Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78309
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫珍理zh_TW
dc.contributor.advisorChen-li Sunen
dc.contributor.author劉昱祥zh_TW
dc.contributor.authorYu-Shiang Liuen
dc.date.accessioned2021-07-11T14:50:32Z-
dc.date.available2025-07-15-
dc.date.copyright2020-08-24-
dc.date.issued2020-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] A. Faghri, Heat Pipe Science and Technology. Boca Raton,USA: Global Digital Press, 1995.
[2] R. S. Prasher, "A simplified conduction based modeling scheme for design sensitivity study of thermal solution utilizing heat pipe and vapor chamber technology," Journal of Electronic Packaging, vol. 125, no. 3, pp. 378-385, 2003. (10.1115/1.1602479).
[3] P. Naphon, S. Wongwises, and S. Wiriyasart, "Application of two-phase vapor chamber technique for hard disk drive cooling of PCs," International Communications in Heat and Mass Transfer, vol. 40, pp. 32-35, 2013. (10.1016/j.icheatmasstransfer.2012.10.014).
[4] P. Naphon, S. Wongwises, and S. Wiriyasart, "On the thermal cooling of central processing unit of the PCs with vapor chamber," International communications in heat and mass transfer, vol. 39, no. 8, pp. 1165-1168, 2012. (10.1016/j.icheatmasstransfer.2012.07.013).
[5] Z. J. Zuo, M. T. North, and K. L. Wert, "High heat flux heat pipe mechanism for cooling of electronics," IEEE Transactions on components and Packaging Technologies, vol. 24, no. 2, pp. 220-225, 2001.
[6] K.-S. Kim, M.-H. Won, J.-W. Kim, and B.-J. Back, "Heat pipe cooling technology for desktop PC CPU," Applied thermal engineering, vol. 23, no. 9, pp. 1137-1144, 2003. (10.1016/S1359-4311(03)00044-9).
[7] L. Nelson, K. Sekhon, and J. Fritz, "Direct heat pipe cooling of semiconductor devices," in 3rd International Heat Pipe Conference, 1978, p. 450.
[8] T. G. Theofanous, T. N. Dinh, J. P. Tu, and A. T. Dinh, "The boiling crisis phenomenon: Part II: Dryout dynamics and burnout," Experimental Thermal and Fluid Science, vol. 26, no. 6, pp. 793-810, 2002. (10.1016/S0894-1777).
[9] S. Anand, S. De, and S. Dasgupta, "Experimental and theoretical study of axial dryout point for evaporation from V-shaped microgrooves," International journal of heat and mass transfer, vol. 45, no. 7, pp. 1535-1543, 2002. (10.1016/S0017-9310(01)00245-9).
[10] H. Chanson, "Air-water flow measurements with intrusive, phase-detection probes: Can we improve their interpretation?," Journal of Hydraulic Engineering, vol. 128, no. 3, pp. 252-255, 2002. (10.1061/(ASCE)0733-9429(2002)128%3A3(252)).
[11] X. Shen, K. Mishima, and H. Nakamura, "Error reduction, evaluation and correction for the intrusive optical four-sensor probe measurement in multi-dimensional two-phase flow," International journal of heat and mass transfer, vol. 51, no. 3-4, pp. 882-895, 2008. (10.1016/j.ijheatmasstransfer.2006.01.054).
[12] A. Jaworek and A. Krupa, "Gas/liquid ratio measurements by rf resonance capacitance sensor," Sensors and Actuators A: Physical, vol. 113, no. 2, pp. 133-139, 2004. (10.1016/j.sna.2004.02.006).
[13] A. A. Kendoush and Z. A. Sarkis, "Improving the accuracy of the capacitance method for void fraction measurement," Experimental Thermal and Fluid Science, vol. 11, no. 4, pp. 321-326, 1995. (10.1016/0894-1777(95)00035-6).
[14] S. Paranjape, S. N. Ritchey, and S. V. Garimella, "Electrical impedance-based void fraction measurement and flow regime identification in microchannel flows under adiabatic conditions," International Journal of Multiphase Flow, vol. 42, pp. 175-183, 2012. (10.1016/j.ijmultiphaseflow.2012.02.010).
[15] J. Geraets and J. Borst, "A capacitance sensor for two-phase void fraction measurement and flow pattern identification," International Journal of Multiphase Flow, vol. 14, no. 3, pp. 305-320, 1988. (10.1016/0301-9322(88)90046-8).
[16] C. Loh, E. Harris, and D. Chou, "Comparative study of heat pipes performances in different orientations," in Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005., 2005, pp. 191-195: IEEE.
[17] G. Kumaresan, S. Venkatachalapathy, L. G. Asirvatham, and S. Wongwises, "Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids," International Communications in Heat and Mass Transfer, vol. 57, pp. 208-215, 2014. (10.1016/j.icheatmasstransfer.2014.08.001).
[18] S. Lips, F. Lefèvre, and J. Bonjour, "Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe," International Journal of Heat and Mass Transfer, vol. 53, no. 4, pp. 694-702, 2010. (10.1016/j.ijheatmasstransfer.2009.10.022).
[19] E. Sadeghinezhad, M. Mehrali, M. A. Rosen, A. R. Akhiani, S. T. Latibari, M. Mehrali, and H. S. C. Metselaar, "Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance," Applied Thermal Engineering, vol. 100, pp. 775-787, 2016. (10.1016/j.applthermaleng.2016.02.071).
[20] K. Fumoto, M. Kawaji, and T. Kawanami, "Study on a pulsating heat pipe with self-rewetting fluid," Journal of Electronic Packaging, vol. 132, no. 3, pp. 132-135, 2010. (10.1115/1.4001855).
[21] N. Ono, T. Kaneko, S. Nishiguchi, and M. Shoji, "Measurement of temperature dependence of surface tension of alcohol aqueous solutions by maximum bubble pressure method," Journal of Thermal Science and Technology, vol. 4, no. 2, pp. 284-293, 2009. (10.1299/jtst.4.284).
[22] R. Vochten and G. Pétré, "Study of the heat of reversible adsorption at the air-solution interface. II. Experimental determination of the heat of reversible adsorption of some alcohols," Journal of Colloid and Interface Science, vol. 42, no. 2, pp. 320-327, 1973. (10.1016/0021-9797(73)90295-6).
[23] Y. Abe, "Self‐rewetting fluids: Beneficial aqueous solutions," Annals of the New York Academy of Sciences, vol. 1077, no. 1, pp. 650-667, 2006. (10.1196/annals.1362.026).
[24] T. Hao, X. Ma, Z. Lan, N. Li, Y. Zhao, and H. Ma, "Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe," International Journal of Heat and Mass Transfer, vol. 72, pp. 50-65, 2014. (10.1016/j.ijheatmasstransfer.2014.01.007).
[25] J. Qu, X. Li, Y. Cui, and Q. Wang, "Design and experimental study on a hybrid flexible oscillating heat pipe," International Journal of Heat and Mass Transfer, vol. 107, pp. 640-645, 2017. (10.1016/j.ijheatmasstransfer.2016.11.076).
[26] L. Lv and J. Li, "Managing high heat flux up to 500 W/cm2 through an ultra-thin flat heat pipe with superhydrophilic wick," Applied Thermal Engineering, vol. 122, pp. 593-600, 2017. (10.1016/j.applthermaleng.2017.05.050).
[27] C. Huang, W. K. Lin, and J. K. Chen, "Important factors affecting the thermal resistance and thermal diffusivity of vapor chambers," Applied Thermal Engineering, vol. 126, pp. 1148-1155, 2017. (10.1016/j.applthermaleng.2016.12.106).
[28] Y. Li, Z. Li, W. Zhou, Z. Zeng, Y. Yan, and B. Li, "Experimental investigation of vapor chambers with different wick structures at various parameters," Experimental Thermal Fluid Science, vol. 77, pp. 132-143, 2016. (10.1016/j.expthermflusci.2016.04.017).
[29] Y. Peng, W. Liu, B. Liu, J. LIu, K. Huang, L. Wang, and W. Chen, "The performance of the novel vapor chamber based on the leaf vein system," International Journal of Heat Mass Transfer, vol. 86, pp. 656-666, 2015. (10.1016/j.ijheatmasstransfer.2015.01.126).
[30] M. R. Shaeri, D. Attinger, and R. Bonner, "Feasibility study of a vapor chamber with a hydrophobic evaporator substrate in high heat flux applications," International Communications in Heat and Mass Transfer, vol. 86, pp. 199-205, 2017. (10.1016/j.icheatmasstransfer.2017.05.028).
[31] M. C. Tsai, S. W. Kang, and K. V. de Paiva, "Experimental studies of thermal resistance in a vapor chamber heat spreader," Applied Thermal Engineering, vol. 56, no. 1-2, pp. 38-44, 2013. (10.1016/j.applthermaleng.2013.02.034).
[32] W. Liu, J. Gou, Y. Luo, and M. Zhang, "The experimental investigation of a vapor chamber with compound columns under the influence of gravity," Applied Thermal Engineering, vol. 140, pp. 131-138, 2018. (10.1016/j.applthermaleng.2018.05.010).
[33] W. B. Floriano and M. A. C. Nascimento, "Dielectric constant and density of water as a function of pressure at constant temperature," Brazilian Journal of Physics, vol. 34, no. 1, pp. 38-41, 2004. (10.1590/S0103-97332004000100006).
[34] J. Clay and F. van der Maesen, "The absolute dielectric constant of gases at pressures of 0-80 atm. at 25° C," Physica, vol. 15, no. 5-6, pp. 467-480, 1949. (10.1016/0031-8914(49)90093-2).
[35] J. Stranathan, "Dielectric constant of water vapor," Physical Review, vol. 48, no. 6, p. 538, 1935. (10.1103/PhysRev.48.538).
[36] J. K. Keska, M. D. Smith, and B. E. Williams, "Comparison study of a cluster of four dynamic flow pattern discrimination techniques for multi-phase flow," Flow Measurement and Instrumentation, vol. 10, no. 2, pp. 65-77, 1999. (10.1016/S0955-5986(98)00048-X).
[37] A. A. Kendoush and Z. A. Sarkis, "Void fraction measurement by X-ray absorption," Experimental Thermal and Fluid Science, vol. 25, no. 8, pp. 615-621, 2002. (10.1016/S0894-1777(01)00117-0).
[38] S. Jahangir, E. C. Wagner, R. F. Mudde, and C. Poelma, "Void fraction measurements in partial cavitation regimes by X-ray computed tomography," International Journal of Multiphase Flow, vol. 120, p. 103085, 2019. (10.1016/j.ijmultiphaseflow.2019.103085).
[39] Keysight, Keysight GUI Data Logger Software for U1731C, U1732C, and U1733C Handheld LCR Meter, 2017. [Online]. Available: https://literature.cdn.keysight.com/litweb/pdf/U1731-90089.pdf?id=2044392.
[40] C. Elliott, V. Vijayakumar, W. Zink, and R. Hansen, "National instruments LabVIEW: A programming environment for laboratory automation and measurement," Journal of The Association for Laboratory Automation, vol. 12, pp. 17-24, 2007. (10.1016/j.jala.2006.07.012).
[41] ARDUINO. (2020). Input Pullup Serial. Available: https://www.arduino.cc/en/Tutorial/InputPullupSerial
[42] C. D. Hodgman, Handbook of chemistry and physics (no. 3). LWW, 1951.
[43] E. E. Michaelides, "NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Program for Vapor and Liquid States of Water in SI Units," Nuclear Technology, vol. 75, no. 2, p. 232, 1986. (10.1063/1.555997).
[44] D. Fernandez, A. Goodwin, E. W. Lemmon, J. Levelt Sengers, and R. Williams, "A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye–Hückel coefficients," Journal of Physical and Chemical Reference Data, vol. 26, no. 4, pp. 1125-1166, 1997.
[45] E. EDGE. (2020). Convective heat transfer coefficients table chart. Available: https://www.engineersedge.com/heat_transfer/convective_heat_transfer_coefficients__13378.htm
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78309-
dc.description.abstract本研究提出藉由電容法量測熱管與均溫板在加熱過程與冷卻過程中之空隙率的變化。在不同熱通量下,搭配兩種散熱風扇,分別量測熱管蒸發端、絕熱端、冷凝端與均溫板上不同位置之電容值,由於水蒸氣與液態水之介電常數不同,即可由電容值量測與校正曲線推算空隙率。此方法為非侵入式之量測,且得知空隙率將有助於評估熱管與均溫板之散熱表現與熱通量極限,在熱管理過程中提供可靠的資訊。
由實驗結果可知,在加熱過程由於內部液態水蒸發導致電容值下降,空隙率上升。本研究發現熱管存在一可容忍之熱通量上限,在此上限內改變熱通量並不會使熱管各位置的空隙率產生大幅度之上升,且其隨冷卻能力增加而提高。使用直徑70 mm風扇與直徑80 mm風扇時可容忍之熱通量上限分別為12.2 W與15.2 W,在加熱過程空隙率最高僅上升0.06,但若超過此熱通量上限即可明顯觀察到空隙率隨熱通量的增加而上升。在均溫板之結果中,低熱通量(8.9 W)的加熱過程各位置空隙率之變異率為9%,這是因為此時汽化率較低,均溫板內空隙率分布較不均勻;在高熱通量(12 W)時,空隙率的變異率降為4%,代表均溫板內部汽化率提高會使空隙率分布較均勻。此外,在熱管冷凝端搭配17.7 W之熱通量與均溫板搭配14.2 W之熱通量時,皆有觀察到關閉熱源後500秒內(2000秒至2500秒),空隙率大幅下降,甚至低於初始狀態之空隙率,這是由於高熱通量伴隨較高之表面溫度,加強熱管與均溫板表面之強制對流,冷卻量增加使熱管與均溫板內大量蒸氣凝結為液態水,由於先前大量蒸氣凝結使內部壓力小於飽和壓力,需有少部分液態水蒸發以維持壓力平衡,導致在2500秒至3000秒時空隙率微幅上升。
zh_TW
dc.description.abstractThis study proposed the use of the capacitance method to measure the change in void fractions of heat pipe and vapor chamber during heating and cooling processes. Due to the different dielectric constants of water vapor and liquid water, void fraction could be estimated from the capacitance measurement. For heat pipe, metal electrodes cut in-house were laminated with double-sided tape and attached to the evaporation, adiabatic, and condensation sections. For vapor chamber, flexible PCBs were customly made to serve as 20 electrode pairs.
From the experimental results, evaporation during the heating process resulted in the decrease in capacitance because vapor had lower dielectric constant than liquid water. In addition, we found that heat pipe had an upper limit of input heating rate, below which void fraction showed little deviation across the different sections. The upper limit increased from 12.2 W to 15.2 W when the 70 mm fan was replaced by an 80 mm fan for cooling. For vapor chamber, the spatial variation of void fraction decreased from 9% to 4% when the input heating rate was increased from 8.9 W to 12 W. This was because higher vaporization rate caused less discrete distribution of working fluid. When the heat source was turned off, void fraction experienced a drastic decrease. Especially after cutting off high heating rate, void fraction in heat pipe and vapor chamber could fall below its initial value. The higher surface temperature produced a stronger external convection effect, which led to rapid condensation inside the device. However, excess condensate resulted in a decrease in pressure. When the pressure was lower than the saturation pressure, evaporation took place and void fraction slightly increased to reach phase equilibrium.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:50:32Z (GMT). No. of bitstreams: 1
U0001-0608202015134900.pdf: 3641839 bytes, checksum: d33032eceac821bdeb78be9114ee5adb (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 1
符號索引 3
表目錄 5
圖目錄 6
第一章 導論 9
1.1 前言 9
1.2 文獻回顧 10
1.2.1 熱管與均溫板 10
1.2.2 空隙率量測 13
1.3 研究目的 15
第二章 實驗架構與不確定性分析 16
2.1 實驗架構 16
2.1.1 加熱系統 16
2.1.2 冷卻系統 17
2.1.3 散熱元件 18
2.1.4 電容與溫度量測系統 20
2.2 空隙率量測理論 21
2.2.1 蒸氣與液態水對電容之影響 21
2.2.2 等效電路分析 22
2.3 實驗量測程序 23
2.3.1 熱管軸向空隙率分布之量測 23
2.3.2 均溫板內空隙率分布之量測 24
2.4空隙率與電容之校正曲線 24
2.4.1 熱管 25
2.4.2 均溫板 26
2.5 不確定性分析 28
2.5.1熱管與均溫版表面溫度之不確定性 29
2.5.2 達穩態時加熱塊頂部熱傳率之不確定性 29
2.5.3 電容量測之不確定性 30
2.5.4熱管空隙率之不確定性 31
2.5.5均溫板空隙率之不確定性 32
第三章 實驗結果與討論 34
3.1 熱管之空隙率 34
3.1.1 位置之影響 34
3.1.2 熱通量之影響 36
3.1.3 散熱風扇之影響 41
3.1.4 空隙率之量測敏感度與準確性 42
3.2 均溫板之空隙率 43
3.2.1 位置之影響 43
3.2.3 空隙率之量測敏感度與準確性 47
第四章 結論與建議 48
4.1 結論 48
4.2 建議 49
參考文獻 51
附錄 56
-
dc.language.isozh_TW-
dc.subject空隙率量測zh_TW
dc.subject電容法zh_TW
dc.subject熱管zh_TW
dc.subject非侵入式量測zh_TW
dc.subject均溫板zh_TW
dc.subjectvapor chamberen
dc.subjectheat pipeen
dc.subjectcapacitance methoden
dc.subjectvoid fraction measurementen
dc.subjectnon-invasive measurementen
dc.title利用電容法量測熱管與均溫板內之空隙率變化zh_TW
dc.titleVoid fraction measurements in heat pipe and vapor chamber using the capacitance methoden
dc.typeThesis-
dc.date.schoolyear108-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉耀先;黃智永zh_TW
dc.contributor.oralexamcommitteeYao-Hsien Liu;Chih-Yung Huangen
dc.subject.keyword熱管,均溫板,電容法,空隙率量測,非侵入式量測,zh_TW
dc.subject.keywordheat pipe,vapor chamber,capacitance method,void fraction measurement,non-invasive measurement,en
dc.relation.page106-
dc.identifier.doi10.6342/NTU202002545-
dc.rights.note未授權-
dc.date.accepted2020-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-2.pdf
  未授權公開取用
3.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved