請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78325完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管永恕(Yung-Shu Kuan) | |
| dc.contributor.author | Yuan-Yang Chen | en |
| dc.contributor.author | 陳元暘 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:51:17Z | - |
| dc.date.available | 2025-08-14 | |
| dc.date.copyright | 2020-09-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-04 | |
| dc.identifier.citation | Balasubramanian, A. S. Bachhawat, B. K. (1970). Sulfate metabolism in brain. Brain Res, 20(3), 341-360. doi:10.1016/0006-8993(70)90165-4 Bill, B. R. Korzh, V. (2014) Choroid plexus in developmental and evolutionary perspective. Front Neurosci, 8, 363. doi: 10.3389/fnins.2014.00363 Cheah, J. H., Kim, S. F., Hester, L. D., Clancy, K. W., Patterson, S. E., Papadopoulos, V., Snyder, S. H. (2006) NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron, 51(4), 431-440. doi: 10.1016/j.neuron.2006.07.011 Chen, Y., Khan, R. S., Cwanger, A., Song, Y., Steenstra, C., Bang, S., Cheah, J. H., Dunaief, J., Shindler, K. S., Snyder, S. H., Kim, S. F. (2013) Dexras1, a small GTPase, is required for glutamate-NMDA neurotoxicity. J Neurosci, 33(8), 3582-3587. doi: 10.1523/JNEUROSCI.1497-12.2013 Chodobski, A. Szmydynger-Chodobska, J. (2001) Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech, 52(1), 65-82. doi: 10.1002/1097-0029(20010101)52:1<65::AID-JEMT9>3.0.CO;2-4 Cismowski, M. J., Ma, C., Ribas C., Xie, X., Spruyt, M., Lizano, J. S., Lanier, S. M., Duzic, E. (2000) Activation of heterotrimeric G-protein signaling by a ras-related protein. Implications for signal integration. J Biol Chem, 275(31):23421-23424. doi:10.1074/jbc.C000322200 Crossgrove, J. S., Li, G. J., Zheng, W. (2005) The choroid plexus removes beta-amyloid from brain cerebrospinal fluid. Exp Biol Med (Maywood), 230(10), 771-776. doi: 10.1177/153537020523001011 deCarvalho, T. N., Akitake, C. M., Thisse, C., Thisse, B., Halpern, M. E. (2013). Aversive cues fail to activate fos expression in the asymmetric olfactory-habenula pathway of zebrafish. Front Neural Circuits, 7, 98. doi: 10.3389/fncir.2013.00098 Goldim, M. P., Danielski, L. G., Rodrigues, J. F., Joaquim, L., Garbossa, L., de Oliveira Junior, A. N., Metzker, K. L. L., Giustina, A. D., Cardoso, T., Barichello, T., Petronilho, F. (2019). Oxidative stress in the choroid plexus contributes to blood-cerebrospinal fluid barrier disruption during sepsis development. Microvasc Res, 123, 19-24. doi: 10.1016/j.mvr.2018.12.001 Graham, T. E., Prossnitz, E. R., Dorin, R. I. (2001). Dexras1/AGS-1 Inhibits Signal Transduction from the Gi-coupled Formyl Peptide Receptor to Erk-1/2 MAP Kinases. J Biol Chem, 277, 10876-10882. doi: 10.1074/jbc.M110397200 Graham, T. E., Qiao, Z., Dorin, R.I. (2004) Dexras1 inhibits adenylyl cyclase. Biochem Biophys Res Commun, 316(2), 307-312. doi: 10.1016/j.bbrc.2004.02.049 Greenwood, M. P., Greenwood, M., Mecawi, A. S., Antunes-Rodrigues, J., Paton, J. F., Murphy, D. (2016). Rasd1, a small G protein with a big role in the hypothalamic response to neuronal activation. Molecular brain, 9, 1. doi:10.1186/s13041-015-0182-2 Hästbacka, J., de la Chapelle, A., Mahtani, M. M., Clines, G., Reeve-Daly, M. P., Daly, M., Hamilton, B. A., Kusumi, K., Trivedi, B., Weaver, A. (1994). The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell, 78(6), 1073–1087. doi:10.1016/0092-8674(94)90281-x Heneghan, J. F., Akhavein, A., Salas, M. J., Shmukler, B. E., Karniski, L. P, Vandorpe, D. H., Alper, S. L. (2010). Regulated transport of sulfate and oxalate by SLC26A2/DTDST. Am J Physiol Cell Physiol, 298(6), C1363–C1375. doi: 10.1152/ajpcell.00004.2010 Johanson, C. E., Duncan, J. A., Klinge, P. M., Brinker, T., Stopa, E. G., Silverberg, G. D. (2008). Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res, 5:10, doi: 10.1186/1743-8454-5-10 Kant, S., Stopa, E. G., Johanson, C. E., Baird, A., Silverberg, G. D. (2018). Choroid plexus genes for CSF production and brain homeostasis are altered in Alzheimer's disease. Fluids Barriers CNS, 15(1), 34. doi:10.1186/s12987-018-0120-7 Kemppainen, R. J. Behrend, E. N. (1998). Dexamethasone Rapidly Induces a Novel Ras Superfamily Member-related Gene in AtT-20 Cells. J Biol Chem, 273, 3129-3131. doi:10.1074/jbc.273.6.3129 Kratzer, I., Vasiljevic, A., Rey, C., Fevre-Montange, M., Saunders, N., Strazielle, N., Ghersi-Egea, J. F. (2012). Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem Cell Biol, 138(6), 861-879. doi:10.1007/s00418-012-1001-9 Norton, K. I., Rai, B., Desai, H., Brown, D., Cohen, M. (2011). Prevalence of choroid plexus cysts in term and near-term infants with congenital heart disease. AJR Am J Roentgenol, 196(3), W326-9. doi: 10.2214/AJR.10.5054 Ohana, E., Shcheynikov, N., Park, M., Muallem, S. (2012). Solute Carrier Family 26 Member a2 (Slc26a2) Solute Carrier Family 26 Member a2 (Slc26a2) Protein Functions as an Electroneutral SO42−/OH−/Cl− Exchanger Regulated by Extracellular Cl−. J Biol Chem, 287(7), 5122-32. doi: 10.1074/jbc.M111.297192 Pan, H. Y. (2016). Function and expression regulation control of rasd1 in zebrafish larvae. Unpublished master thesis. Park, M., Ohana, E., Choi, S. Y., Lee, M. S., Park, J. H., Muallem, S. (2014). Multiple roles of the SO4(2-)/Cl-/OH- exchanger protein Slc26a2 in chondrocyte functions. J Biol Chem, 289(4), 1993–2001. doi:10.1074/jbc.M113.503466 Sathyanesan, M., Girgenti, M. J., Banasr, M., Stone, K., Bruce, C., Guilchicek, E., Wilczak-Havill, K., Nairn, A., Williams, K., Sass, S., Duman, J. G., Newton, S. S. (2012) A molecular characterization of the choroid plexus and stress-induced gene regulation. Transl Psychiatry, 2, e139. doi: 10.1038/tp.2012.64 Sharma, H. S. Johanson, C. E. (2007). Blood–cerebrospinal fluid barrier in hyperthermia. Prog Brain Res, 162, 459-478. doi: 10.1016/S0079-6123(06)62023-2 Spector, R. Johanson, C. E. (1989). The mammalian choroid plexus. Sci Am, 261(5), 68-74. doi: 10.1038/scientificamerican1189-68 Spector, R. Johanson, C. E. (2007). Vitamin transport and homeostasis in mammalian brain: focus on Vitamins B and E. J Neurochem, 103(2), 425-438. doi: 10.1111/j.1471-4159.2007.04773.x Tenenbaum, T., Adam, R., Eggenpöhler, I., Matalon, D., Seibt, A., Novotny, G., Galla, H.J., Schroten, H. (2005). Strain-dependent disruption of the blood-CSF barrier by Streptococcus suis in vitro. FEMS Immunol. Med. Microbiol, 44, 25–34. doi: 10.1016/j.femsim.2004.12.006 Tenenbaum, T., Matalon, D., Adam, R., Seibt, A., Wewer, C., Schwerk, C., Galla, H. J., Schroten, H. (2008) Dexamethasone prevents alteration of tight junction-associated proteins and barrier function in porcine choroid plexus epithelial cells after infection with Streptococcus suis in vitro. Brain Res, 1229, 1-17. doi: 10.1016/j.brainres.2008.06.118 Vaidyanathan, G., Cismowski, M. J., Wang, G., Vincent, T. S., Brown, K. D. Lanier, S. M. (2004). The Ras-related protein AGS1/RASD1 suppresses cell growth. Oncogene, 23, 5858-5863. doi: 10.1038/sj.onc.1207774 Wu, B.T., Wen, S.H., Hwang, S.P.L., Huang, C. J. Kuan, Y.S. (2015). Control of Wnt5b secretion by Wntless modulates chondrogenic cell proliferation through fine-tuning fgf3 expression. J Cell Sci, 128, 2328-2339. doi:10.1242/jcs.167403 Zhang, P., Bai, Y., Lu, L., Li, Y. Duan, C. (2016). An oxygen-insensitive Hif-3α isoform inhibits Wnt signaling by destabilizing the nuclear β-catenin complex. Elife, 5:e08996. doi: 10.7554/eLife.08996 Zhang, P., Yao, Q., Lu, L., Li, Y., Chen, P. J. Duan, C. (2014). Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep, 6(6), 1110-1121. doi: 10.1016/j.celrep.2014.02.011 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78325 | - |
| dc.description.abstract | 壓力是現代生活中常會碰到的問題,並會引發許多嚴重的病症,諸如肥胖、心血管疾病、心理問題等等。在壓力狀態下,腎上腺會分泌可體松(cortisol)一類的葡萄糖皮質素(glucocorticoid),引發一系列的反應以對抗壓力。地塞米松(dexamethasone)是一種人工合成的葡萄糖皮質素,且與內生性的葡萄糖皮質素有非常相似的結構與功能,常被用來模擬身體在壓力下的狀態。在本實驗室先前的研究中,已證實地塞米松會在斑馬魚幼魚的脈絡叢(choroid plexus)中引起rasd1的表現。Rasd1被認為是一種位於膜上的小三磷酸鳥苷酶(small GTPase),並且可能與一些訊息傳導路徑有關聯。而Rasd1在這由地塞米松所引發的脈絡叢壓力反應中究竟扮演著何種角色目前仍不得而知。 為了釐清Rasd1在脈絡叢的壓力反應中所扮演的角色,我們進行了核糖核酸定序(RNA sequencing)。由於當時仍無法準確地取脈絡叢的細胞,因此核糖核酸定序所使用的RNA是取自斑馬魚幼魚的全頭。我使用了反轉錄即時定量聚合酶連鎖反應(qRT-PCR)以及全固定原位雜合反應(whole-mount in situ hybridization)來驗證核酸定序的結果,並且發現與缺氧壓力相關的hif1al基因同樣也會在地塞米松的影響之下表現於脈絡叢。另外我也發現在進行地塞米松加藥處理後,rasd1表現量上升的時間較hif1al要早。 雖然全頭的核糖核酸定序分析已經幫助我得到一些初步的結果,但若要更進一步的探討脈絡叢的免疫反應,則針對脈絡叢的核糖核酸分析仍是不可或缺的。為了實現精準的定位脈絡叢細胞,我使用了由實驗室學長製造,在脈絡叢過量表現增強型綠螢光蛋白(eGFP)的基因轉殖斑馬魚(Wu, 2019)來進行此實驗。我使用極細的針頭將位於脈絡叢的綠螢光細胞切割出來,並且使用從這些細胞抽取的核糖核酸進行定序。而根據針對脈絡叢的核糖核酸定序結果,我發現在經過地塞米松加藥處理後,許多心臟相關的基因在脈絡叢的表現量會顯著上升,但此結果仍需進一步的驗證。另外,在根據此定序結果進行的全固定原位雜合反應實驗結果中,我也發現經地塞米松處理後,與物質運輸相關的slc26a2基因在脈絡叢的表現量會顯著上升。 為了便於針對定序的結果進行後續的篩選與驗證,我製造了一條在脈絡叢過量表現Rasd1的基因轉殖斑馬魚。利用這條轉殖魚,我發現rasd1的過量表現並不會引發hif1al的上升,綜合先前得到rasd1表現量較早上升的結果,我認為這兩個基因很可能是在不同的反應路徑上。未來我們將持續探討rasd1、hif1al與slc26a2等基因之間的關聯性,相信可以幫助我們對脈絡叢的壓力反應有更進一步的認識。 | zh_TW |
| dc.description.abstract | Stress is a common problem in modern society, which leads to many serious illnesses, including obesity, cardiovascular diseases and mental problems, etc. Under stress conditions, adrenal glands secret glucocorticoids such as cortisol, that leads to a series of responses to confront stress. Dexamethasone (DEX) is a synthetic glucocorticoid that has similar predicted functions as endogenous glucocorticoids, often used to mimic stress conditions. Previously, our laboratory proved that the expression of rasd1 is upregulated in choroid plexuses (CP) of 3 dpf zebrafish larvae after DEX treatment. Rasd1 is predicted to be a membrane-bound small GTPase, may be involved in signal transduction. However, the role Rasd1 plays in the DEX-induced stress response of CP still remains unknown. To clarify the role of Rasd1 in the stress response of CP, we did RNA-seq for comparing the gene expression of DEX-treated and control zebrafish larvae. Due to the difficulty in collecting CP cells from zebrafish larvae, RNA extracted from whole head of DEX-treated and control larvae was used for RNA-seq. I utilized qRT-PCR and whole-mount in situ hybridization (WMISH) to verify the RNA-seq result, and found that hif1al is also induced in CP after DEX treatment. With time-course WMISH, I found that the induction of rasd1 by DEX treatment is earlier than that of hif1al. Although I have gained some data with whole-head RNA-seq, CP-specific RNA-seq is still needed for further research. To specifically harvest CP cells, I used a transgenic zebrafish line generated by our lab member (Wu, unpublished, 2019), which expresses eGFP in CP cells. Utilizing syringe needles, eGFP expressing cells in CP were carved out, and RNA extracted from these cells was used for RNA-seq. With the CP-specific RNA-seq result, I found that many heart-related genes were significantly upregulated in CP after DEX treatment, while further verification of the result is still needed. Also, based on CP-specific RNA-seq result, I selected several genes to do WMISH, and found that slc26a2 was also induced in CP by DEX. To help me verify the RNA-seq result, I generated a transgenic zebrafish line that overexpresses rasd1 in CP. With this transgenic line, I found that hif1al was not induced in CP by rasd1 overexpression. Combining the time-course WMISH data, I believe the two genes are highly possible to be in separate pathways. We will keep investigating the relationship among rasd1, hif1al and slc26a2, and the results should let us have a deeper understand of the stress response in CP. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:51:17Z (GMT). No. of bitstreams: 1 U0001-0408202011283900.pdf: 2360698 bytes, checksum: b7e6d389d5f60fa5b9c711191306a5af (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | List of Abbreviations………………………………………………….……………….II 中文摘要……………………………………………………………………………….III Abstract…………………………………...…………………………………………… V Chapter 1 Introduction…………………………………………………………..... 1 1.1 Dexamethasone-induced Ras-related Protein 1 (Rasd1)…………………………….1 1.2 Choroid Plexus (CP)…………………………………………………………………2 Chapter 2 Materials and Method…………………………………………………...5 2.1 Zebrafish strains and maintenance…………………………………………………...5 2.2 Dexamethasone (DEX) treatment……………………………………………………5 2.3 Stress treatment………………………………………………………………………5 2.4 Plasmid construction for rasd1 overexpression………………………………………6 2.5 Capped mRNA in vitro transcription…………………………………………………6 2.6 Microinjection………………………………………………………………………..6 2.7 Whole-head RNA extraction…………………………………………………………7 2.8 Quantitative reverse transcription polymerase chain reaction (qRT-PCR)…………..7 2.9 Whole-mount in situ hybridization…………………………………………………..8 2.10 Whole-mount fluorescent in situ hybridization and immunofluorescence staining…8 2.11 CP-specific RNA sequencing……………………………………………………….9 Chapter 3 Results……………………………………………..……………………10 3.1 rasd1 was ectopically induced in CP and kidney-like organs by DEX………………10 3.2 rasd1 can be induced in CP by different stress treatment…………………………..10 3.3 hif1al was induced in CP after DEX treatment………………………………………11 3.4 The induction of rasd1 by DEX treatment happens before that of hif1al…………..12 3.5 Based on CP-specific RNA-seq result, many heart-related genes were altered in CP by DEX treatment………………………………………………………………………12 3.6 slc26a2 was induced in CP by DEX treatment………………………………………13 3.7 hif1al is not induced by overexpressing rasd1 in CP……………………………….14 Chapter 4 Conclusions and Discussions…………………………………………..16 Reference………………...…………………………………………………………….21 Figures...……………………………………………………………………………….27 | |
| dc.language.iso | en | |
| dc.subject | 地塞米松 | zh_TW |
| dc.subject | hif1al | zh_TW |
| dc.subject | rasd1 | zh_TW |
| dc.subject | slc26a2 | zh_TW |
| dc.subject | 脈絡叢 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | dexamethasone | en |
| dc.subject | choroid plexus | en |
| dc.subject | hif1al | en |
| dc.subject | rasd1 | en |
| dc.subject | slc26a2 | en |
| dc.subject | zebrafish | en |
| dc.title | Rasd1在由地塞米松引發於斑馬魚幼魚脈絡叢之壓力反應中所扮演的角色 | zh_TW |
| dc.title | Role of Rasd1 in Dexamethasone-Mediated Stress Response in Choroid Plexus of Zebrafish Larvae | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡清華(Chin-Hwa Hu),劉薏雯(Yi-Wen Liu),黃聲蘋(Sheng-Ping L. Hwang),莊永仁(Yung-Jen Chuang) | |
| dc.subject.keyword | hif1al,rasd1,slc26a2,地塞米松,脈絡叢,斑馬魚, | zh_TW |
| dc.subject.keyword | choroid plexus,dexamethasone,hif1al,rasd1,slc26a2,zebrafish, | en |
| dc.relation.page | 37 | |
| dc.identifier.doi | 10.6342/NTU202002352 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-04 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-14 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0408202011283900.pdf 未授權公開取用 | 2.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
