Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7834
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶瑞(Ching-Ray Chang)
dc.contributor.authorKuo-Chin Chenen
dc.contributor.author陳國進zh_TW
dc.date.accessioned2021-05-19T17:55:20Z-
dc.date.available2021-08-31
dc.date.available2021-05-19T17:55:20Z-
dc.date.copyright2016-08-31
dc.date.issued2016
dc.date.submitted2016-08-26
dc.identifier.citation[1] Kikuchi, Hideo, Haruyoshi Takaoka, and Shigenori Baba. ”Complementary metal-oxide semiconductor.” U.S. Patent No. 4,288,804. 8 Sep. 1981.
[2] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 1988.
[3] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 1988 .
[4] Bychkov, Yu A., and Emmanuel I. Rashba. ”Oscillatory effects and the magnetic susceptibility of carriers in inversion layers.” Journal of physics C: Solid state physics 17.33 (1984): 6039.
[5] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).
[6] Qi, Xiao-Liang, and Shou-Cheng Zhang. ”Topological insulators and supercon-
ductors.” Reviews of Modern Physics 83 (2011): 1057.
[7] Datta, S., and Das, B. Applied Physics Letters 56, 665 (1990).
[8] Liu, Ming-Hao, and Ching-Ray Chang. ”Datta-Das transistor: Significance of channel direction, size dependence of source contacts, and boundary effects.” Physical Review B 73 (2006): 205301.
[9] Chuang, Pojen, et al. ”All-electric all-semiconductor spin field-effect transistors.” Nature Nanotechnology 10, 35-39 (2015)
[10] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
[11] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005)
[12] Shen, Shun-Qing. Topological Insulators: Dirac Equation in Condensed Mat-
ters. Vol. 174. Springer Science and Business Media, (2013).
[13] Neto, AH Castro, et al. ”The electronic properties of graphene.” Reviews of
modern physics 81, 109 (2009)
[14] LaShell, S., McDougall, B., and Jensen, E. (1996). Spin splitting of an Au (111) surface state band observed with angle resolved photoelectron spectroscopy. Physical review letters, 77, 3419.

[1] S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005).
[2] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006). [3] C. Xu and J.E. Moore, Phys. Rev. B 80, 165316 (2009).
[3] C. Xu and J.E. Moore, Phys. Rev. B 80, 165316 (2009).
[1] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).
[2] M. Ko ̈nig et al., Science 318, 766 (2007).
[3] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[4] X.-L. Qi and S.-C. Zhang, Physics Today 63, 33 (2010).
[5] C. Xu and J.E. Moore, Phys. Rev. B 73, 045322 (2006).
[6] C. Wu, B. A. Bernevig, and S.-C. Zhang, Phys. Rev. Lett. 96, 106401 (2006).
[7] Bin Zhou, Hai-Zhou Lu, Rui-Lin Chu, Shun-Qing Shen, and Qian Niu, Phys. Rev. Lett. 101, 246807 (2008)
[8] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
[9] A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 93, 106803 (2004).
[10] H. H. Lee, J. Y. Liu, C. R. Chang, and S. Q. Shen, Phys. Rev. B 88, 195149 (2013).
78
[11] S. Sim, N. Koirala, M. Brahlek, J. H. Sung, J. Park, S. Cha, M. H. Jo, S. Oh, and H. Choi, Phys. Rev. B 91, 235438 (2015)
[12] W.-Y. Shan, J. Lu, H.-Z. Lu, and S.-Q. Shen, Phys. Rev. B 84, 035307 (2011).
[13] B. luk’yanchuk et al., Nature Mater. 9, 707 (2010).
[14] C. Xu and J.E. Moore, Phys. Rev. B 80, 165316 (2009).
[15] Jie Lu, Wen-Yu Shan, Hai-Zhou Lu and Shun-Qing Shen, New Journal of Physics 13 (2011) 103016
[16] Liang Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007)
[17] Xiao-Liang Qi, Yong-Shi Wu, and Shou-Cheng Zhang, Phys. Rev. B 74, 045125
(2006)
[18] A. Goker, Phys. Status Solidi B 247, 129 (2010).
[1] S. Sahoo, et al., Nat. Phys. 1, 99 (2005).
[2] R. Jansen, B.C. Min and S. P. Dash, Nat. Mat. 9, 133 (2010).
[3] S. Matityahu, A. Aharony, O. Entin-Wohlman, and S. Tarucha, New J. Phys. 15, 125017 (2013).
[4] Y. Puttisong, X. J. Wang, I. A. Buyanova, H. Carr ́ere, F. Zhao et al., Appl. Phys. Lett. 96, 052104 (2010).
[5] R. C. Myers, A. C. Gossard, and D. D. Awschalom, Phys. Rev. B 69, 161305 (2004).
[6] E. Wada, K. Watanabe, Y. Shirahata, M. Itoh, M. Yamaguchi and T. Taniyama, Appl. Phys. Lett. 96, 102510 (2010).
[7] X. Li, O. E. Tereshchenko, S. Majee, G. Lampel, Y. Lassailly, D. Paget and J. Peretti, Appl. Phys. Lett. 105, 052402 (2014).
[8] K. N. Altmann, et al., J. Elec. Spec. Rel. Phen. 101, 367 (1999).
[9] V. Renken, D. H. Yu, M. Donath, Surf. Sci. 601, 5770 (2007).
[10] Florent Perez, Phys. Rev. B 79, 045306 (2009).
[11] J. S. Park, A. Quesada, Y. Meng, et al., Phys. Rev. B 83, 113405 (2011).
[12] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDon-
ald, Phys. Rev. Lett. 92, 126603 (2004).
[13] D. Z.-Y. Ting and X. Cartoix`a, Appl. Phys. Lett. 81, 4198 (2002).
[14] J. Gersten, K. Kaasbjerg, and A. Nitzan, J. Chem. Phys. 139, 114111 (2013).
[15] H. Bentmann, et al., Europhys. Lett. 87, 37003, (2009).
[16] H. Bentmann and F. Reinert, New J. Phys. 15, 115011 (2013).
[17] L. V. Bondarenko et al., Sci. Rep. 3, 1826 (2013).
[18] A. M. Shikin, et al., Phys. Sol. Sta., 52, 1515 (2010).
[19] A. M. Shikin, et al., New J. Phys. 15, 095005 (2013).
[20] A. G. Rybkin, A. M. Shikin, V. K. Adamchuk, et al., Phys. Rev. B, 82, 233403 (2010).
[21] A. G. Rybkin, A. M. Shikin, D. Marchenko, A. Varykhalov, and O. Rade, Phys. Rev. B, 85, 045425 (2012).
[22] A. G. Rybkin, et al., Phys. Rev. B, 86, 035117 (2012).
[23] K. He, T. Hirahara, T. Okuda, S. Hasegawa, et al., Phys. Rev. Lett 101, 107604
(2008).
[24] E. Frantzeskakis, S. Pons, H. Mirhosseini, et al., Phys. Rev. Lett. 101, 196805 (2008).
[25] G. Bian, L. Zhang, Y. Liu, T. Miller, and T.-C. Chiang, Phys. Rev. Lett. 108, 186403 (2012).
[26] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[27] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
[28] X. L. Qi, Y. S. Wu, and S. C. Zhang, Phys. Rev. B 74, 045125 (2006).
[29] G. M. Graf & M. Porta, Commun. Math. Phys., 324, 851 (2013).
[30] M. Z. Hasan & C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[31] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).
[32] Hsieh, D., et al., 2009a, Nature (London) 460, 1101.
[33] Markus Ko ̈nig et al. Science 318, 766 (2007).
[34] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[35] X.-L. Qi and S.-C. Zhang, Physics Today 63, 33 (2010).
[36] Laurens W. Molenkamp, Georg Schmidt, and Gerrit E. W. Bauer, Phys. Rev. B 64, 121202 (2001)
[37] Takaaki Koga, Junsaku Nitta, Hideaki Takayanagi, and Supriyo Datta, Phys. Rev. Lett. 8888, 126601 (2002)
[38] Ming-Hao Liu, Ching-Ray Chang, and Son-Hsien Chen, Phys. Rev. B 71, 153305 (2005)
[39] Kuo-Chin Chen, Yu-Hsin Su, Son-Hsien Chen, and Ching-Ray Chang, Journal of Applied Physics 115, 17C305 (2014)
[40] Bin Zhou, Hai-Zhou Lu, Rui-Lin Chu, Shun-Qing Shen, and Qian Niu, Phys. Rev. Lett. 101, 246807 (2008)
[41] H. H. Lee, J. Y. Liu, C. R. Chang, and S. Q. Shen, Phys. Rev. B 88, 195149 (2013).
[42] Kuo-Chin Chen, Hsin-Han Lee, and Ching-Ray Chang, Phys. Rev. B 93, 035405 (2016)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7834-
dc.description.abstract本論文的研究主題是在二維拓樸絕緣體中操控自旋電子,採用tight binding model配合Non-equilibrium Greens function以及Landauer Buttiker Formalism探討 自旋電子的傳輸行為,並且配合tight binding的能帶計算來研究拓樸絕緣體這一個 有強自旋軌道耦合的材料,其非耗散的表面態受到時間反轉對稱守恆的保護,使 此材料有很大的機會應用在自旋電子元件上面。利用電場來控制電子的傳輸在半 導體工業已經發展得相當成熟。本論文則討論兩種方法用電場來控制在二維拓樸 絕緣體中電子自旋。
第一種方法是利用局部的電場產生量子干涉並且進一步地控制穩固非耗散自旋 流的開關 。我們用電場調控一個放置在工字形二維拓樸絕緣體中間的雜質能量, 電極之間的傳輸係數在不同電極寬度下展現出Fano-like 共振或者Breit-Wigner 共 振,而此兩種共振可以藉由調控電極寬度產生相變。
第二種方法是在二維拓樸絕緣體接薄金屬,二維拓樸絕緣體的表面態會和金屬 的量子井態混成,有兩個特性是值得被討論的,第一個就是此混成造成自旋的分 裂,產生了類似Rashba自旋軌道耦合的效應,第二個則是混成造成能隙的打開, 此混成在正(負)的動量時讓自旋向下(上)電子的能帶產生能隙,因此藉由調 控能量,可以將這個系統變成自旋閥的元件。
zh_TW
dc.description.abstractThis thesis presents a theoretical study of spin manipulation in a two-dimensional topological insulator (2DTI). Non-equilibrium Greens function approach and Landauer Buttiker Formalism cooperates with tight binding band calculation numerically study the electron spin transport properties of two-dimensional electron gas with strong spin-orbit coupling. A topological insulator is a material that a strong intrinsic spin-orbit interaction exists. The non-dispersive edge states make it be a promising material in spintronics application. Adopting non-magnetic field control is predominating in the research field of semiconductor devices, thus, we adopt non-magnetic field to control electron spin in the two-dimensional topological insulator. The thesis provides two ways to manipulate electron spin in a two-dimensional system.
First, quantum interference induced by external electric field is adopted. A persistent quantum resonance device is proposed in an H-shaped 2DTI embedded a non-magnetic impurity at the center. Transmissions between each branch of the H-shaped 2DTI shows two kinds of quantum resonance in this device, Breit-Wigner resonance, and Fano-like resonance. These resonances can be realized in the device through modulating the onsite impurity potential. A phase transition between the Fano-like and the Breit-Wigner resonances through modulating the thickness of the 2DTI leads is also presented.
Second, we present a band study of a 2DTI-normal metal junction. The helical edge state of 2DTI hybridized with the quantum well state of normal metal is well studied. A systematical study of the band in terms of the coupling strength between 2DTI and normal metal shows there are two interesting phenomena in this junction (i) A helical state induced splitting that similar to Rashba field existed in normal metal. The Rashba-like field generates a spin precession that the precession length can be modulated by the coupling strength. The Rashba-like field can be a promising way to create giant Rashba spin orbital via material manipulation. (ii) The band of spin down opens due to the spin down electron of normal metal penetrated to 2DTI and backward moved restrictedly. Energy band gap opens for one spin channel thus a polarized spin current flows into normal metal in the energy region of the band gap. By modulating the Fermi energy, it is possible to convert the quantum spin hall system into a spin filter.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:55:20Z (GMT). No. of bitstreams: 1
ntu-105-F98222059-1.pdf: 21176048 bytes, checksum: c95ca699202a6c74b6640f3abdad251c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsChapter 1 Introduction... 1
. 1.1 Spintronics in heterojunction... 2
. 1.1.1 Heterojunction... 2
. 1.1.2 Rashba spin-orbit interaction... 4
. 1.2 Topological insulator... 8
. 1.2.1 Topology.... 8
. 1.2.2 Topological insulator... 10
. 1.2.3 Spin momentum locking... 12
. 1.2.4 Topological protection... 12
Bibliography... 14
Chapter 2 Method... 16
. 2.1 Construction of Hamiltonian (Finite difference method)... 16
. 2.2 Periodical structure (Bloch Theorem)... 20
. 2.2.1 Band structure and wave density... 21
. 2.3 Non-periodic structure (Green’s function)... 26
. 2.3.1 Green’s function... 29
. 2.3.2 Green’s function in quantum system... 31
. 2.3.3 Retarded Green’s function... 35
. 2.3.4 Evaluating the self-energy... 39
. 2.3.5 Lessor Green’s function... 40
. 2.3.6 Transmission... 42
Bibliography... 48
Chapter 3 Persistent quantum resonance transition in spin Hall transport ... 49
. 3.1 Overview... 49
. 3.2 Finite size effect in stripe of 2DT... 51
. 3.3 Impurity influence in a stripe of 2DTI... 57
. 3.4 Path of H-shaped 2DTI and Formalism... 64
. 3.5 Fano and Breit-Wigner resonance in 2DTI... 66
. 3.6 Phase transition between B-W resonances and Fano-like resonances... 68
. 3.7 Widths of resonances... 71
. 3.8 Two impurities interplay... 76
. 3.9 Summary... 77
Bibliography... 78
Chapter 4 Normal metal two-dimensional topological insulator junction ... 80
4.1 Overview... 80
4.2 Spin splitting induced by helical state... 82
4.3 Spin filter... 89
4.4 Spinflipinthenormalmetal2DTIjunction... 92
4.5 Summary... 97
Bibliography... 98
dc.language.isoen
dc.title二維拓樸絕緣體的電子自旋操控zh_TW
dc.titleSpin manipulation in two dimensional topological insulatoren
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee林育中,胡崇德,朱仲夏,唐毓慧,陳松賢
dc.subject.keyword拓樸絕緣體,自旋傳輸,zh_TW
dc.subject.keywordtopological insulator,spin transport,en
dc.relation.page101
dc.identifier.doi10.6342/NTU201603562
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-08-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf20.68 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved