptone and Pseq......................................................26 Peak amplitudes of the P300 components ................................................................. 26 Peak latencies of the P300 components.....................................................................27 3.3. The prediction-error related ERPs temporally vary with Ptone and Pseq.................30 Chapter 4 Discussions ........................................................................................................ 32 4.1. The modulations of prediction-error signals across two hierarchies.........................32 Lower-level error processes.......................................................................................32 Higher-level error processes......................................................................................34 4.2. Temporally hierarchical prediction-error processes .................................................. 35 4.3. Limitations and future research ................................................................................. 37 Chapter 5 Conclusion ......................................................................................................... 38 References............................................................................................................................ 39 Appendix.............................................................................................................................. 47 | |
| dc.language.iso | en | |
| dc.subject | 聽覺 | zh_TW |
| dc.subject | 階層 | zh_TW |
| dc.subject | 預測誤差 | zh_TW |
| dc.subject | 序列處理歷程 | zh_TW |
| dc.subject | 預測 | zh_TW |
| dc.subject | Auditory | en |
| dc.subject | Sequence processing | en |
| dc.subject | Prediction Errors | en |
| dc.subject | Prediction | en |
| dc.subject | Hierarchy | en |
| dc.subject | Statistical regularity | en |
| dc.title | 人腦對於聽覺序列訊息的預測誤差訊號之階層性神經機制: 事件相關腦電位研究 | zh_TW |
| dc.title | The Hierarchical Neural Representations of Prediction Errors during Auditory Sequence Processing in Human Brains: An Event-Related Potential Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林士傑(Shih-Chieh Lin),趙陳懷(Zenas C. Chao),吳恩賜(Joshua Goh Oon Soo),黃從仁(Tsung-Ren Huang) | |
| dc.subject.keyword | 預測,預測誤差,階層,序列處理歷程,聽覺, | zh_TW |
| dc.subject.keyword | Hierarchy,Prediction,Prediction Errors,Sequence processing,Auditory,Statistical regularity, | en |
| dc.relation.page | 47 | |
| dc.identifier.doi | 10.6342/NTU202001817 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 職能治療研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-05 | - |
| 顯示於系所單位: | 職能治療學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2407202011493400.pdf 未授權公開取用 | 5.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
