請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78323完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 段維新(Wei-Hsing Tuan) | |
| dc.contributor.author | Yu-Shao Chen | en |
| dc.contributor.author | 陳禹劭 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:51:11Z | - |
| dc.date.available | 2025-08-10 | |
| dc.date.copyright | 2020-09-14 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-04 | |
| dc.identifier.citation | 1. M. Sharma, P. Jamdagni, A. Kumar, and P. K. Ahluwalia, 'Electronic, dielectric and mechanical properties of MoS2/SiC hybrid bilayer: A first principle study,' Physica E: Low-dimensional Systems and Nanostructures, 71 49-55 (2015). 2. N. Liu, M. Becton, L. Zhang, H. Chen, X. Zeng, R. Pidaparti, and X. Wang, 'A coarse-grained model for mechanical behavior of phosphorene sheets,' Physical Chemistry Chemical Physics, 21[4] 1884-1894 (2019). 3. B. D. Channabasavaraj, A. V. Charanraj, M. K. Rangaswamy and R. B. Devaraj, 'A Study on Damage Tolerance Evaluation of the Vertical Tail with the Z stiffened panel of a Transport Aircraft.' International Research Journal of Engineering and Technology 4[12] (2017). 4. V. A. Franklin and C. T.M, 'Fracture strength evaluation of composite laminate using modified wek model,' pp. 345 Vol. 8, (2018). 5. J. Douville, 'Passaivation basics: will this stainless steel rust?' The fabricator: testing and measuring (2018). 6. V. Sheridan, 'Why does aluminum resist rust?' Quora: rust (chemical compound) and alumina (2020). 7. A. Fais, 'What are ceramic-matrix nanocomposites and who leads the field in their research and development?' Quora: ceramics (material) and nanotechnology (2017) 8. H. M. Tülümen, T. Hanemann, V. Piotter, and D. Stenzel, 'Investigation of Feedstock Preparation for Injection Molding of Oxide–Oxide Ceramic Composites,' Journal of Manufacturing and Materials Processing, 3[1] (2019). 9. T. Vagkopoulou, S. O. Koutayas, P. Koidis, J. R. Strub, 'Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic,' Eur J Esthet Dent, 4[2] 130‐151 (2009). 10. Zmak, D. Coric, V. Mandic, and L. Curkovic, 'Hardness and Indentation Fracture Toughness of Slip Cast Alumina and Alumina-Zirconia Ceramics,' Materials (Basel), 13[1] (2019). 11. F. Tavangarian, D. Hui, and G. Li, 'Crack-healing in ceramics,' Composites Part B: Engineering, 144 56-87 (2018). 12. S. A. McDonald, S. B. Coban, N. R. Sottos, and P. J. Withers, 'Tracking capsule activation and crack healing in a microcapsule-based self-healing polymer,' Scientific Reports, 9[1] 17773 (2019). 13. Y.-K. Song, Y.-H. Jo, Y.-J. Lim, S.-Y. Cho, H.-C. Yu, B.-C. Ryu, S.-I. Lee, and C.-M. Chung, 'Sunlight-Induced Self-Healing of a Microcapsule-Type Protective Coating,' ACS Applied Materials Interfaces, 5[4] 1378-84 (2013). 14. M. Kawagoe, M. Nakanishi, J. Qiu, and M. Morita, 'Growth and healing of a surface crack in poly(methyl methacrylate) under case II diffusion of methanol,' Polymer, 38[24] 5969-5975 (1997). 15. A. Aytimur, S. Koçyiğit, and İ. Uslu, 'Calcia Stabilized Ceria Doped Zirconia Nanocrystalline Ceramic,' Journal of Inorganic and Organometallic Polymers and Materials, 24[6] 927-932 (2014). 16. D. Tejero-Martin, M. Rezvani Rad, A. McDonald, and T. Hussain, 'Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings,' Journal of Thermal Spray Technology, 28[4] 598-644 (2019). 17. F. Wirsching, 'Calcium Sulfate.' Ullmann's Encyclopedia of Industrial Chemistry, (2000). 18. L. L. Hench, 'Bioceramics: From Concept to Clinic,' Journal of the American Ceramic Society, 74[7] 1487-510 (1991). 19. P. P. Cortez, M. A. Silva, M. Santos, P. Armada-da-Silva, A. Afonso, M. A. Lopes, J. D. Santos, and A. C. Mauricio, 'A glass-reinforced hydroxyapatite and surgical-grade calcium sulfate for bone regeneration: In vivo biological behavior in a sheep model,' J Biomater Appl, 27[2] 201-17 (2012). 20. M. Nilsson, M. H. Zheng, and M. Tagil, 'The composite of hydroxyapatite and calcium sulphate: a review of preclinical evaluation and clinical applications,' Expert Rev Med Devices, 10[5] 675-84 (2013). 21. R. W. Bucholz, 'Nonallograft Osteoconductive Bone Graft Substitutes,' Clinical Orthopaedics and Related Research®, 395 (2002). 22. K. N. Lewis, M. V. Thomas, and D. A. Puleo, 'Mechanical and degradation behavior of polymer-calcium sulfate composites,' J Mater Sci Mater Med, 17[6] 531-7 (2006). 23. N. Tovar, P. Lee, S. Mamidwar, H. Alexander, and J. Ricci, 'In vitro degradation of calcium sulfate polymer composites for the reconstruction of bone,' pp. 1-2 in Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC). 24. S. Amini, A. Masic, L. Bertinetti, J. S. Teguh, J. S. Herrin, X. Zhu, H. Su, A. Miserez, 'Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages,' Nature communications [5] 3187 (2014). 25. N. Leroy and E. Bres, 'Structure and substitutions in fluorapatite,' pp. 36-48. Eur Cell Mater, Vol. 2. (2001). 26. F. G. Bell, 'A survey of the engineering properties of some anhydrite and gypsum from the north and midlands of England,' Engineering Geology, 38[1] 1-23 (1994). 27. E. C. Robertson, R. A. Robie, and K. G. Books, 'Physical properties of salt, anhydrite and gypsum : preliminary report,' pp. 38. Trace Elements Memorandum, (1958). 28. C. J. Haecker, E. J. Garboczi, J. W. Bullard, R. B. Bohn, Z. Sun, S. P. Shah, and T. Voigt, 'Modeling the linear elastic properties of Portland cement paste,' Cement and Concrete Research, 35[10] 1948-60 (2005). 29. H. C. Wu, Y. M. Xia, X. Y. Hu, and X. Liu, 'Improvement on mechanical strength and water absorption of gypsum modeling material with synthetic polymers,' Ceramics International, 40[9] 14899-906 (2014). 30. S. Cavelier, M. Tanzer, and F. Barthelat, 'Maximizing the strength of calcium sulfate for structural bone grafts,' Journal of Biomedical Materials Research Part A, 108[4] 963-71 (2020). 31. S. Cramer and O. Friday, 'Mechanical properties of gypsum board at elevated temperatures,' Proceedings of the Fire and Materials 2003 Conference (2003). 32. Kyocera global®, 'Technical data: Alumina (aluminum oxide, Al2O3)' Fine ceramics (advanced ceramics) (n.d.) 33. E. Fernández, F. J. Gil, M. P. Ginebra, F. C. Driessens, J. A. Planell, S. M. Best, 'Calcium phosphate bone cements for clinical applications. Part II: precipitate formation during setting reactions,' Journal of materials science. Materials in medicine, 10[3], 177–183. (1999). 34. K. de Groot, 'Clinical applications of calcium phosphate biomaterials: A review,' Ceramics International, 19[5] 363-66 (1993). 35. A. I. Mitsionis and T. C. Vaimakis, 'A calorimetric study of the temperature effect on Calcium Phosphate precipitation,' Journal of Thermal Analysis and Calorimetry, 99[3] 785-89 (2010). 36. B. Wysocki, B. Dybala, K. J. Kurzydłowski, D. Leszczynska, and W. Święszkowski, 'CNTs as ion carriers in formation of calcium phosphate coatings,' Surface Engineering, 31:10 733-739 (2015) 37. Y.-H. Song, H. Hahn, and E. Hoffmann, 'Effects of pH and Ca/P ratio on the precipitation of phosphate,' Chemical Water and Wastewater Treatment., 7 349-62 (2002). 38. M. Iijima, H. Kamemizu, N. Wakamatsu, T. Goto, Y. Doi, and Y. Moriwaki, 'Precipitation of octacalcium phosphate at 37°C and at pH 7.4: in relation to enamel formation,' Journal of Crystal Growth, 112[2] 467-73 (1991). 39. Y. Liu, R. Shelton, and J. Barralet, 'Homogeneous Octacalcium Phosphate Precipitation: Effect of Temperature and pH,' Key Engineering Materials, 254-256 79-82 (2004). 40. V. Komlev, I. Fadeeva, A. Fomin, L. Shvorneva, D. Ferro, and S. Barinov, 'Synthesis of octacalcium phosphate by precipitation from solution,' Doklady Chemistry, 432 178-182 (2010). 41. P.-T. Cheng, 'Formation of octacalcium phosphate and subsequent transformation to hydroxyapatite at low supersaturation: A model for cartilage calcification,' Calcified Tissue International, 40[6] 339-43 (1987). 42. I. Akbar and S. Kim, 'Characteristic of magnesium substituted octacalcium phosphate prepared by precipitation method,' AIP Conference Proceedings, 2092[1] 020009 (2019). 43. A. Yelten-Yilmaz and S. Yilmaz, 'Wet chemical precipitation synthesis of hydroxyapatite (HA) powders,' Ceramics International, 44[8] 9703-10 (2018). 44. R. K. Shah, M. N. Fahmi, A. H. Mat, A. A. Zainal, 'The synthesis of hydroxyapatite through the precipitation method,' The Medical journal of Malaysia, 59 Suppl B, 75–76. (2004). 45. C. Liu, Y. Huang, W. Shen, and J. Cui, 'Kinetics of hydroxyapatite precipitation at pH 10 to 11,' Biomaterials, 22[4] 301-306 (2001). 46. D. Mehta, S. George, and P. Mondal, 'Synthesis of Hydroxyapatite by Chemical Precipitation Technique and Study of Its Biodegradability,' International Journal of Research in Advent Technology, 2 (2014) 47. M. H. Santos, M. d. Oliveira, L. P. d. F. Souza, H. S. Mansur, and W. L. Vasconcelos, 'Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process %J Materials Research,' 7 625-30 (2004). 48. S. M. Arifuzzaman and S. Rohani, 'Experimental study of brushite precipitation,' Journal of Crystal Growth, 267[3] 624-34 (2004). 49. C. Oliveira, P. Georgieva, F. Rocha, A. Ferreira, and S. Feyo de Azevedo, 'Dynamical model of brushite precipitation,' Journal of Crystal Growth, 305[1] 201-10 (2007). 50. W. Kibalczyc, 'Study of calcium phosphate precipitation at 37 °C,' Crystal Research and Technology, 24[8] 773-78 (1989). 51. R. Despotović, N. Filipović-Vinceković, and H. Füredi-Milhofer, 'Precipitation of calcium phosphates from electrolyte solutions,' Calcified Tissue Research, 18[1] 13-26 (1975). 52. R. W. Marshall and G. H. Nancollas, '20s of crystal growth of dicalcium phosphate dihydrate,' The Journal of Physical Chemistry, 73[11] 3838-44 (1969). 53. M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, 'Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review,' J Funct Biomater, 6[4] 1099-140 (2015). 54. E. Hamed, Y. Lee, and I. Jasiuk, 'Multiscale modeling of elastic properties of cortical bone,' Acta Mechanica, 213[1-2] 131-54 (2010). 55. T. Kokubo, 'Bioactive glass ceramics: properties and applications,' Biomaterials, 12[2] 155-63 (1991). 56. Y.-M. Kong, S. Kim, H.-E. Kim, and I.-S. Lee, 'Reinforcement of Hydroxyapatite Bioceramic by Addition of ZrO2 Coated with Al2O3,' Journal of the American Ceramic Society, 82[11] 2963-68 (1999). 57. Y. Lei, M. Saakes, R. D. van der Weijden, and C. J. N. Buisman, 'Effects of current density, bicarbonate and humic acid on electrochemical induced calcium phosphate precipitation,' Chemical Engineering Journal, 342 350-56 (2018). 58. Y. Lei, B. Song, M. Saakes, R. D. van der Weijden, and C. J. N. Buisman, 'Interaction of calcium, phosphorus and natural organic matter in electrochemical recovery of phosphate,' Water Research, 142 10-17 (2018). 59. S. Hiromoto and T. Yamazaki, 'Micromorphological effect of calcium phosphate coating on compatibility of magnesium alloy with osteoblast,' Sci Technol Adv Mater, 18[1] 96-109 (2017). 60. K. Onuma and M. Iijima, 'Nanoparticles in β-tricalcium phosphate substrate enhance modulation of structure and composition of an octacalcium phosphate grown layer,' CrystEngComm, 19[44] 6660-72 (2017). 61. C. Göbel, P. Simon, J. Buder, H. Tlatlik, and R. Kniep, 'Phase formation and morphology of calcium phosphate–gelatine-composites grown by double diffusion technique: the fluoride,' J. Mater. Chem., 14[14] 2225-30 (2004). 62. A. E. S. Van Driessche, T. M. Stawski, L. G. Benning, and M. Kellermeier, 'Calcium Sulfate Precipitation Throughout Its Phase Diagram,' pp. 227-56. New Perspectives on Mineral Nucleation and Growth, (2017). 63. C. J. Haecker, E. J. Garboczi, J. W. Bullard, R. B. Bohn, Z. Sun, S. P. Shah, and T. Voigt, 'Modeling the linear elastic properties of Portland cement paste,' Cement and Concrete Research, 35[10] 1948-60 (2005). 64. M. Denny, K. Mach, S. Tepler, and P. Martone, 'Indefatigable: an erect coralline alga is highly resistant to fatigue,' J Exp Biol, 216[Pt 20] 3772-80 (2013). 65. M. Achintha and C. Burgoyne, 'fracture energy of the concrete–FRP interface in strengthened beams,' Engineering Fracture Mechanics, 110 38-51 (2013). 66. K. P. Shah, 'Stress concentration ' The hand book on mechanical maintenance, 1149 (2011) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78323 | - |
| dc.description.abstract | 裂縫在陶瓷材料的機械性表現中一直扮演很重要的角色,裂縫出現會顯著地影響陶瓷材料之壽命及機械行為。當裂縫生成後會成長並穿透整個材料,最終導致材料之破壞。已經有許多研究提出不同的方法來解決裂縫衍生之問題,在這些方法之中,裂縫癒合是其中最能夠有效使材料強度恢復的方法之一。 硫酸鈣做為臨床上使用的醫療材料已有長遠之歷史,其擁有極佳之生物相容性及生物降解性,並能被人體完全吸收。硫酸鈣在被人體完全降解之前會轉變為磷酸鈣鹽類,而這種磷酸鈣鹽類通常伴隨著緻密的片狀結構,這種能產生緻密結構的相轉變創造了可以實施癒合裂縫的機會。在這份研究中,硫酸鈣被作為原始材料並析出磷酸鈣鹽類來達到裂縫癒合之效果。 實驗結果顯示,只要有磷酸根離子參與反應,緻密的析出物就會產生。隨著添加不同濃度的磷酸根溶液,硫酸鈣試樣之強度也隨之上升。當額外的鈣離子及磷酸根離子被添加時,試樣之機械強度也隨之恢復,並可達到本來強度的百分之六十。試樣的表面形貌及微結構及裂縫之長度均使用電子顯微鏡進行觀測,結果顯示裂縫之長度隨著實驗的製程進行逐漸降低,緻密析出物也確實幫助縮短裂縫長度。析出物的相鑑定是由X光繞射分析儀進行,結果顯示析出物應為磷酸氫鈣以及氫氧基磷灰石之混和物,而隨著磷酸根之濃度上升,氫氧基磷灰石也更傾向產生。在比較了撓曲強度以及裂縫長度之關係後,結果顯示兩者為負相關,而且裂縫癒合之機制能夠同時使用微觀及巨觀之角度解釋。 | zh_TW |
| dc.description.abstract | Crack has played an important role on the performance of ceramics. The presence of crack would significantly affect the mechanical behavior and life duration of ceramics. After its initiation, crack would propagate through the whole material. It may lead to failure in the end. Many studies proposed various treatments to solve the problems associated with crack. Among these treatments, crack healing is one of the most efficient methods to recover the strength. Calcium sulfate (CaSO4, CS) has been used for clinical application for a long time. It exhibits high biocompatibility and degradability. Calcium sulfate can be resorbed within human body, it would transform into calcium phosphate in human body before complete degradation. The calcium phosphate products are usually in the form of dense structure. The formation of calcium phosphate precipitates may induce chance to fulfill crack healing. In the present study, the precipitation of calcium phosphate is used to heal the cracks within calcium sulfate. The result showed that dense structure would be formed as long as the phosphate ions are involved. By adding solution with various phosphate ion concentration into calcium sulfate specimens, the extent of strength recovery is evaluated. It showed that the strength of specimen is recovered partly with the addition of phosphate and calcium ions. The strength recovery can reach 60% of the original value. The microstructure observations are conducted by SEM. Both morphology and crack length are observed. It showed that crack length was decreased with the treatment; furthermore, the precipitation did shorten the crack length. XRD phase identification was also conducted. The phase analysis indicates that the product of precipitation may be a mixture of different calcium phosphate. It also showed that hydroxyapatite tends to form with the increase of phosphate ion concentration. After comparing the results of flexural strength and crack length, the crack length vs strength chart was proposed. The result showed that crack length and strength are negatively relative to each other. And the mechanism of strength recovery can be explained in terms of both microscale and macroscale. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:51:11Z (GMT). No. of bitstreams: 1 U0001-0408202015512700.pdf: 29542095 bytes, checksum: 40a937d317a649b26365d7f57549c297 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 致謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 Introduction 1 Chapter 2 Literature survey 3 2.1 Fracture mechanics 3 2.2 Crack healing 5 2.2.1 To prevent crack from initiation. 5 2.2.2 To stop the crack from propagation 7 2.2.3 To heal the crack 9 2.2.3.1 Phase transformation crack healing 9 2.2.3.2 Microcapsules crack healing 11 2.2.3.3 Diffusion crack healing 13 2.2.3.4 Chemical reaction crack healing 15 2.3 Calcium sulfate 18 2.3.1 Material properties 18 2.3.2 Precipitation of calcium phosphate 20 Chapter 3 Experimental procedures 25 3.1 Preparation of calcium sulfate pellets 25 3.1.1 Starting materials 25 3.1.2 Sintering 25 3.2 Soaking test 26 3.3 Generation of cracks 28 3.4 Crack healing experiment 29 3.4.1 Adding DPBS 29 3.4.2 Adding CSH powder and DPBS 30 3.4.3 Adding CSH powder and phosphate ion solution 31 3.5 Characterization 31 3.5.1 Microstructure observation. 31 3.5.2 Phase identification 31 3.6 Flexural strength 31 Chapter 4 Results 33 4.1 Physical properties 33 4.2 Soaking test 35 4.3 Flexural strength 38 4.3.1 Original calcium sulfate samples 38 4.3.2 Crack healing with DPBS 39 4.3.3 Crack healing with CSH powder and DPBS 40 4.3.4 Crack healing with CSH powder and HPS 41 4.4 Microstructure 43 4.4.1 The starting powder 43 4.4.2 Calcium sulfate samples with cracks 44 4.4.3 Crack healing with DPBS 46 4.4.4 Crack healing with CSH powder and DPBS 51 4.4.5 Crack healing with CSH powder and HPS 57 4.5 Recovery strength vs crack length 63 4.6 Phase identification 66 Chapter 5 Discussion 72 5.1 Degradation and precipitation 72 5.2 Flexural strength and recovery strength 75 5.3 Phase identification 88 Chapter 6 Conclusions 92 Chapter 7 References 95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 硫酸鈣 | zh_TW |
| dc.subject | 裂縫癒合 | zh_TW |
| dc.subject | 析出 | zh_TW |
| dc.subject | 撓曲強度 | zh_TW |
| dc.subject | 裂縫長度 | zh_TW |
| dc.subject | 磷酸鈣 | zh_TW |
| dc.subject | 離子交換 | zh_TW |
| dc.subject | calcium sulfate | en |
| dc.subject | crack healing | en |
| dc.subject | precipitation | en |
| dc.subject | flexural strength | en |
| dc.subject | crack length | en |
| dc.subject | calcium phosphate | en |
| dc.title | 硫酸鈣的裂縫癒合與強度恢復機理探討 | zh_TW |
| dc.title | Crack healing in calcium sulfate and its strength recovery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭志成(Jhih-Cheng Guo),唐政宏(Jheng-Hong Tang),程致維(Jhih-Wei Cheng) | |
| dc.subject.keyword | 離子交換,硫酸鈣,磷酸鈣,裂縫長度,撓曲強度,析出,裂縫癒合, | zh_TW |
| dc.subject.keyword | calcium sulfate,calcium phosphate,crack length,flexural strength,precipitation,crack healing, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU202002384 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-10 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0408202015512700.pdf 未授權公開取用 | 28.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
