請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78355完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 錢義隆(I-Lung Chien) | |
| dc.contributor.author | Meng-Lin Tsai | en |
| dc.contributor.author | 蔡孟霖 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:52:45Z | - |
| dc.date.available | 2025-07-27 | |
| dc.date.copyright | 2020-08-11 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-27 | |
| dc.identifier.citation | [1] Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435-437. [2]. Yang, A.; Su, Y.; Chien, I. L.; Jin, S.; Yan, C.; Wei, S. a.; Shen, W. Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane. Energy 2019, 186, 115756. [3]. Luyben, W. L. Control comparison of conventional and thermally coupled ternary extractive distillation processes. Chem. Eng. Res. Des. 2016, 106, 253-262. [4]. Timoshenko, A. V.; Anokhina, E. A.; Morgunov, A. V.; Rudakov, D. G. Application of the partially thermally coupled distillation flowsheets for the extractive distillation of ternary azeotropic mixtures. Chem. Eng. Res. Des. 2015, 104, 139-155. [5]. Wang, Y.; Bu, G.; Geng, X.; Zhu, Z.; Cui, P.; Liao, Z. Design optimization and operating pressure effects in the separation of acetonitrile/methanol/water mixture by ternary extractive distillation. J. Clean. Prod. 2019, 218, 212-224. [6]. Raeva, V. M.; Sazonova, A. Y. Separation of ternary mixtures by extractive distillation with 1,2-ethandiol and glycerol. Chem. Eng. Res. Des. 2015, 99, 125-131. [7]. Xia, M.; Shi, H.; Chen, C.; Ma, Z.; Xiao, Y.; Hou, B.; Jia, L.; Li, D. Two-Stripper/Flash/Distillation Column System Design, Operation, and Control for Separating 2-Pentanone/4-Heptanone/Water Azeotropic Mixture via Navigating Residue Curve Maps and Balancing Total Annual Cost and Product Loss. Ind. Eng. Chem. Res. 2018, 57, 689-702. [8]. Shi, T.; Chun, W.; Yang, A.; Jin, S.; Shen, W.; Ren, J.; Gu, J. The process control of the triple-column pressure-swing extractive distillation with partial heat integration. Sep. Purif. Technol. 2020, 238, 116416. [9]. Li, X.; Yang, X.; Wang, S.; Yang, J.; Wang, L.; Zhu, Z.; Cui, P.; Wang, Y.; Gao, J. Separation of ternary mixture with double azeotropic system by a pressure-swing batch distillation integrated with quasi-continuous process. Process Saf. Environ. Prot. 2019, 128, 85-94. [10]. Gu, J.; You, X.; Tao, C.; Li, J. Analysis of heat integration, intermediate reboiler and vapor recompression for the extractive distillation of ternary mixture with two binary azeotropes. Chem. Eng. Process. 2019, 142, 107546. [11]. Aurangzeb, M.; Jana, A. K. Double-partitioned dividing wall column for a multicomponent azeotropic system. Sep. Purif. Technol. 2019, 219, 33-46. [12]. Gu, J.; You, X.; Tao, C.; Li, J.; Gerbaud, V. Energy-Saving Reduced-Pressure Extractive Distillation with Heat Integration for Separating the Biazeotropic Ternary Mixture Tetrahydrofuran-Methanol-Water. Ind. Eng. Chem. Res. 2018, 57, 13498-13510. [13]. Yi, C. C.; Shen, W.; Chien, I. L. Design and control of an energy-efficient alternative process for the separation of methanol/toluene/water ternary azeotropic mixture. Sep. Purif. Technol. 2018, 207, 489-497. [14]. Yang, A.; Wei, R.; Sun, S.; Wei, S. a.; Shen, W.; Chien, I. L. Energy-saving optimal design and effective control of heat integration-extractive dividing wall column for separating heterogeneous mixture methanol/toluene/water with multiazeotropes. Ind. Eng. Chem. Res. 2018, 57, 8036-8056. [15]. Wang, Y.; Zhang, X.; Liu, X.; Bai, W.; Zhu, Z.; Wang, Y.; Gao, J. Control of extractive distillation process for separating heterogenerous ternary azeotropic mixture via adjusting the solvent content. Sep. Purif. Technol. 2018, 191, 8-26. [16]. Zhang, Q.; Liu, M.; Li, W.; Li, C.; Zeng, A. Heat-integrated triple-column pressure-swing distillation process with multi-recycle streams for the separation of ternary azeotropic mixture of acetonitrile/methanol/benzene. Sep. Purif. Technol. 2019, 211, 40-53. [17]. Yang, A.; Shi, T.; Sun, S.; Wei, S. a.; Shen, W.; Ren, J. Dynamic controllability investigation of an energy-saving double side-stream ternary extractive distillation process. Sep. Purif. Technol. 2019, 225, 41-53. [18]. Wang, C.; Wang, C.; Guang, C.; Zhang, Z. Biotechnology Comparison of extractive distillation separation sequences for acetonitrile/methanol/benzene multi‐azeotropic mixtures. J. Chem. Technol. Biotechnol. 2018, 93, 3302-3316. [19]. Wang, C.; Wang, C.; Cui, Y.; Guang, C.; Zhang, Z. Economics and Controllability of Conventional and Intensified Extractive Distillation Configurations for Acetonitrile/Methanol/Benzene Mixtures. Ind. Eng. Chem. Res. 2018, 57, 10551-10563. [20]. Wang, C.; Guang, C.; Cui, Y.; Wang, C.; Zhang, Z. Compared novel thermally coupled extractive distillation sequences for separating multi-azeotropic mixture of acetonitrile/benzene/methanol. Chem. Eng. Res. Des. 2018, 136, 513-528. [21]. Aurangzeb, M.; K. Jana, A. Pressure-Swing Dividing Wall Column with Multiple Binary Azeotropes: Improving Energy Efficiency and Cost Savings through Vapor Recompression. Ind. Eng. Chem. Res. 2018, 57, 4019-4032. [22]. Zhu, Z.; Xu, D.; Wang, Y.; Geng, X.; Wang, Y. Effect of multi-recycle streams on triple-column pressure-swing distillation optimization. Chem. Eng. Res. Des. 2017, 127, 215-222. [23]. Zhu, Z.; Xu, D.; Jia, H.; Zhao, Y.; Wang, Y. Heat Integration and Control of a Triple-Column Pressure-Swing Distillation Process. Ind. Eng. Chem. Res. 2017, 56, 2150-2167. [24]. Luyben, W. L. Control of a triple-column pressure-swing distillation process. Sep. Purif. Technol. 2017, 174, 232-244. [25]. Zhu, Z.; Xu, D.; Liu, X.; Zhang, Z.; Wang, Y. Separation of acetonitrile/methanol/benzene ternary azeotrope via triple column pressure-swing distillation. Sep. Purif. Technol. 2016, 169, 66-77. [26]. Zhang, Q.; Zeng, A.; Yuan, X.; Ma, Y. Control comparison of conventional and thermally coupled ternary extractive distillation processes with recycle splitting using a mixed entrainer as separating agent. Sep. Purif. Technol. 2019, 224, 70-84. [27]. Yang, A.; Shen, W.; Wei, S. a.; Dong, L.; Li, J.; Gerbaud, V. Design and control of pressure‐swing distillation for separating ternary systems with three binary minimum azeotropes. AIChE J. 2019, 65, 1281-1293. [28]. Wang, C.; Zhang, Z.; Zhang, X.; Guang, C.; Gao, J. Comparison of pressure-swing distillation with or without crossing curved-boundary for separating a multiazeotropic ternary mixture. Sep. Purif. Technol. 2019, 220, 114-125. [29]. Wang, C.; Guang, C.; Cui, Y.; Zhang, Z.; Zhang, X. Separation of a ternary mixture with multiple azeotropes via pressure‐swing distillation. J. Chem. Technol. Biotechnol. 2019, 94, 2023-2033. [30]. Li, J.; Li, R.; Zhou, H.; Yang, X.; Ma, Z.; Sun, L.; Zhang, N. Energy-Saving Ionic Liquid-Based Extractive Distillation Configurations for Separating Ternary Azeotropic System of Tetrahydrofuran/Ethanol/Water. Ind. Eng. Chem. Res. 2019, 58, 16858-16868. [31]. Zhao, Y.; Ma, K.; Bai, W.; Du, D.; Zhu, Z.; Wang, Y.; Gao, J. Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol. Energy 2018, 148, 296-308. [32]. Zhang, X.; Zhao, Y.; Wang, H.; Qin, B.; Zhu, Z.; Zhang, N.; Wang, Y. Control of a Ternary Extractive Distillation Process with Recycle Splitting Using a Mixed Entrainer. Ind. Eng. Chem. Res. 2018, 57, 339-351. [33]. Zhao, Y.; Zhao, T.; Jia, H.; Li, X.; Zhu, Z.; Wang, Y. Optimization of the composition of mixed entrainer for economic extractive distillation process in view of the separation of tetrahydrofuran/ethanol/water ternary azeotrope. J. Chem. Technol. Biotechnol. 2017, 92, 2433-2444. [34]. Zhu, Z.; Li, S.; Dai, Y.; Yang, X.; Wang, Y.; Gao, J. Control of a pressure-swing distillation process for benzene/isopropanol/water separation with and without heat integration. Sep. Purif. Technol. 2020, 236, 116311. [35]. Cui, Y.; Zhang, Z.; Shi, X.; Guang, C.; Gao, J. Triple-column side-stream extractive distillation optimization via simulated annealing for the benzene/isopropanol/water separation. Sep. Purif. Technol. 2020, 236, 116303. [36]. Cui, Y.; Shi, X.; Guang, C.; Zhang, Z.; Wang, C.; Wang, C. Comparison of pressure-swing distillation and heterogeneous azeotropic distillation for recovering benzene and isopropanol from wastewater. Process Saf. Environ. Prot. 2019, 122, 1-12. [37]. Qi, J.; Zhu, R.; Han, X.; Zhao, H.; Li, Q.; Lei, Z. Ionic liquid extractive distillation for the recovery of diisopropyl ether and isopropanol from industrial effluent: Experiment and simulation. J. Clean. Prod. 2020, 254, 120132. [38]. Qi, J.; Tang, J.; Zhang, Q.; Wang, Y.; Chen, H.; Zhao, H.; Zhang, L. Heat-Integrated Azeotropic Distillation and Extractive Distillation for the Separation of Heterogeneous Ternary Azeotropes of Diisopropyl Ether/Isopropyl Alcohol/Water. Ind. Eng. Chem. Res. 2019, 58, 20734-20745. [39]. Guang, C.; Shi, X.; Zhang, Z.; Wang, C.; Wang, C.; Gao, J. Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/water mixtures. Chem. Eng. Res. Des. 2019, 143, 249-260. [40]. Dai, Y.; Li, S.; Meng, D.; Yang, J.; Cui, P.; Wang, Y.; Zhu, Z.; Gao, J.; Ma, Y. Economic and Environmental Evaluation for Purification of Diisopropyl Ether and Isopropyl Alcohol via Combining Distillation and Pervaporation Membrane. ACS Sustain. Chem. Eng. 2019, 7, 20170-20179. [41]. Jiang, A. G.; Zhang, J. W.; Xin, Y. N.; Yang, J. L. Simulation study on separation process for wastewater containing isopropanol and isopropyl ether. Mod. Chem. Ind. 2017, 37, 187-190 and 192. [42]. Pan, Q.; Shang, X.; Ma, S.; Li, J.; Song, Y.; Sun, M.; Liu, J.; Sun, L. Control comparison of extractive distillation configurations for separating ethyl acetate-ethanol-water ternary mixture using ionic liquids as entrainer. Sep. Purif. Technol. 2020, 236, 116290. [43]. Yang, A.; Zou, H.; Chien, I. L.; Wang, D.; Wei, S. a.; Ren, J.; Shen, W. Optimal Design and Effective Control of Triple-Column Extractive Distillation for Separating Ethyl Acetate/Ethanol/Water with Multiazeotrope. Ind. Eng. Chem. Res. 2019, 58, 7265-7283. [44]. Toth, A. J. Comprehensive evaluation and comparison of advanced separation methods on the separation of ethyl acetate-ethanol-water highly non-ideal mixture. Sep. Purif. Technol. 2019, 224, 490-508. [45]. Shi, T.; Yang, A.; Jin, S.; Shen, W.; Wei, S. a.; Ren, J. Comparative optimal design and control of two alternative approaches for separating heterogeneous mixtures isopropyl alcohol-isopropyl acetate-water with four azeotropes. Sep. Purif. Technol. 2019, 225, 1-17. [46]. Ma, S.; Shang, X.; Li, L.; Song, Y.; Pan, Q.; Sun, L. Energy-saving thermally coupled ternary extractive distillation process using ionic liquids as entrainer for separating ethyl acetate-ethanol-water ternary mixture. Sep. Purif. Technol. 2019, 226, 337-349. [47]. Michaels, W.; Zhang, H.; Luyben, W. L.; Baltrusaitis, J. Design of a separation section in an ethanol-to-butanol process. Biomass Bioenergy 2018, 109, 231-238. [48]. Yang, J.; Zhou, M.; Wang, Y.; Zhang, X.; Wu, G. In Simulation of Pressure-swing Distillation for Separation of Ethyl Acetate-Ethanol-Water. IOP conf. ser., Mater. sci. eng. 2017, 012026. [49]. Ojasvi; Kaistha, N. Plantwide Control for Maximum Throughput Operation of an Ester Purification Process. Ind. Eng. Chem. Res. 2016, 55, 12242-12255. [50]. Zhao, L.; Lyu, X.; Wang, W.; Shan, J.; Qiu, T. Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation. Comput. Chem. Eng. 2017, 100, 27-37. [51]. Oracz, P.; Goral, M.; Wisniewska-Goclowska, B.; Shaw, D. G.; Maczynski, A. IUPAC-NIST Solubility Data Series. 101. Alcohols + Hydrocarbons + Water Part 3. C1-C3 Alcohols + Aromatic Hydrocarbons. J. Phys. Chem. Ref. Data. 2016, 45, 033103. [52]. Tu, M.; Lai, G.; Fei, D. Vapor - Liquid Phase Equilibrium of Binary System of Benzene - Water and m-Xylene - Water. Huagong Xuebao. 1994, 45, 225-229. [53]. Tojo, G.; Bao, M.; Arce, A. Vapor-liquid equilibrium xv binary systems benzene - n-propanol and benzene - i-propanol at 760mm Hg. A. An. Quim. 1973, 69, 1177-1185. [54]. Elliott, J. R.; Rainwater, J. C. The Bancroft point and vapor-liquid equilibria in the system benzene + isopropanol. Fluid Phase Equilib. 2000, 175, 229-236. [55]. Lin, Y. F.; Tu, C. H. Isobaric vapor-liquid equilibria for the binary and ternary mixtures of 2-propanol, water, and 1,3-propanediol at p = 101.3 kPa: Effect of the 1,3-propanediol addition. Fluid Phase Equilib. 2014, 368, 104-111. [56]. Wilson, A.; Simons, E. L. Vapor-liquid equilibria: 2-propanol - water system. Ind. Eng. Chem. 1952, 44, 2214-2219. [57]. Kudryavtseva, L. S.; Susarev, M. P.; Eizen, O. G. V. Reinvestigation of Certain Binary and Ternary Heteroazeotropes. Russ. J. Phys. Chem. 1966, 40, 895-897. [58]. Udovenko, V. V.; Mazanko, T. F.; Plyngeu, V. Ya. Dampf-Flüssig-Gleichgewicht in Systemen Isopropanol Wasser und Isopropanol Benzol. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 1973, 16, 686-688. [59]. Durrans, T. H. A Treatise on Distillation. Perfum. Essent. Oil Rec. 1920, 11, 154-198. [60]. Li, J.; Chen, C.; Wang, J. Vapor-liquid equilibrium data and their correlation for binary systems consisting of ethanol, 2-propanol, 1,2-ethanediol and methyl benzoate. Fluid Phase Equilib. 2000, 169, 75-84. [61]. Kamihama, N.; Matsuda, H.; Kurihara, K.; Tochigi, K.; Oba, S. J. Isobaric Vapor-Liquid Equilibria for Ethanol + Water + Ethylene Glycol and Its Constituent Three Binary Systems. Chem. Eng. Data 2012, 57, 339-344. [62] Gerbaud, V.; Rodriguez-Donis, I.; Hegely, L.; Lang, P.; Denes, F.; You, X. Review of extractive distillation. Process design, operation, optimization and control. Chem. Eng. Res. Des. 2019, 141, 229-271. [63]. Luyben, W. L. Distillation Design and Control Using Aspen Simulation; John Wiley Sons: New York, 2013. [64]. Widagdo, S.; Seider, W. D.; Sebastian, D. H. Bifurcation analysis in heterogeneous azeotropic distillation. AIChE J. 1989, 35, 1457-1464. [65]. Wang, S. J.; Wong, D. S. H.; Lee, E. K. Effect of interaction multiplicity on control system design for a MTBE reactive distillation column. J. Process Control 2003, 13, 503-515. [66]. Cho, M.; Jo, S.; Kim, G.; Han, M. Entrainer-Enhanced Reactive Distillation for the Production of Butyl Acetate. Ind. Eng. Chem. Res. 2014, 53, 8095-8105. [67]. Jacobsen, E. W.; Skogestad, S. Multiple Steady States in Ideal Two-Product Distillation. AIChE J. 1991, 37, 499-51164. [68]. Lin, K. Y.; Tsai, M. L.; Chien, I. L., Energy-efficient separation design of diisopropylether/isopropanol/water system having three distillation regions and liquid-liquid envelope. Sep. Purif. Technol. 2020, 251, 117292. [69]. Luyben, W. L. Principles and Case Studies of Simultaneous Design; John Wiley Sons: New York, 2011. [70]. Luo, B.; Feng, H.; Sun, D.; Zhong, X., Control of fully heat-integrated pressure swing distillation for separating isobutyl alcohol and isobutyl acetate. Chem. Eng. Process. 2016, 110, 9-20. [71]. Chen, Y.; Liu, C.; Geng, Z., Design and control of fully heat-integrated pressure swing distillation with a side withdrawal for separating the methanol/methyl acetate/acetaldehyde ternary mixture. Chem. Eng. Process. 2018, 123, 233-248. [72]. Li, Y.; Jiang, Y.; Xu, C. Robust control of partially heat-integrated pressure-swing distillation for separating binary maximum-boiling azeotropes. Ind. Eng. Chem. Res. 2019, 58, 2296-2309. [73]. Chen, Y.; Liu, C.; Geng, Z.. Design and control of fully heat-integrated pressure swing distillation with a side withdrawal for separating the methanol/methyl acetate/acetaldehyde ternary mixture. Chem. Eng. Process. 2018, 123, 233-248. [74]. Wang, C.; Zhuang, Y.; Liu, L.; Zhang, L.; Du, J. Control of energy-efficient extractive distillation configurations for separating the methanol/toluene azeotrope with intermediate-boiling entrainer. Chem. Eng. Process. 2020, 149, 107862. [75]. Ling, H.; Luyben, W. L. Temperature control of the BTX divided-wall column. Ind. Eng. Chem. Res. 2010, 49, 189-203. [76]. Luan, S.; Huang, K.; Wu, N. Operation of dividing-wall columns. 1. A simplified temperature difference control scheme. Ind. Eng. Chem. Res. 2013, 52, 2642-2660. [77]. Yuan, Y.; Huang, K.; Chen, H.; Zhang, L.; Wang, S. Configuring effectively double temperature difference control schemes for distillation columns. Ind. Eng. Chem. Res. 2017, 56, 9143-9155. [78]. Tsai, M. L.; Wang, Y. H.; Chien, I. L. Novel Control Strategy for Maximum Boiling Extractive Distillation Systems: Acetone/Chloroform Separation. Ind. Eng. Chem. Res. 2020, 59, 8740-8756. [79]. Tyreus, B. D.; Luyben, W. L. Tuning PI Controllers for Integrator/Dead Time Processes. Ind. Eng. Chem. Res. 1992, 31, 2625-2628. [80]. Luyben, W. L. Practical Distillation Control; Van Nostrand Reinhold: New York, 1992. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78355 | - |
| dc.description.abstract | 本論文探討具有三個二元最低共沸物、一個三元最低共沸物的複雜三成分系統分離,並以兩種不同進料組成之苯/異丙醇/水系統,進行新穎分離程序的說明與討論。由於新穎分離程序能在不添加額外物質進入分離程序的條件下,利用系統本身三成分間的液-液分相來跨越蒸餾邊界限制,並透過改變蒸餾塔操作壓力來擴增蒸餾區域與減少系統內回流。因此相較於萃取蒸餾與變壓蒸餾等常見的共沸分離程序,對多共沸物三成分系統的分離更具有經濟層面上的優勢。本論文也將為最具經濟效益的程序設計建立控制策略,並以動態模擬證明控制架構得以排除進料組成擾動與新鮮進料流量改變所帶來的干擾。 對於異丙醇蒸餾區域進料組成的苯/異丙醇/水系統分離而言,新穎分離程序相較於三塔雙側流萃取蒸餾分離程序,因為系統內回流流量能由273.10 kmol/hr大幅降低至131.16 kmol/hr,且熱源由原本的高壓蒸汽改用更便宜的中壓與低壓蒸汽,因此使用新穎分離程序設計能節省43.8%的操作成本與35.6%的年度總成本。透過部分熱整合以及加裝熱交換器預熱C2塔進料流等節能策略,可再節省27.7%的操作成本與18.6%的年度總成本。 對於水蒸餾區域進料組成的苯/異丙醇/水系統分離而言,新穎分離程序相較於三塔部分熱整合變壓蒸餾分離程序,因為系統內回流流量能由95.45 kmol/hr大幅降低至22.12 kmol/hr,且熱源由原本的中壓與低壓蒸汽改為全部使用較便宜的低壓蒸汽,因此使用新穎分離程序設計能節省64.6%的操作成本與56.4%的年度總成本。透過部分熱整合以及加裝熱交換器預熱C2塔進料流等節能策略,可再節省28.4%的操作成本與9.3%的年度總成本。 由於分離程序中的異丙醇蒸餾塔會發生多重穩態,使得塔板溫度與作動變數間存在輸出多重穩態以及輸入多重穩態,將導致動態控制更為困難。本論文根據開環路與閉環路敏感度分析,建立3種不同的控制架構,以排除進料組成擾動的干擾。結果顯示僅固定C2塔塔頂回流量對進料流流量比,使C1塔為雙點溫度控制,而其餘二塔進行單點溫度控制的控制架構三,在面對4種進料組成擾動時,皆維持各產物流純度在規範標準附近。最後再藉由對C1塔和C2塔的板溫控制器都進行進料流量補償溫度控制,使控制架構在面對10%新鮮進料流量改變時,亦仍能保持產物流的純度。 綜合上述,本論文提出一新穎分離程序,在分離會產生液相部分不互溶的多共沸物三成分系統時,相較於常見的共沸分離程序能大幅降低經濟成本,並透過探討不同進料組成相應的新穎分離程序設計,使本論文討論更全面且完善。此外本論文亦提出相應的控制策略,在不使用組成控制器的條件下,能有效排除進料組成擾動與新鮮進料流量改變帶來的影響。 | zh_TW |
| dc.description.abstract | In this thesis, a new energy-efficient design flowsheet is provided for the separation of complicated ternary system with three binary azeotropes, one ternary azeotrope, three distillation regions and liquid-liquid envelope. Without adding foreign components into the separation, a new energy-efficient design flowsheet is proposed in this work with two main ideas. The first idea is to use a decanter to overcome the limitation of the distillation boundary by taking advantage of the natural liquid-liquid separation in the system instead of only using distillation columns. The second idea is to change the operating pressure for the respective columns to move the pressure-sensitive distillation boundary in order to expand the operating distillation region and reduce the flow rate of overall recycle stream in the system. In this thesis, the separation of the benzene/isopropanol/water ternary system is taken as examples to illustrate the benefits of the proposed energy-efficient design. Two different design flowsheets for different feed compositions which are located in distinct distillation regions are provide to make the discussion more comprehensive. The control structure for the most economical design flowsheet is established to reject the disturbances in feed flowrate and feed composition. The first kind of feed composition is located in the isopropanol distillation region. The recycle flowrate of the proposed energy-efficient design flowsheet (131.16 kmol/hr) is much less than that of the triple-column double side-stream extractive distillation process design (273.10 kmol/hr) recently published in the open literature. Economical comparisons show that the annual operating cost and the total annual cost can be significantly reduced by 43.8% and 35.6%, respectively. Further energy-saving considerations of the proposed design are investigated. It turns out that by heat integration of the condenser in the C2 column with part of the reboiler in the C1 column together with the preheating feed stream of the C2 column by the bottom streams of C1 and C2 column. Further 27.7% of the annual operating cost and 18.6% of the total annual cost can be saved. The second kind of feed composition is located in the water distillation region. The recycle flowrate of the proposed energy-efficient design flowsheet (22.12 kmol/hr) is much less than that of the triple-column partial heat-integrated pressure-swing distillation process design (95.45 kmol/hr) recently published in the open literature. Economical comparisons show that the annual operating cost and the total annual cost can be significantly reduced by 64.6% and 56.4%, respectively. Further energy-saving considerations consist of the heat integration of the condenser in the C2 column with part of the reboiler in the C3 column and of the preheating feed stream of the C2 column by its bottom stream. Further 28.4% of the annual operating cost and 9.3% of the total annual cost can be saved. Besides, multiple steady states occur in the isopropanol column due to the nonideality of the azeotropic liquid phases. The phase splitting for the liquid composition drives the column into input multiplicity and output multiplicity conditions, which make the control system difficult. In this thesis, according to the open-loop and closed-loop sensitivity test, three different control structures are established to reject unmeasured feed composition disturbances without using online composition analyzer. The results show that the control structure which only fixes the C2 column reflux flowrate-to-C2 column feed stream ratio (RF2/C2F) and makes the C1 column become dual-point control can maintain all products at high-purity specifications. Furthermore, the usage of feedforward throughput-compensated temperature control for the C1 and C2 column can improve the closed-loop control performance when facing throughput changes. In summary, for separating the complicated ternary system, a new energy-efficient design flowsheet which makes use of natural liquid-liquid separation in a decanter together with varying operating pressure of respective columns is provided. These energy-efficient design thinking can be extended to other separation systems exhibiting similar characteristics in the ternary diagram with liquid phase splitting. In addition, the control structures are also established to reject the disturbances in feed flowrate and feed composition. Because no composition controller is required for the proposed control structure, it is expected that this control structure can also be applied in the industry. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:52:45Z (GMT). No. of bitstreams: 1 U0001-2707202012115300.pdf: 23912347 bytes, checksum: 220dfaab1f29592649ecb26332531701 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 I 摘要 II Abstract IV 目錄 VII 圖目錄 IX 表目錄 XV 1. 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 具共沸物之三成分系統分離 2 1.2.2 苯/異丙醇/水系統分離 5 1.3 研究動機 8 1.4 組織架構 9 2. 熱力學模型 10 2.1 前言 10 2.2 驗證結果 11 3. 穩態模擬與最適化設計 17 3.1 前言 17 3.2 異丙醇蒸餾區域進料組成系統探討(進料組成一) 18 3.2.1 再現三塔雙側流萃取蒸餾分離程序 18 3.2.2 進料組成一的新穎分離程序概念 21 3.2.3 分離程序最適化分析 24 3.2.4 熱整合節能策略 30 3.2.5 加裝熱交換器節能策略 34 3.2.6 改善分離程序設計 44 3.2.7 穩態多重性分析 51 3.2.8 小結 57 3.3 水蒸餾區域進料組成系統探討(進料組成二) 58 3.3.1 再現三塔變壓蒸餾分離程序 58 3.3.2 進料組成二的新穎分離程序概念 60 3.3.3 分離程序最適化分析 63 3.3.4 加裝熱交換器節能策略 70 3.3.5 熱整合節能策略 75 3.3.6 穩態多重性分析 80 3.3.7 小結 86 4. 動態模擬與控制策略 87 4.1 前言 87 4.2 調節與庫存控制環路 88 4.3 閉環路敏感度分析 91 4.4 進料組成擾動排除 96 4.4.1 控制架構一 96 4.4.2 控制架構二 107 4.4.3 控制架構三 117 4.4.4 進料組成擾動排除比較 126 4.5 新鮮進料流量改變排除 129 4.5.1 控制架構四 129 4.5.2 控制架構五 135 4.5.3 新鮮進料流量改變排除比較 139 4.6 小結 141 5. 結論與未來工作 143 5.1 結論 143 5.2 未來工作 145 參考文獻 146 附錄 年度總成本計算公式 156 | |
| dc.language.iso | zh-TW | |
| dc.subject | 程序設計 | zh_TW |
| dc.subject | 程序控制 | zh_TW |
| dc.subject | 穩態多重性 | zh_TW |
| dc.subject | 變壓蒸餾 | zh_TW |
| dc.subject | 液-液分相 | zh_TW |
| dc.subject | 多共沸物組成 | zh_TW |
| dc.subject | 三成分系統分離 | zh_TW |
| dc.subject | liquid-liquid separation | en |
| dc.subject | pressure-swing distillation | en |
| dc.subject | steady-state multiplicity | en |
| dc.subject | process design | en |
| dc.subject | process control | en |
| dc.subject | ternary system separation | en |
| dc.subject | multiple azeotropes | en |
| dc.title | 利用液-液分相與變壓蒸餾分離複雜三成分系統之節能設計與控制 | zh_TW |
| dc.title | Energy-Efficient Separation Design and Control for the Separation of Complicated Ternary System Aided by Liquid-Liquid Separation and Pressure Swing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳誠亮(Cheng-Liang Chen),吳哲夫(Jeffrey D. Ward),李豪業(Hao-Yeh Lee),余柏毅(Bor-Yih Yu) | |
| dc.subject.keyword | 三成分系統分離,多共沸物組成,液-液分相,變壓蒸餾,穩態多重性,程序設計,程序控制, | zh_TW |
| dc.subject.keyword | ternary system separation,multiple azeotropes,liquid-liquid separation,pressure-swing distillation,steady-state multiplicity,process design,process control, | en |
| dc.relation.page | 158 | |
| dc.identifier.doi | 10.6342/NTU202001901 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-07-27 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2707202012115300.pdf 未授權公開取用 | 23.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
