Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78308
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹迺立(Nei-Li Chan)
dc.contributor.authorHsiao-Yu Linen
dc.contributor.author林曉瑜zh_TW
dc.date.accessioned2021-07-11T14:50:29Z-
dc.date.available2025-08-17
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation1 Vogt, T. Phenylpropanoid biosynthesis. Molecular plant 3, 2-20 (2010).
2 Zálešák, F., Bon, D. J.-Y. D. Pospíšil, J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacological research, 104284 (2019).
3 Ardalani, H., Avan, A. Ghayour-Mobarhan, M. Podophyllotoxin: a novel potential natural anticancer agent. Avicenna journal of phytomedicine 7, 285 (2017).
4 Loike, J. D. Horwitz, S. B. Effects of podophyllotoxin and VP-16-213 on microtubule assembly in vitro and nucleoside transport in HeLa cells. Biochemistry 15, 5435-5443 (1976).
5 Jordan, M. A., Thrower, D. Wilson, L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. Journal of cell science 102, 401-416 (1992).
6 Schilstra, M. J., Martin, S. R. Bayley, P. M. The effect of podophyllotoxin on microtubule dynamics. Journal of Biological Chemistry 264, 8827-8834 (1989).
7 Gordaliza, M., Castro, M. d., Miguel del Corral, J. Feliciano, A. S. Antitumor properties of podophyllotoxin and related compounds. Current pharmaceutical design 6, 1811-1839 (2000).
8 D'arpa, P. Liu, L. F. Topoisomerase-targeting antitumor drugs. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 989, 163-177 (1989).
9 Li, T.-K. Liu, L. F. Tumor cell death induced by topoisomerase-targeting drugs. Annual review of pharmacology and toxicology 41, 53-77 (2001).
10 WHO. World Health Organization model list of essential medicines: 21st list 2019. (World Health Organization, 2019).
11 Kim, K. Y. et al. Interplay of reactive oxygen species, intracellular Ca2+ and mitochondrial homeostasis in the apoptosis of prostate cancer cells by deoxypodophyllotoxin. Journal of cellular biochemistry 114, 1124-1134 (2013).
12 Wang, W. et al. Deoxypodophyllotoxin inhibits cell viability and invasion by blocking the PI3K/Akt signaling pathway in human glioblastoma cells. Oncology Reports 41, 2453-2463 (2019).
13 Wang, Y.-R. et al. Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in SGC-7901 cells and inhibits tumor growth in vivo. Molecules 20, 1661-1675 (2015).
14 Xiao, M. et al. Deoxypodophyllotoxin induces cell cycle arrest and apoptosis in human cholangiocarcinoma cells. Oncology Letters 16, 3177-3182 (2018).
15 Zang, X. et al. A promising microtubule inhibitor deoxypodophyllotoxin exhibits better efficacy to multidrug-resistant breast cancer than paclitaxel via avoiding efflux transport. Drug Metabolism and Disposition 46, 542-551 (2018).
16 U.S. Food and Drug Administration. Current and Resolved Drug Shortages and Discontinuations Reported to FDA.
17 Jiang, W. et al. An efficient regeneration system via direct and indirect organogenesis for the medicinal plant Dysosma versipellis (Hance) M. Cheng and its potential as a podophyllotoxin source. Acta physiologiae plantarum 34, 631-639 (2012).
18 Renouard, S. et al. Investigation of Linum flavum (L.) hairy root cultures for the production of anticancer aryltetralin lignans. International journal of molecular sciences 19, 990 (2018).
19 Samadi, A., Jafari, M., Nejhad, N. M. Hossenian, F. Podophyllotoxin and 6-methoxy podophyllotoxin Production in Hairy Root Cultures of Liunm mucronatum ssp. mucronatum. Pharmacognosy magazine 10, 154 (2014).
20 Schultz, B. J., Kim, S. Y., Lau, W. Sattely, E. S. Total Biosynthesis for Milligram-Scale Production of Etoposide Intermediates in a Plant Chassis. Journal of the American Chemical Society 141, 19231-19235 (2019).
21 Seegers, C. L., Tepper, P. G., Setroikromo, R. Quax, W. J. Cytotoxic Deoxypodophyllotoxin Can Be Extracted in High Purity from Anthriscus sylvestris Roots by Supercritical Carbon Dioxide. Planta medica 50, 544-550 (2018).
22 Lau, W. Sattely, E. S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349, 1224-1228 (2015).
23 Kamil, W. M. Dewick, P. M. Biosynthetic relationship of aryltetralin lactone lignans to dibenzylbutyrolactone lignans. Phytochemistry 25, 2093-2102 (1986).
24 Martinez, S. Hausinger, R. P. Catalytic mechanisms of Fe (II)-and 2-oxoglutarate-dependent oxygenases. Journal of Biological Chemistry 290, 20702-20711 (2015).
25 Clifton, I. J. et al. Structural studies on 2-oxoglutarate oxygenases and related double-stranded β-helix fold proteins. Journal of inorganic biochemistry 100, 644-669 (2006).
26 Hegg, E. L. Jr, L. Q. The 2‐His‐1‐carboxylate facial triad—an emerging structural motif in mononuclear non‐heme iron (II) enzymes. European Journal of Biochemistry 250, 625-629 (1997).
27 Valegård, K. et al. Structure of a cephalosporin synthase. Nature 394, 805-809 (1998).
28 Islam, M. S., Leissing, T. M., Chowdhury, R., Hopkinson, R. J. Schofield, C. J. 2-Oxoglutarate-dependent oxygenases. Annual review of biochemistry 87, 585-620 (2018).
29 Eichhorn, E., van der Ploeg, J. R., Kertesz, M. A. Leisinger, T. Characterization of α-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. Journal of Biological Chemistry 272, 23031-23036 (1997).
30 Hamed, R. B. et al. The enzymes of β-lactam biosynthesis. Natural product reports 30, 21-107 (2013).
31 Bräuer, A., Beck, P., Hintermann, L. Groll, M. Structure of the Dioxygenase AsqJ: Mechanistic Insights into a One‐Pot Multistep Quinolone Antibiotic Biosynthesis. Angewandte Chemie International Edition 55, 422-426 (2016).
32 Siitonen, V. et al. Divergent non-heme iron enzymes in the nogalamycin biosynthetic pathway. Proceedings of the National Academy of Sciences 113, 5251-5256 (2016).
33 Mitchell, A. J. et al. Structural basis for halogenation by iron- and 2-oxo-glutarate-dependent enzyme WelO5. Nat Chem Biol 12, 636-640, doi:10.1038/nchembio.2112 (2016).
34 Zou, S. et al. N 6-Methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Scientific reports 6, 25677 (2016).
35 Liao, H. J. et al. Insights into the Desaturation of Cyclopeptin and its C3 Epimer Catalyzed by a non‐Heme Iron Enzyme: Structural Characterization and Mechanism Elucidation. Angewandte Chemie International Edition 57, 1831-1835 (2018).
36 Hagel, J. Facchini, P. Expanding the roles for 2-oxoglutarate-dependent oxygenases in plant metabolism. Natural product reports 35, 721-734 (2018).
37 Nadi, R., Mateo-Bonmatí, E., Juan-Vicente, L. Micol, J. L. The 2OGD Superfamily: Emerging Functions in Plant Epigenetics and Hormone Metabolism. Molecular plant 11, 1222-1224 (2018).
38 Herr, C. Q. Hausinger, R. P. Amazing diversity in biochemical roles of Fe (II)/2-oxoglutarate oxygenases. Trends in biochemical sciences 43, 517-532 (2018).
39 White, M. D. Flashman, E. Catalytic strategies of the non-heme iron dependent oxygenases and their roles in plant biology. Current Opinion in Chemical Biology 31, 126-135 (2016).
40 Farrow, S. C. Facchini, P. J. Functional diversity of 2-oxoglutarate/Fe (II)-dependent dioxygenases in plant metabolism. Frontiers in Plant Science 5, 524 (2014).
41 Jia, B., Jia, X., Kim, K. H. Jeon, C. O. Integrative view of 2-oxoglutarate/Fe (II)-dependent oxygenase diversity and functions in bacteria. Biochimica et Biophysica Acta (BBA)-General Subjects 1861, 323-334 (2017).
42 Bollinger Jr, J. M. et al. in 2-Oxoglutarate-dependent oxygenases 95-122 (Royal Society of Chemistry London, 2015).
43 Chang, W.-c., Yang, Z.-J., Tu, Y.-H. Chien, T.-C. Reaction mechanism of a nonheme iron enzyme catalyzed oxidative cyclization via C–C bond formation. Organic letters 21, 228-232 (2018).
44 Rossmann, M. G. Molecular replacement method. (1972).
45 Abergel, C. Molecular replacement: tricks and treats. Acta Crystallographica Section D: Biological Crystallography 69, 2167-2173 (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78308-
dc.description.abstract鬼臼毒素 (podophyllotoxin) 是一種非生物鹼類、木脂素類毒素,其衍生化合物是臨床上普遍使用的抗癌或抗病毒藥物,分別主要抑制細胞中的第二型拓樸異構酶 (topoisomerase type II) 活性以及細胞骨架微管 (microtubule) 的聚合而造成療效。鬼臼毒素主要的天然來源為桃兒七和美洲鬼臼草,這兩株植物相對其他自然資源含有較大量的活性成分,在過去幾年因應臨床上的大量需求多為人採伐,加上棲地遭受危害,成為了瀕危物種。因此,近年來開啟了許多對於鬼臼毒素生合成路徑的研究,希望透過基因工程以及分子生物學技術,將原生物體內之代謝途徑移植至模式生物中,代替產生所需化學物質。去氧鬼臼毒素合酶 (deoxypodophyllotoxin synthase, DPS) 是參與在木脂素生合成途徑的重要蛋白,完成芳基四氫萘(aryltetralin) 主結構。DPS 屬於為一非血基質鐵 (non-heme iron) /α-酮戊二酸 (α-ketoglutarate) 依賴型雙氧化酶蛋白家族,家族成員皆擁有類似的活性中心以及催化機制。其活性中心的二價鐵離子以六配位方式,由兩個組胺酸 (Histidine) 的氮與另一天門冬胺酸 (Aspartic acid) 或麩胺酸 (Glutamic acid) 之羧基所構成的 2-His-1-carboxylate motif 螯合,其餘三個配位則由水分子所佔據。此外,整個活性中心被八個反向平行β-摺板所形成穩定的double-stranded β-helix 結構包覆。此蛋白家族的共通催化機制一開始是氧氣活化形成ferryl-oxo 單元,此單元具有強氧化力,不同的酵素針對特定的受質便能夠驅使多樣化的受質攻擊。DPS 催化具有立體專一性的氧化合環作用,將受質 (–)-yatein 轉化成 (–)-deoxypodophyllotoxin。先前報導曾提出可能的催化機制,DPS 在受質的C 環七號碳上進行奪氫反應,產生碳陽離子或受質自由基的中間產物,並促使去質子化生成碳碳鍵 (C-C) 合環。然而,目前尚未解出DPS 蛋白結構,因而缺乏結構方面的證據來支持上述的假設。因此,本篇論文主要以蛋白結構的角度切入,探討DPS 如何誘導C 環上二號碳與七號碳之間的鍵結生成與合環,包括其催化機制以及如何控制產物的掌性。目前已成功表現帶有組胺酸標籤 (His tag) 的可溶性DPS 並且透過固定化金屬離子親和性層析、陰離子交換層析、膠體過濾層析成功得到高純度的DPS。透過氣相擴散法進行晶體培養,目前分別成功獲得輔因子結合態 (DPS•Fe•2-OG) 以及受質結合態(DPS•Fe•succinate•DMOY) 的晶體,目前收集到最好的數據之解析度為2.09 Å。為了解決相位角問題,我們則成功依循前面純化方式培養出已含有硒化甲硫胺酸 (Selenomethionine) 之DPS 晶體,進行多波長非尋常散射法 (multi-wavelength anomalous diffraction)。然而,由於晶體小且數據解析度不夠,晶體仍待再優化。因此,培養出能進行相位角解析的晶體是目前想要解出DPS 結構的當務之急。未來希望透過與不同受質類似物或產物類似物的晶體結構,解析出DPS 催化氧化合環反應的完整過程。zh_TW
dc.description.abstractDerivatives of podophyllotoxin, a non-alkaloid lignan, are clinically active anticancer and antiviral agents whose mechanisms of action involve direct targeting of eukaryotic type II topoisomerases and destabilizing microtubules. Despite being highly demanded for its medical usage, the production capacity of podophyllotoxin is limited by the availability of its nature sources Sinopodophyllum hexandrum and Podophyllum. A better understanding of the biosynthetic pathway of podophyllotoxin is expected to benefit the development of an alternative procedure for producing this important compound by metabolic engineering. Deoxypodophyllotoxin synthase (DPS) is one of the key enzymes involved in the podophyllotoxin biosynthesis. DPS belongs to the Fe(II)/2OG-dependent oxygenase superfamily, which features the presence of a 2-His-1-carboxylate motif for coordinating Fe(II) and a distorted double-stranded β-helix (DSBH) fold composed of 8 antiparallel β-strands. The common catalytic cycle of this family starts from oxygen activation to generate Fe(IV)-oxo active center, and this highly reactive Fe(IV)-oxo species is capable of triggering a variety of oxidative transformations on different substrates. DPS catalyzes stereoselective oxidative ring closure during the conversion of (–)-yatein to (–)-deoxypodophyllotoxin. According to a proposed mechanism, DPS initiates benzylic hydrogen atom abstraction on the C’7 of its substrate and generates a carbocation or substrate radical, which serves as an intermediate tofacilitate deprotonation and subsequent Carbon-Carbon (C-C) bond formation. Nevertheless, the structural basis governing DPS function has remained to be explored. Therefore, the main goal of my thesis research is to elucidate how DPS mediates the oxidative cyclization via C-C bond formation between C2 and C7. To this end, we have produced His-tagged DPS and successfully obtained highly purified protein through immobilized metal affinity chromatography, anion exchange chromatography and size-exclusion chromatography. Using the vapor diffusion method, both the 2-OG-bound and substrate-bound DPS have been crystallized, and a complete diffraction data set has been collected to 2.09 Å resolution. To solve the phase problem, we have prepared selenomethionine-derivatized DPS crystals to allow the application of selenium-based anomalous diffraction (Se-MAD) phasing method, however, further improvement is needed to get high-quality crystals. We have employed various crystallization strategies, such as micro-seeding, but with no crystal formation yet. Therefore, to establish a robust crystallization scheme and produce high-quality Se-DPS crystals are the top priority for structural studies on DPS. Moreover, crystallization of DPS complexed with other chemical combinations that represent distinct stages of the catalytic cycle will also be performed in the future.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:50:29Z (GMT). No. of bitstreams: 1
U0001-0608202016000500.pdf: 23328403 bytes, checksum: a84ad7557026d84f993314e5bf29cb37 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口委審定書 I
致謝 II
摘要 III
Abstract V
Contents VIII
List of Figures XI
List of Tables XIII
1. Introduction 1
1.1 DPS: an essential enzyme for the biosynthesis of deoxypodophyllotoxin 2
1.2 Non-heme Fe(II)-2-oxoglutarate-dependent dioxygenases superfamily 5
1.3 The consensus catalytic cycle of hydroxylation as an example 7
1.4 Functions of the DPS and the proposed mechanism of DPS-catalyzed oxidative
reactions 9
1.5 Specific aims of this thesis 10
2. Materials and Methods 12
2.1 Protein expression systems 13
2.1.1 DNA construct 13
2.1.2 Competent cell preparation 13
2.1.3 Small-scale expression test 14
2.1.4 Large-scale protein expression 15
2.1.5 Methionine auxotrophic expression systems 16
2.2 Protein purification 16
2.2.1 Cell lysis 16
2.2.2 Liquid chromatography 17
(1) Immobilized metal affinity chromatography, IMAC 17
(2) Anion-exchange chromatography, AIEC 18
(3) Size exclusion chromatography, SEC 18
2.3 Protein crystallization 19
2.3.1 Sample preparation 19
2.3.2 Crystallization screen 20
2.3.3 Crystallization reagent optimization 20
2.3.4 Seeding experiment 21
2.3.5 Crystal cryo-cooling 22
3. Results 23
3.1. Expression and purification of C-terminal hexa-histidine DPS 24
3.2. Crystallization and preliminary diffraction analysis of co-factor-bound DPS 25
3.3. Crystallization and preliminary diffraction analysis of substrate-bound DPS 27
3.4. Structural determination by molecular replacement (MR) was not successful 27
3.5. Selenium-based multiwavelength anomalous diffraction (MAD) was applied to
solve the phasing problem 29
4. Discussion 31
4.1. Optimization needs stocks in bulk to control the consistency of quality 32
4.2. Potential structural differences between DPS and known 2-OG dependent enzymes
33
4.3. Future works 34
5. Figures 35
6. Tables 50
7. Reference 64
8. Appendix 72
dc.language.isoen
dc.subject芳基四氫萘zh_TW
dc.subject去氧鬼臼毒素合酶zh_TW
dc.subject非血基質鐵/α-酮戊二酸依賴型雙氧化酶zh_TW
dc.subject碳碳鍵生成zh_TW
dc.subject氧化合環zh_TW
dc.subjectnon-heme FeII/2-oxoglutarate-dependent dioxygenaseen
dc.subjectdeoxypodophyllotoxin synthaseen
dc.subjectaryltetralinsen
dc.subjectoxidative cyclizationen
dc.subjectcarbon-carbon bond formationen
dc.title探討去氧鬼臼毒素合酶催化氧化合環反應之結構研究zh_TW
dc.titleToward the structural studies of deoxypodophyllotoxin synthase-catalyzed oxidative ring formationen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.advisor-orcid詹迺立(0000-0003-0139-6513)
dc.contributor.oralexamcommittee曾秀如(Shiou-Ru Tzeng),徐駿森(Chun-Hua Hsu)
dc.subject.keyword非血基質鐵/α-酮戊二酸依賴型雙氧化酶,去氧鬼臼毒素合酶,芳基四氫萘,氧化合環,碳碳鍵生成,zh_TW
dc.subject.keywordnon-heme FeII/2-oxoglutarate-dependent dioxygenase,deoxypodophyllotoxin synthase,aryltetralins,oxidative cyclization,carbon-carbon bond formation,en
dc.relation.page76
dc.identifier.doi10.6342/NTU202002553
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
dc.date.embargo-lift2025-08-17-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
U0001-0608202016000500.pdf
  未授權公開取用
22.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved