Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78327
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor段維新(Wei-Hsing Tuan)
dc.contributor.authorHeng-Yi Linen
dc.contributor.author林恒毅zh_TW
dc.date.accessioned2021-07-11T14:51:23Z-
dc.date.available2025-08-04
dc.date.copyright2020-09-24
dc.date.issued2020
dc.date.submitted2020-08-04
dc.identifier.citation1. S. K. Kuthadi, 'Laboratory scale study of calcium sulfate hydration forms,' (2014).
2. T. A. Hoang, H. M. Ang, and A. L. Rohl, 'Effects of temperature on the scaling of calcium sulphate in pipes,' Powder Technology, 179[1-2] 31-37 (2007).
3. F. Wirsching, 'Calcium sulfate,' Ullmann's Encyclopedia of Industrial Chemistry (2000).
4. G. Wypych, '2 - Fillers – origin, chemical composition, properties, and mophology,' pp. 13-266. in Handbook of Fillers (Fourth Edition). Edited by G. Wypych. ChemTec Publishing, 2016.
5. F. Bell, 'A survey of the engineering properties of some anhydrite and gypsum from the north and midlands of England,' Engineering Geology, 38[1-2] 1-23 (1994).
6. M. V. Thomas and D. A. Puleo, 'Calcium sulfate: properties and clinical applications,' Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 88[2] 597-610 (2009).
7. Y. Kumar, K. Nalini, J. Menon, D. K. Patro, and B. Banerji, 'Calcium sulfate as bone graft substitute in the treatment of osseous bone defects, a prospective study,' Journal of Clinical and Diagnostic Research, 7[12] 2926 (2013).
8. H. Guo, J. Guo, A. Baker, and C. A. Randall, 'Cold sintering process for ZrO2‐based ceramics: significantly enhanced densification evolution in yttria‐doped ZrO2,' Journal of the American Ceramic Society, 100[2] 491-95 (2017).
9. A. E. Van Driessche, T. M. Stawski, L. G. Benning, and M. Kellermeier, 'Calcium sulfate precipitation throughout its phase diagram,' pp. 227-56. in New perspectives on mineral nucleation and growth. Springer, 2017.
10. M. Goto, B. Molony, M. Ridge, and G. West, 'The forms of calcium sulphate hemihydrate,' Australian Journal of Chemistry, 19[2] 313-16 (1966).
11. N. B. Singh and B. Middendorf, 'Calcium sulphate hemihydrate hydration leading to gypsum crystallization,' Progress in Crystal Growth and Characterization of Materials, 53[1] 57-77 (2007).
12. A. Lewry and J. Williamson, 'The setting of gypsum plaster,' Journal of Materials Science, 29[23] 6085-90 (1994).
13. U. Ludwig, 'Beitrag zur quantitativen Phasenanalyse von Mischgipsen des Systems CaSO4—H2O,' Vol. 2701. Springer-Verlag, (2013).
14. N. Prieto-Taboada, O. Gómez-Laserna, I. Martínez-Arkarazo, M. Á. Olazabal, and J. M. Madariaga, 'Raman spectra of the different phases in the CaSO4–H2O System,' Analytical Chemistry, 86[20] 10131-37 (2014).
15. T. Schmid, R. Jungnickel, and P. Dariz, 'Insights into the CaSO4–H2O system: A Raman-spectroscopic study,' Minerals, 10[2] 115 (2020).
16. I. n. J. Carreño-Marquez, E. Menéndez-Méndez, H. E. Esparza-Ponce, L. Fuentes-Cobas, R. García-Rovés, I. Castillo-Sandoval, M. Luna-Porres, J. de-Frutos-Vaquerizo, and M. E. Montero-Cabrera, 'Naica’s Giant Crystals: Deterioration Scenarios,' Crystal Growth Design, 18[8] 4611-20 (2018).
17. W. Abriel, K. Reisdorf, and J. Pannetier, 'Dehydration reactions of gypsum: A neutron and X-ray diffraction study,' Journal of Solid State Chemistry, 85[1] 23-30 (1990).
18. H. Schmidt, I. Paschke, D. Freyer, and W. Voigt, 'Water channel structure of bassanite at high air humidity: Crystal structure of CaSO 4·0.625H 2O,' Acta Crystallographica. Section B, Structural Science, 67 467-75 (2011).
19. R. Gruver, 'Differential thermal‐analysis studies of ceramic materials: III, characteristic heat effects of some sulfates,' Journal of the American Ceramic Society, 34 353-57 (2006).
20. C. Fan, A. Kan, G. Fu, M. Tomson, and D. Shen, 'Quantitative evaluation of calcium sulfate precipitation kinetics in the presence and absence of scale inhibitors,' SPE Journal, 15[04] 977-88 (2010).
21. D. Kashchiev, 'Nucleation: basic theory with applications. 1ª edição.' in. Butterworth Heinemann. Grã-Britânia, 2000.
22. F. Alimi, H. Elfil, and A. Gadri, 'Kinetics of the precipitation of calcium sulfate dihydrate in a desalination unit,' Desalination, 158[1-3] 9-16 (2003).
23. Y.-W. Wang, Y.-Y. Kim, H. K. Christenson, and F. C. Meldrum, 'A new precipitation pathway for calcium sulfate dihydrate (gypsum) via amorphous and hemihydrate intermediates,' Chemical Communications, 48[4] 504-06 (2012).
24. A. Van Driessche, L. Benning, J. Rodriguez-Blanco, M. Ossorio, P. Bots, and J. García-Ruiz, 'The role and implications of bassanite as a stable precursor phase to gypsum precipitation,' Science, 336[6077] 69-72 (2012).
25. A. Saha, J. Lee, S. M. Pancera, M. F. Bräeu, A. Kempter, A. Tripathi, and A. Bose, 'New insights into the transformation of calcium sulfate hemihydrate to gypsum using time-resolved cryogenic transmission electron microscopy,' Langmuir, 28[30] 11182-87 (2012).
26. F. Jones, 'Infrared investigation of barite and gypsum crystallization: Evidence for an amorphous to crystalline transition,' CrystEngComm, 14[24] 8374-81 (2012).
27. T. M. Stawski, A. E. Van Driessche, M. Ossorio, J. D. Rodriguez-Blanco, R. Besselink, and L. G. Benning, 'Formation of calcium sulfate through the aggregation of sub-3 nanometre primary species,' Nature Communications, 7[1] 1-9 (2016).
28. B. Guan, L. Yang, and Z. Wu, 'Effect of Mg2+ ions on the nucleation kinetics of calcium sulfate in concentrated calcium chloride solutions,' Industrial Engineering Chemistry Research, 49[12] 5569-74 (2010).
29. M. Ossorio, A. Van Driessche, P. Pérez, and J. García-Ruiz, 'The gypsum–anhydrite paradox revisited,' Chemical Geology, 386 16-21 (2014).
30. A. Lebedev, 'Kinetics of gypsum dissolution in water,' Geochemistry International, 53[9] 811-24 (2015).
31. L. Amathieu and R. Boistelle, 'Crystallization kinetics of gypsum from dense suspension of hemihydrate in water,' Journal of Crystal Growth, 88[2] 183-92 (1988).
32. E. Pachon-Rodriguez and J. Colombani, 'Pure dissolution kinetics of anhydrite and gypsum in inhibiting aqueous salt solutions,' AIChE Journal, 59 (2013).
33. F. Brandt and D. Bosbach, 'Bassanite (CaSO4·0.5H2O) dissolution and gypsum (CaSO4·2H2O) precipitation in the presence of cellulose ethers,' Journal of Crystal Growth, 233 837-45 (2001).
34. M. Christoffersen, J. Christoffersen, M. Weijnen, and G. Van Rosmalen, 'Crystal growth of calcium sulphate dihydrate at low supersaturation,' Journal of Crystal Growth, 58[3] 585-95 (1982).
35. A. Klimchouk, 'The dissolution and conversion of gypsum and anhydrite,' International Journal of Speleology, 25[3] 2 (1996).
36. K. Schiller, 'Mechanism of re‐crystallisation in calcium sulphate hemihydrate plasters,' Journal of Applied Chemistry, 12[3] 135-44 (1962).
37. K. Serafeimidis and G. Anagnostou, 'On the time-development of sulphate hydration in anhydritic swelling rocks,' Rock Mechanics and Rock Engineering, 46[3] 619-34 (2013).
38. H. Guo, T. J. Bayer, J. Guo, A. Baker, and C. A. Randall, 'Current progress and perspectives of applying cold sintering process to ZrO2-based ceramics,' Scripta Materialia, 136 141-48 (2017).
39. Z. Munir, 'Surface area reduction during isothermal sintering,' Journal of the American Ceramic Society, 59 379-83 (1976).
40. L. P. Martin and M. Rosen, 'Correlation between surface area reduction and ultrasonic velocity in sintered zinc oxide powders,' Journal of the American Ceramic Society, 80[4] 839-46 (1997).
41. H. Guo, A. Baker, J. Guo, and C. A. Randall, 'Cold sintering process: A novel technique for low-temperature ceramic processing of ferroelectrics,' Journal of the American Ceramic Society, 99[11] 3489-507 (2016).
42. J.-P. Maria, X. Kang, R. D. Floyd, E. C. Dickey, H. Guo, J. Guo, A. Baker, S. Funihashi, and C. A. Randall, 'Cold sintering: Current status and prospects,' Journal of Materials Research, 32[17] 3205-18 (2017).
43. S. Funahashi, J. Guo, H. Guo, K. Wang, A. L. Baker, K. Shiratsuyu, and C. A. Randall, 'Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics,' Journal of the American Ceramic Society, 100[2] 546-53 (2017).
44. Y. Jing, N. Luo, S. Wu, K. Han, X. Wang, L. Miao, and Y. Wei, 'Remarkably improved electrical conductivity of ZnO ceramics by cold sintering and post-heat-treatment,' Ceramics International, 44[16] 20570-74 (2018).
45. S. Funahashi, H. Guo, J. Guo, A. L. Baker, K. Wang, K. Shiratsuyu, and C. A. Randall, 'Cold sintering and co-firing of a multilayer device with thermoelectric materials,' Journal of the American Ceramic Society, 100[8] 3488-96 (2017).
46. J. Guo, A. L. Baker, H. Guo, M. Lanagan, and C. A. Randall, 'Cold sintering process: a new era for ceramic packaging and microwave device development,' Journal of the American Ceramic Society, 100[2] 669-77 (2017).
47. J.-H. Seo, K. Verlinde, J. Guo, D. S. B. Heidary, R. Rajagopalan, T. E. Mallouk, and C. A. Randall, 'Cold sintering approach to fabrication of high rate performance binderless LiFePO4 cathode with high volumetric capacity,' Scripta Materialia, 146 267-71 (2018).
48. J. Guo, N. Pfeiffenberger, A. Beese, A. Rhoades, L. Gao, A. Baker, K. Wang, a. bolvari, and C. Randall, 'Cold sintering Na2Mo2O7 ceramic with polyetherimide (PEI) polymer to realize high performance composites and integrated multilayer circuits,' ACS Applied Nano Materials, 1 (2018).
49. J. Guo, S. S. Berbano, H. Guo, A. L. Baker, M. T. Lanagan, and C. A. Randall, 'Cold sintering process of composites: Bridging the processing temperature gap of ceramic and polymer materials,' Advanced Functional Materials, 26[39] 7115-21 (2016).
50. O. H. Kwon, 'Liquid phase sintering: Ceramics,' pp. 4597-601. in Encyclopedia of Materials: Science and Technology. Edited by K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière. Elsevier, Oxford, 2001.
51. D. O’Hare, 'Hydrothermal synthesis,' pp. 3989-92. in Encyclopedia of Materials: Science and Technology. Edited by K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière. Elsevier, Oxford, 2001.
52. C. Vakifahmetoglu, J. F. Anger, V. Atakan, S. Quinn, S. Gupta, Q. Li, L. Tang, and R. E. Riman, 'Reactive hydrothermal liquid‐phase densification (rHLPD) of ceramics–A study of the BaTiO3 [TiO2] composite system,' Journal of the American Ceramic Society, 99[12] 3893-901 (2016).
53. S. Seufert, C. Hesse, F. Goetz-Neunhoeffer, and J. Neubauer, 'Discrimination of bassanite and anhydrite III dehydrated from gypsum at different temperatures,' Zeitschrift fur Kristallographie Supplements, 2009 (2009).
54. S. Seufert, C. Hesse, F. Goetz-Neunhoeffer, and J. Neubauer, 'Quantitative determination of anhydrite III from dehydrated gypsum by XRD,' Cement and Concrete Research, 39[10] 936-41 (2009).
55. M. Asadi-Eydivand, M. Solati-Hashjin, S. S. Shafiei, S. Mohammadi, M. Hafezi, and N. A. Abu Osman, 'Structure, properties, and In vitro behavior of heat-treated calcium sulfate scaffolds fabricated by 3D printing,' PLoS One, 11[3] e0151216-e16 (2016).
56. L. Chang, R. Howie, and J. Sussman, 'Rock forming minerals: Non-silicates, sulfates, carbonates, halides and phosphates.' in. Longman Group, Harlow, UK, 1996.
57. E. P. Partridge and A. H. White, 'The solubility of calcium sulfate from 0 to 200,' Journal of the American Chemical Society, 51[2] 360-70 (1929).
58. R. Chang, 'Physical chemistry for the biosciences.' University Science Books, (2005).
59. T. A. Hoang, H. M. Ang, and A. L. Rohl, 'Effects of temperature on the scaling of calcium sulphate in pipes,' Powder Technology, 179[1] 31-37 (2007).
60. Y. Tang and J. Gao, 'Investigation of the Effects of Sodium Dicarboxylates on the Crystal Habit of Calcium Sulfate α-Hemihydrate,' Langmuir, 33[38] 9637-44 (2017).
61. S. J. Gurgul, G. Seng, and G. R. Williams, 'A kinetic and mechanistic study into the transformation of calcium sulfate hemihydrate to dihydrate,' Journal of Synchrotron Radiation, 26[3] (2019).
62. S. M and M. Ng, 'Calcium sulfate precipitation in the presence of nondominant calcium carbonate: Thermodynamics and kinetics,' Industrial Engineering Chemistry Research (2001).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78327-
dc.description.abstract冷燒結製程(CSP)在近年來已經成為陶瓷方面的熱門議題,這個製程不僅可以降低製程溫度,同時也為陶瓷與高分子複合材料的製備方法提供一個契機。然而,這個技術尚未被應用在含有結晶水的材料系統,像是硫酸鈣-水的系統(CaSO4-H2O),而這種系統的緻密化機制可能會有別於其他陶瓷系統,因此,這篇論文的主要目的就是探討硫酸鈣系統在室溫下進行冷燒結製程的細節。
實驗的起始材料為半水硫酸鈣(CaSO4.1/2 H2O)粉末,並運用不同的熱處理溫度來製備帶不同結晶水的硫酸鈣相。在這篇論文中,冷燒結製程的進行是在室溫下將粉末經由一單軸壓力加壓,並添加特定比例的液體,此外,探討的製程變因包含壓力、液體的種類與粉末的起始相。最後,實驗結果顯示離子的過飽和度是此製程的關鍵因素,並輔以微結構觀察與機械性質測量證明。
實驗結果說明半水硫酸鈣能經由此論文中的冷燒結製程在室溫下被有效緻密化,緻密化後的相主要為二水硫酸鈣;如果製程中沒有施加壓力,樣品的撓曲強度較低、晶粒尺寸也較大;將液體的種類從去離子水換成磷酸緩衝溶液說明粉末的溶解比析出物的形成種類重要。而在無水硫酸鈣二(CaSO4 II)作為起始相的情況下,冷燒結製程並無法將之緻密化,藉由溶解度測試說明,不僅過飽和度沒有達到析出物生成的條件,相較於半水硫酸鈣為起始相的情況,微結構觀察也沒有顯示出明顯的形貌變化,僅有一些微小孔洞生成於粉末表面。然而,由80 wt%的無水硫酸鈣二的20 wt%半水硫酸鈣組成的混合物卻能經由冷燒結製程有效燒結,最主要的關鍵在於半水硫酸鈣的溶解能析出二水硫酸鈣在無水硫酸鈣二的顆粒表面作為一保護層,此保護層能以較快速率形成,因此能使半水硫酸鈣能完全轉換為二水硫酸鈣,形成更均勻且細緻的結構,也讓混合物製成的冷燒結產品與純粹由半水硫酸鈣製成的冷燒結產品擁有相似的撓曲強度。
zh_TW
dc.description.abstractCold Sintering Process (CSP) has become one of hot issues in recent years. The process could not only lower the process temperature but also exhibit potential for the preparation of polymer-ceramics composites. However, this technique has not been applied to crystalline-water containing materials such as CaSO4-H2O system, whose densification mechanism may differ from other ceramics. Hence, the primary purpose of this study is to explore the process details on CSP of CaSO4-H2O system at room temperature.
The starting powder is CaSO4.1/2 H2O. Various heat treatments were used to prepare different phases for calcium sulfate. In the present study, CSP is proceeded through exerting uniaxial pressure on powders with the addition of a small amount of transient liquid at room temperature. The pressure, transient liquid and starting phase of powder are taken into consideration in this study. After all, the results show that the supersaturation of ions plays a determining role in this process. Microstructure observation and mechanical properties measurement give evidence to prove it.
Experimental results show that CaSO4.1/2 H2O is able to effectively densify through CSP at room temperature. The resulting phase after densification is mainly CaSO4.2 H2O. Flexural strength shows a lower value; and a larger grain size was observed when pressure is not applied. To replace deionized water with phosphate buffer solution shows an enhancement on dissolution of powder than the formation of precipitate. While in the case of CaSO4 II, it is not densified through CSP in this study. The supersaturation from dissolution test did not attain the boundary condition of precipitation. Microstructure observation detects no obvious morphology change compared to CaSO4.1/2 H2O dissolution. Only some micro-pores form on the powder surface of CaSO4 II. However, a mixture of 80 wt% CaSO4 II and 20 wt% CaSO4.1/2 H2O could be effectively sintered in this study. The major key parameter is the dissolution of CaSO4.1/2 H2O and the precipitation of CaSO4.2 H2O on the surface of CaSO4 II phase as a coating. The precipitation would take place fast to protect CaSO4 II phase from contacting to liquid. Hence, it makes CaSO4.1/2 H2O completely transformed to CaSO4.2 H2O. As a result, a more uniform and finer structure is formed. The flexural strength of CSP products made from powder mixture is about the same as those from all CaSO4.1/2 H2O.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:51:23Z (GMT). No. of bitstreams: 1
U0001-0408202000450300.pdf: 9238072 bytes, checksum: 345b3d917a2f8b243d449197fa39dd7b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xii
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 CaSO4-H2O system 3
2.1.1 Crystalline phases 3
2.1.2 Phase transformation 9
2.2 Dissolution and precipitation of calcium sulfate 12
2.2.1 Theory 12
2.2.2 Kinetics 15
2.3 Cold sintering process 18
Chapter 3 Experimental procedures 26
3.1 Dissolution test 26
3.1.1 Starting material 26
3.1.2 Processing 27
3.1.3 Characterization 29
3.1.3.1 Phase identification 29
3.1.3.2 Microstructure observation 29
3.1.3.3 Dissolution change with time 30
3.1.3.4 Solubility product constant (Ksp) of calcium sulfate 30
3.2 Cold sintering process 31
3.2.1 Starting material 31
3.2.2 Processing 31
3.2.3 Characterization 33
3.2.3.1 Density 33
3.2.3.2 Phase identification 33
3.2.3.3 Microstructure observation 33
3.2.3.4 Flexural strength 34
Chapter 4 Results 35
4.1 Dissolution test 35
4.1.1 Phase identification 35
4.1.2 Microstructure observation 38
4.1.3 Dissolution change with time 41
4.1.4 Solubility product constant (Ksp) of calcium sulfate 47
4.2 Cold sintering process 48
4.2.0 Abbreviation 48
4.2.1 Density 48
4.2.2 Phase identification 49
4.2.3 Microstructure observation 51
4.2.4 Flexural strength 52
Chapter 5 Discussion 53
5.1 Powder phase identification 53
5.1.1 300°C powder 53
5.1.2 700°C and 1100°C powder 56
5.1.3 1300°C powder 58
5.2 Steps of cold sintering process 61
5.2.1 Starting powder 61
5.2.2 300°C powder 66
5.2.3 1100°C powder 70
5.3 Variables affecting cold sintering process 72
5.3.1 Pressure 72
5.3.2 Liquid type (deionized water and DPBS) 74
5.3.3 Powder phases (Starting and 300°C powder) 77
Chapter 6 Conclusions 81
APPEXDIX 84
Reference 86
dc.language.isoen
dc.subject撓曲強度zh_TW
dc.subject冷燒結製程(CSP)zh_TW
dc.subject硫酸鈣-水系統zh_TW
dc.subject過飽和度zh_TW
dc.subject溶解析出zh_TW
dc.subjectDissolution and Precipitationen
dc.subjectFlexural strengthen
dc.subjectSupersaturationen
dc.subjectCaSO4-H2O systemen
dc.subjectCold Sintering Process (CSP)en
dc.title硫酸鈣的溶解對冷燒結製程之影響研究zh_TW
dc.titleDissolution of Calcium Sulfate and Its Influence on Cold Sintering Processen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭錦龍(Chin-Lung Kuo),許沛衣(Pei-Yi Hsu)
dc.subject.keyword冷燒結製程(CSP),硫酸鈣-水系統,過飽和度,溶解析出,撓曲強度,zh_TW
dc.subject.keywordCold Sintering Process (CSP),CaSO4-H2O system,Supersaturation,Dissolution and Precipitation,Flexural strength,en
dc.relation.page95
dc.identifier.doi10.6342/NTU202002336
dc.rights.note有償授權
dc.date.accepted2020-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2025-08-04-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-0408202000450300.pdf
  未授權公開取用
9.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved