Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78320
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭大維(Tei-Wei Kuo)
dc.contributor.authorWei-Ming Chenen
dc.contributor.author陳威銘zh_TW
dc.date.accessioned2021-07-11T14:51:03Z-
dc.date.available2025-08-04
dc.date.copyright2020-09-14
dc.date.issued2020
dc.date.submitted2020-08-06
dc.identifier.citation[1] EnergyTrace Technology. https://www.ti.com/tool/ENERGYTRACE.
[2] Intermittent Operating System. Available: https://github.com/EMCLab-Sinica/Intermittent-OS. Accessed: 2020-03-14.
[3] MSP-EXP430FR5994. http://www.ti.com/tool/MSP-EXP430FR5994.
[4] MSP430 Competitive Benchmarking. http://www.ti.com/lit/an/slaa205c/slaa205c.pdf.
[5] MSP430FR5969 LaunchPad. http://www.ti.com/tool/msp-exp430fr5969.
[6] MSP430FR5969 LaunchPad Out-of-box Demo. http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP-EXP430FR5969/latest/index_FDS.html.
[7] The FreeRTOSTM Kernel. Available: https://www.freertos.org. Accessed: 2020-03-14.
[8] A. Ravinagarajan, D. Dondi, and T. S. Rosing. DVFS Based Task Scheduling in a Harvesting WSN for Structural Health Monitoring. In Proc. of IEEE DATE, pages 1518–1523, 2010.
[9] P. Bogdan, M. Pajic, P. P. Pande, and V. Raghunathan. Making the Internet-of-Things a Reality: From Smart Models, Sensing and Actuation to Energy-Efficient Architectures. In Proc. of IEEE/ACM CODES+ISSS, pages 1–10, 2016.
[10] C. Moser, J.-J. Chen, and L. Thiele. Reward Maximization for Embedded Systems with Renewable Energies. In Proc. of ACM/IEEE RTCSA, pages 247–256, 2008.
[11] C. Moser, J.-J. Chen, and L. Thiele. Power Management in Energy Harvesting Embedded Systems with Discrete Service Levels. In Proc. of ACM/IEEE ISLPED, pages 413–418, 2009.
[12] C. Moser, L. Thiele, D. Brunelli, and L. Benini. Adaptive Power Management for Environmentally Powered Systems. IEEE Trans. on Comput., 59(4):478–491, 2010.
[13] C. Rusu, R. Melhem, and D. Mosse. Maximizing the System Value While Satisfying Time and Energy Constraints. In Proc. of IEEE RTSS, pages 246–255, 2002.
[14] W.-M. Chen, Y. Chen, P.-C. Hsiu, and T.-W. Kuo. Multiversion Concurrency Control on Intermittent Systems. In Proc. of IEEE/ACM ICCAD, 2019.
[15] W.-M. Chen, T.-S. Cheng, P.-C. Hsiu, and T.-W. Kuo. Value-Based Task Scheduling for Nonvolatile Processor-Based Embedded Devices. In Proc. IEEE RTSS, pages 247–256, 2016.
[16] W.-M. Chen, P.-C. Hsiu, and T.-W. Kuo. Enabling Failure-resilient Intermittently-powered Systems Without Runtime Checkpointing. In Proc. of IEEE/ACM DAC,pages 1–6, 2019.
[17] W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu. Enabling failure-resilient intermittent systems without runtime checkpointing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pages 1–1, 2020.
[18] J. Choi, H. Joe, Y. Kim, and C. Jung. Achieving Stagnation-Free Intermittent Computation with Boundary-Free Adaptive Execution. In Proc. of IEEE RTAS, pages 331–344, 2019.
[19] D.-M. Zhang, S.-C. Li, A. Li, Y.-P. Liu, X. S. Hu, and H.-Z. Yang. Intra-task Scheduling for Storage-less and Converter-less Solar-powered Nonvolatile Sensor Nodes. In Proc. of IEEE ICCD, pages 348–354, 2014.
[20] D.-M. Zhang, Y.-P. Liu, X. Sheng, J.-Y. Li, T.-D. Wu, C. J. Xue, and H.-Z. Yang. Deadline-aware Task Scheduling for Solar-powered Nonvolatile Sensor Nodes with Global Energy Migration. In Proc. of ACM/IEEE DAC, pages 126:1–126:6, 2015.
[21] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers Inc., 1st edition, 1992.
[22] H.-H. Li, Y.-P. Liu, C.-C. Fu, C. J. Xue, D.L. Xiang, J.-S. Yue, J.-Y. Li, D.-M. Zhang, J.-T. Hu, and H-Z. Yang. Performance-Aware Task Scheduling for Energy Harvesting Nonvolatile Processors Considering Power Switching Overheads. In Proc. of ACM/IEEE DAC, 2016.
[23] H.-H. Li, Y.-P. Liu, Y.-Q. Wang, R. Luo, and H.-Z. Yang. Using Nonvolatile Processors to Reduce Leakage in Power Management Approaches. In Proc. of IEEE EDSSC, pages 1–2, 2014.
[24] H. Jayakumar and A. Raha and V. Raghunathan. Quickrecall: A low overhead hw/sw approach for enabling computations across power cycles in transiently powered computers. In International Conference on VLSI Design and International Conference on Embedded Systems, pages 330–335, 2014.
[25] J. Huang, K. Schwan, and M. K. Qureshi. NVRAM-aware Logging in Transaction Systems. Proc. VLDB Endow., 8:389–400, Dec. 2014.
[26] J. Chen, T.-Q. Wei, and J.-L. Liang. State-Aware Dynamic Frequency Selection Scheme for Energy-Harvesting Real-Time Systems. IEEE Tran. on VLSI, 22(8):1679–1692, 2014.
[27] J. K. Dey, J. Kurose, and D. Towsley. On-Line Scheduling Policies for a Class of IRIS (Increasing Reward with Increasing Service) Real-Time Tasks. IEEE Trans. Comput., 45(7):802–813, 1996.
[28] J. Lu, S.-B. Liu, Q. Wu, and Q.-R. Qiu. Accurate Modeling and Prediction of Energy Availability in Energy Harvesting Real-time Embedded Systems. In Proc. of IEEE IGCC, pages 469–476, 2010.
[29] J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. -s. Yu, J. Y. Chung, and W. Zhao. Algorithms for Scheduling Imprecise Computations. Computer, pages 305–310, 1991.
[30] K.-S. Ma, X.-Q. Li, Y.P. Liu, J. Sampson, Y. Xie, and V. Narayanan. Dynamic Machine Learning Based Matching of Nonvolatile Processor Microarchitecture to Harvested Energy Profile. In Proc. of IEEE/ACM ICCAD, pages 526–537, 2015.
[31] K.-S. Ma, Y. Zheng, S.-C. Li, K. Swaminathan, X.-Q. Li, Y.-P. Liu, J. Sampson, Y. Xie, and V. Narayanan. Architecture Exploration for Ambient Energy Harvesting Nonvolatile Processors. In Proc. of IEEE HPCA, pages 526–537, 2015.
[32] C.-K. Kang, C.-H. Lin, P.-C. Hsiu, and M.-S. Chen. HomeRun: HW/SW Co-Design for Program Atomicity on Self-Powered Intermittent Systems. In Proc. of IEEE/ACM ISLPED, pages 29:1–29:6, 2018.
[33] Q. Li, M. Zhao, J. Hu, Y. Liu, Y. He, and C. J. Xue. Compiler Directed Automatic Stack Trimming for Efficient Non-volatile Processors. In Proc. of IEEE/ACM DAC, pages 1–6, 2015.
[34] Q. Liu and C. Jung. Lightweight Hardware Support for Transparent Consistency-aware Checkpointing in Intermittent Energy-harvesting Systems. In Proc. of IEEE NVMSA, pages 1–6, 2016.
[35] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John, Y. Xie, J. Shu, and H. Yang. Ambient Energy Harvesting Nonvolatile Processors: From Circuit to System. In Proc. of IEEE/ACM DAC, pages 150:1–150:6, 2015.
[36] B. Lucia and B. Ransford. A Simpler, Safer Programming and Execution Model for Intermittent Systems. In Proc. of ACM PLDI, pages 575–585, 2015.
[37] K. Ma, X. Li, H. Liu, X. Sheng, Y. Wang, K. Swaminathan, Y. Liu, Y. Xie, J. Sampson, and V. Narayanan. Dynamic Power and Energy Management for Energy Harvesting Nonvolatile Processor Systems. ACM Trans. Embed. Comput. Syst., pages 107:1–107:23, 2017.
[38] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson, Y. Xie, and V. Narayanan. Architecture Exploration for Ambient Energy Harvesting Nonvolatile Processors. In Proc. of HPCA, pages 526–537, 2015.
[39] K. Maeng, A. Colin, and B. Lucia. Alpaca: Intermittent Execution Without Checkpoints. Proc. of ACM OOPSLA, pages 96:1–96:30, 2017.
[40] K. Maeng and B. Lucia. Adaptive Dynamic Checkpointing for Safe Efficient Intermittent Computing. In Proc. of USENIX OSDI, pages 129–144, 2018.
[41] G. Morton and K. Venkat. MSP430 Competitive Benchmarking. Texas Instruments, 2006.
[42] N. Guan, M.-Y. Zhao, C. J. Xue, Y.-P. Liu and W. Yi. Modular Performance Analysis of Energy-Harvesting Real-Time Networked Systems. In Proc. of IEEE RTSS, pages 65–74, 2015.
[43] N. Roseveare, and B. Natarajan. An Alternative Perspective on Utility Maximization in Energy-Harvesting Wireless Sensor Networks. IEEE Trans.on Vehicular Technology, pages 344–356, 2014.
[44] M. ¨Ozsu and P. Valduriez. Principles of Distributed Database Systems. NY: Springer, 3st edition, 2011.
[45] C. Pan, M. Xie, Y. Liu, Y. Wang, C. J. Xue, Y. Wang, Y. Chen, and J. Hu. A Lightweight Progress Maximization Scheduler for Non-volatile Processor Under Unstable Energy Harvesting. In Proc. of ACM SIGPLAN/SIGBED, pages 101–110, 2017.
[46] Q. Ju and Y. Zhang. Charge Redistribution-Aware Power Management fo Supercapacitor-Operated Wireless Sensor Networks. IEEE Sensors Journal, 16(7):2046–2054, 2016.
[47] B. Ransford and B. Lucia. Nonvolatile Memory is a Broken Time Machine. In Proc. of MSPC, pages 5:1–5:3, 2014.
[48] B. Ransford, J. Sorber, and K. Fu. Mementos: System Support for Long-running Computation on RFID-scale Devices. SIGARCH Comput. Archit. News, pages 159–170, 2011.
[49] S.-B. Liu, J. Lu, Q. Wu, and Q.-R. Qiu. Harvesting-Aware Power Management for Real-Time Systems With Renewable Energy. IEEE Trans. on VLSI, 20(8):1473–1486, 2012.
[50] S.-B. Liu, Q.-R. Qiu, and Q. Wu. Energy Aware Dynamic Voltage and Frequency Selection for Real-Time Systems with Energy Harvesting. In Proc. of IEEE DATE, pages 236–241, 2008.
[51] S. Sudevalayam and P. Kulkarni. Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Communications Surveys Tutorials, 13(3):443–461, 2011.
[52] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems. In Proc. of IEEE IPSN, pages 457–462, 2005.
[53] Y. Wang, H. Jia, Y. Liu, Q. Li, C. J. Xue, and H. Yang. Register Allocation for Hybrid Register Architecture in Nonvolatile Processors. In Proc. of IEEE ISCAS, pages 1050–1053, 2014.
[54] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M. F. Chiang, Y. Yan, B. Sai, and H. Yang. A 3us Wake-up Time Nonvolatile Processor Based on Ferroelectric Flip-flops. In Proc. of ESSCIRC, pages 149–152, 2012.
[55] X. Lin, Y.-Z. Wang, S.-Y. Yue, N. Chang, and M.-S. Pedram. A Framework of Concurrent Task Scheduling and Dynamic Voltage and Frequency Scaling in Real-time Embedded Systems with Energy Harvesting. In Proc. of IEEE ISLPED, pages 70–75, 2013.
[56] X. Pan and R. Teodorescu. NVSleep: Using Non-volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores. In Proc. of IEEE ICCD, pages 400–407, 2014.
[57] M. Xie, M. Zhao, C. Pan, J. Hu, Y. Liu, and C. J. Xue. Fixing the Broken Time Machine: Consistency-aware Checkpointing for Energy Harvesting Powered Non-volatile Processor. In Proc. of IEEE/ACM DAC, pages 1–6, 2015.
[58] Y.-K. Zhang, Y. Ge, and Q.-R. Qiu. Improving Charging Efficiency with Workload Scheduling in Energy Harvesting Embedded Systems. In Proc. of ACM/IEEE DAC, pages 57:1–57:8, 2013.
[59] Y.-Q. Wang, Y.-P. Liu, S.-C. Li, D.-M. Zhang, B. Zhao, M.-F. Chiang, Y.-X. Yan, B.-K. Sai, and H.-Z Yang. A 3us Wake-up Time Nonvolatile Processor Based on Ferroelectric Flip-flops. In Proc. of IEEE EDSSC, pages 149–152, 2012.
[60] D. Zhang, Y. Liu, X. Sheng, J. Li, T. Wu, C. J. Xue, and H. Yang. Deadline-aware Task Scheduling for Solar-powered Nonvolatile Sensor Nodes with Global Energy Migration. In Proc. of IEEE/ACM DAC, pages 1–6, 2015.
[61] M. Zhao, K. Qiu, Y. Xie, J. Hu, and C. J. Xue. Redesigning Software and Systems for Non-volatile Processors on Self-powered Devices. In Proc. of IFIP/IEEE VLSI-SoC, pages 1–6, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78320-
dc.description.abstract智能嵌入式裝置所提供的應用已經成為人們日常生活中一部分,由於應用上的大規模數量以及裝置上的尺寸上限制,如何為這些輕量且為數眾多的裝置供電已成為一項關鍵挑戰。近年來,新興的能量攫取器技術已為這些裝置的供電提供一項替代方案使得裝置能從環境中獲取能量。但由於此類能源供給本質上並不穩定,因此使自供電設備間歇運行也會帶來系統設計的挑戰,包括在間歇性運算下能實現的性能、不穩定電源造成的頻繁運行中斷、非揮發性記憶體與處理器間效能不一致所導致的性能下降。為了應對性能上的挑戰,我們首先建構一個工作排程的優化問題,並提出兩種根據收集能量的工作排程演算法,最大化在具備動態頻率調整的自供電裝置的系統性能。在其中,我們基於動態編程提出了一個偽多項式時間最佳算法,以及一個近似演算法來使得工作排程所需的運行時間和系統性能之間可以進行動態的權衡。為了使自供電裝置能夠適應頻繁的電源故障,我們提出了一種系統設計,可以在沒有建立檢查點的情況下實現間歇供電系統運算。該設計利用混合記憶體中讀寫數據的特性,實現並發任務執行中資料的一致性和可序列化,同時最大化計算性能,並使得裝置在恢復電源後能快速回復系統。為了解決由於頻繁寫入非揮發性記憶體導致的性能下降,我們提出了一種根據混合記憶體和異構計算單元之間性能差距來設計數據讀寫的訪問協議。具體地來說,該協議通過針對混合記憶體上的不同數據操作自動調整處理器之間的同步策略來減少工作間的阻塞時間,並且減少高性能處理在操作非揮發性記憶體數據時所導致的性能下降。zh_TW
dc.description.abstractApplications based on smart lightweight devices have become a ubiquitous part of daily life. Energy harvesting has emerged as a promising alternative to replace frequently recharging devices by humans. However, because the amounts of energy harvested from the environment are unstable, self-powered devices inherently run intermittently, which brings several design challenges, including how to maximize forward progress with unstable power supply, how to achieve resiliency with frequent power failures, and how to leverage heterogeneity of intermittent systems which are typically heterogeneous memories and cores. To maximize forward progress, we firsts model intermittent executions as a task scheduling problem and propose two task scheduling algorithms to maximize system performance achieved by DVFS-enabled self-powered devices. In particular, we propose a pseudopolynomial-time optimal algorithm based on dynamic programming, as well as an approximation algorithm that allows for a trade-off between running time of scheduling tasks and optimal system performance. To achieve resiliency to power loss, we propose a failure-resilient design which enables intermittent computing without checkpointing and data logging. The design allows concurrent task executions to maximize computation progress while ensuring data consistency and serializability of task executions. Moreover, we enable instant system recovery after power resumption by leveraging the characteristics of data in hybrid memory. To address the performance degradation due to frequent updates to non-volatile memory, we extend the design to be diversity-aware and leverages the performance gaps between hybrid memory and heterogeneous computing units. Specifically, the protocol reduces the blocking time by adaptively applying different synchronization strategies for different data access operations on hybrid memory and allowing updates from a high-speed core can be delegated to another core.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:51:03Z (GMT). No. of bitstreams: 1
U0001-0408202019363100.pdf: 3209299 bytes, checksum: 9b80ad139e4bed84188b3ba604ae8791 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsAcknowledgments - i
中文摘要 - iii
Abstract - v
1. Introduction - 1
2. Related Work - 7
2.1. Energy-limited Task Scheduling - 7
2.2. Task Scheduling for Self-powered Devices - 7
2.3. Non-volatile memory-based Hardware Design - 9
2.4. Checkpointing-based System Software - 9
2.5. Programming Models for Intermittent Computing - 10
3. Task Scheduling for Nonvolatile Processor-based Embedded Device - 13
3.1. System Model and Problem Definition - 13
3.1.1. System Model - 13
3.1.2. Problem Definition - 14
3.2. Value-based Nonvolatile Processor Task Scheduling - 17
3.2.1. Problem Hardness - 17
3.2.2. A Pseudopolynomial-time Optimal Algorithm - 18
3.2.3. A Rounding Approximation Algorithm - 25
3.3. Performance Evaluation - 29
3.3.1. Experimental Setup - 29
3.3.2. Experimental Results - 31
4. Failure-resilient Design Without Runtime Checkpointing - 35
4.1. Drawbacks of Checkpointing - 35
4.2. Failure-resilient Data Consistency - 36
4.2.1. Design Overview - 36
4.2.2. Consistency-aware Data Management - 39
4.2.3. Instant System Recovery - 45
4.2.4. Implementation Issues - 47
4.3. Performance Evaluation - 54
4.3.1. Experimental Setup - 54
4.3.2. Experimental Results - 57
5. Diversity-aware Data Access Protocol - 65
5.1. Heterogeneous Multicore Intermittent Systems: Observations and Challenges - 65
5.2. Heterogeneity-aware Concurrency and Synchronization - 68
5.2.1. Design Overview - 68
5.2.2. Data Manager - 70
5.2.3. Recovery Handler - 76
5.3. A Failure-resilient Multi-core Intermittent Operating System - 77
5.4. Performance Evaluation - 79
5.4.1. Experimental Setup - 79
5.4.2. Experimental Results - 82
6. Conclusion Remarks - 89
Bibliography - 91
dc.language.isoen
dc.subject嵌入式系統zh_TW
dc.subject即時系統zh_TW
dc.subject能源採集zh_TW
dc.subject間歇性系統zh_TW
dc.subject異質性系統zh_TW
dc.subject並行控制zh_TW
dc.subjectheterogeneous systemsen
dc.subjectembedded systemsen
dc.subjectintermittent systemsen
dc.subjectconcurrency controlen
dc.subjectenergy harvestingen
dc.subjectreal-time systemsen
dc.title基於輕量級自供電裝置之間歇性運算方法zh_TW
dc.titleEnabling Intermittent Computing on Self-powered Lightweight Devicesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.author-orcid0000-0001-7177-4167
dc.contributor.coadvisor修丕承(Pi-Cheng Hsiu)
dc.contributor.oralexamcommittee曾煜棋(Yu-Chee Tseng),施吉昇(Chi-Sheng Shih),洪士灝(Shih-Hao Hung),徐慰中(Wei-Chung Hsu)
dc.subject.keyword即時系統,嵌入式系統,間歇性系統,能源採集,並行控制,異質性系統,zh_TW
dc.subject.keywordreal-time systems,embedded systems,intermittent systems,energy harvesting,concurrency control,heterogeneous systems,en
dc.relation.page97
dc.identifier.doi10.6342/NTU202002411
dc.rights.note有償授權
dc.date.accepted2020-08-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
dc.date.embargo-lift2025-08-04-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-0408202019363100.pdf
  未授權公開取用
3.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved