Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78300
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chih-Kung Lee)
dc.contributor.authorYu-Cheng Kaoen
dc.contributor.author高育晟zh_TW
dc.date.accessioned2021-07-11T14:50:06Z-
dc.date.available2022-08-30
dc.date.copyright2020-09-09
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citation[1] Who.int. (2018, May 24). The top 10 causes of death. Retrived June 14, 2020, from https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
[2] T. Ma and Y. T. Zhang, 'A Correlation Study on the Variabilities in Pulse Transit Time, Blood Pressure, and Heart Rate Recorded Simultaneously from Healthy Subjects,' in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005, pp. 996-999.
[3] S. Ye, G.-R. Kim, D.-K. Jung, S. Baik, G. J. W. A. o. S. Jeon, Engineering, and Technology, 'Estimation of systolic and diastolic pressure using the pulse transit time,' in 2019 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), 2019, vol. 67, pp. 726-731.
[4] T. G. Pickering et al., 'Recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research,' Hypertension, vol. 45, no. 1, pp. 142-161, Jan 2005.
[5] Heart.org. Understanding Blood Pressure Readings. Retrived June 14, 2020, from https://www.heart.org/en/health-topics/high-blood-pressure/understanding-blood-pressure-readings
[6] Healthline.com. (2018, April 19). Understanding Wide Pulse Pressure. Retrived June 14, 2020, from https://www.healthline.com/health/wide-pulse-pressure
[7] J. Xu et al., 'The value of a BP determination method using a novel non-invasive BP device against the invasive catheter measurement,' (in English), PLoS One, vol. 9, no. 6, p. e100287, Jun 23 2014.
[8] Cvphysiology.com. (2015, July 3). Cardiac Function - Introduction. Retrived June 22, 2020, from https://www.cvphysiology.com/Cardiac%20Function/CF001
[9] Cvphysiology.com. (2016, December 7). Mean Arterial Pressure. Retrived June 22, 2020, from https://www.cvphysiology.com/Blood%20Pressure/BP006
[10] H. Sorvoja et al., 'Accuracy comparison of oscillometric and electronic palpation blood pressure measuring methods using intra-arterial method as a reference,' vol. 26, no. 235, p. 60, 2005.
[11] J. J. Settels, 'Noninvasive Arterial Pressure Monitoring,' in Monitoring Technologies in Acute Care Environments, J. M. Ehrenfeld and M. Cannesson, Eds. New York, NY: Springer New York, 2014, pp. 87-107.
[12] David B. Wax, M.D., H.-M. Lin, Ph.D., and Andrew B. Leibowitz, M.D., 'Invasive and Concomitant Noninvasive Intraoperative Blood Pressure Monitoring: Observed Differences in Measurements and Associated Therapeutic Interventions,' Anesthesiology: The Journal of the American Society of Anesthesiologists, vol. 115, no. 5, pp. 973-978, 2011.
[13] Medistudents.com. (2018). Blood Pressure (BP) Measurement. Retrived June 25, 2020, from https://www.medistudents.com/en/learning/osce-skills/cardiovascular/blood-pressure-measurement/
[14] Cnet.com. (2019, August 6). The 2 most important things to look for in a blood pressure monitor. Retrived June 25, 2020, from https://bioreports.net/the-2-most-important-things-to-look-for-in-a-blood-pressure-monitor-cnet/
[15] L. Peter, N. Noury, and M. Cerny, 'A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?,' Irbm, vol. 35, no. 5, pp. 271-282, 2014.
[16] T. Sato, M. Nishinaga, A. Kawamoto, T. Ozawa, and H. Takatsuji, 'Accuracy of a Continuous Blood-Pressure Monitor Based on Arterial Tonometry,' (in English), Hypertension, vol. 21, no. 6, pp. 866-874, Jun 1993.
[17] M. Nitzan, 'Measuring systolic blood pressure by photoplethysmography,' Patent US 7,544,168 B2 2009.
[18] A. S. Meidert et al., 'Evaluation of the radial artery applanation tonometry technology for continuous noninvasive blood pressure monitoring compared with central aortic blood pressure measurements in patients with multiple organ dysfunction syndrome,' J Crit Care, vol. 28, no. 6, pp. 908-12, Dec 2013.
[19] M. R. Nelson, J. Stepanek, M. Cevette, M. Covalciuc, R. T. Hurst, and A. J. Tajik, 'Noninvasive measurement of central vascular pressures with arterial tonometry: clinical revival of the pulse pressure waveform?,' in Mayo Clinic Proceedings, 2010, vol. 85, no. 5, pp. 460-472: Elsevier.
[20] B. Gribbin, A. Steptoe, and P. Sleight, 'Pulse-Wave Velocity as a Measure of Blood-Pressure Change,' (in English), Psychophysiology, vol. 13, no. 1, pp. 86-90, 1976.
[21] J. D. Lane, L. Greenstadt, D. Shapiro, and E. Rubinstein, 'Pulse transit time and blood pressure: an intensive analysis,' Psychophysiology, vol. 20, no. 1, pp. 45-9, Jan 1983.
[22] P. Kalita and R. Schaefer, 'Mechanical models of artery walls,' (in English), Archives of Computational Methods in Engineering, vol. 15, no. 1, pp. 1-36, Mar 2008.
[23] G. Drzewiecki, R. Hood, and H. Apple, 'Theory of the oscillometric maximum and the systolic and diastolic detection ratios,' Ann Biomed Eng, vol. 22, no. 1, pp. 88-96, Jan-Feb 1994.
[24] D. Agrò et al., 'PPG embedded system for blood pressure monitoring,' in 2014 AEIT Annual Conference-From Research to Industry: The Need for a More Effective Technology Transfer (AEIT), 2014, pp. 1-6: IEEE.
[25] P. Y. Chiang et al., 'Machine Learning Classification for Assessing the Degree of Stenosis and Blood Flow Volume at Arteriovenous Fistulas of Hemodialysis Patients Using a New Photoplethysmography Sensor Device,' Sensors (Basel), vol. 19, no. 15, Aug 4 2019.
[26] J. Allen, K. Overbeck, G. Stansby, and A. Murray, 'Photoplethysmography assessments in cardiovascular disease,' (in English), Measurement Control, vol. 39, no. 3, pp. 80-83, Apr 2006.
[27] K. Tremper and S. Barker, 'Pulse oximetry and oxygen transport,' in Pulse oximetry: Springer, 1986, pp. 19-27.
[28] D. Jarchi, D. Salvi, C. Velardo, A. Mahdi, L. Tarassenko, and D. A. Clifton, 'Estimation of HRV and SpO2 from wrist-worn commercial sensors for clinical settings,' in 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2018, pp. 144-147: IEEE.
[29] L. Q. Kong et al., 'Non-contact detection of oxygen saturation based on visible light imaging device using ambient light,' (in English), Optics Express, vol. 21, no. 15, pp. 17464-17471, Jul 29 2013.
[30] Heart.org. (2015). All About Heart Rate (Pulse). Retrived June 28, 2020, from https://www.heart.org/en/health-topics/high-blood-pressure/the-facts-about-high-blood-pressure/all-about-heart-rate-pulse
[31] Health.harvard.edu. (2017, November 22). Heart rate variability: A new way to track well-being. Retrived June 30, 2020, from https://www.health.harvard.edu/blog/heart-rate-variability-new-way-track-well-2017112212789
[32] M. Kataoka, C. Ito, H. Sasaki, K. Yamane, and N. Kohno, 'Low heart rate variability is a risk factor for sudden cardiac death in type 2 diabetes,' (in English), Diabetes Research and Clinical Practice, vol. 64, no. 1, pp. 51-58, Apr 2004.
[33] T. F. o. t. E. S. o. C. t. N. A. S. o. P. J. C. Electrophysiology, 'Heart rate variability: standards of measurement, physiological interpretation, and clinical use,' vol. 93, no. 5, pp. 1043-1065, 1996.
[34] Kubios.com. ABOUT HEART RATE VARIABILITY. Retrived July 1, 2020, from https://www.kubios.com/about-hrv/
[35] R. P. Smith, J. Argod, J. L. Pepin, and P. A. Levy, 'Pulse transit time: an appraisal of potential clinical applications,' Thorax, vol. 54, no. 5, pp. 452-7, May 1999.
[36] J. L. Moraes, M. X. Rocha, G. G. Vasconcelos, J. E. Vasconcelos Filho, V. H. C. de Albuquerque, and A. R. Alexandria, 'Advances in Photopletysmography Signal Analysis for Biomedical Applications,' Sensors (Basel), vol. 18, no. 6, p. 1894, Jun 9 2018.
[37] S. Hey, A. Gharbi, B. von Haaren, K. Walter, N. König, and S. Löffler, 'Continuous Noninvasive Pulse Transit Time Measurement for Psycho-physiological Stress Monitoring,' presented at the 2009 International Conference on eHealth, Telemedicine, and Social Medicine, 2009.
[38] A. Hennig and A. Patzak, 'Continuous blood pressure measurement using pulse transit time,' Somnologie - Schlafforschung und Schlafmedizin, vol. 17, no. 2, pp. 104-110, 2013.
[39] E. R. Nye, 'The Effect of Blood Pressure Alteration on the Pulse Wave Velocity,' Br Heart J, vol. 26, no. 2, pp. 261-5, Mar 1964.
[40] A. Steptoe, H. Smulyan, and B. Gribbin, 'Pulse wave velocity and blood pressure change: calibration and applications,' Psychophysiology, vol. 13, no. 5, pp. 488-93, Sep 1976.
[41] S. N. Kounalakis and N. D. Geladas, 'The Role of Pulse Transit Time as an Index of Arterial Stiffness During Exercise,' (in English), Cardiovascular Engineering, vol. 9, no. 3, pp. 92-97, Sep 2009.
[42] H. Schmalgemeier et al., 'Pulse transit time: validation of blood pressure measurement under positive airway pressure ventilation,' Sleep Breath, vol. 16, no. 4, pp. 1105-12, Dec 2012.
[43] C. Vlachopoulos, M. O'Rourke, and W. W. Nichols, McDonald's blood flow in arteries: theoretical, experimental and clinical principles. London: CRC press, 2011.
[44] D. J. Hughes, C. F. Babbs, L. A. Geddes, and J. D. Bourland, 'Measurements of Young's modulus of elasticity of the canine aorta with ultrasound,' Ultrason Imaging, vol. 1, no. 4, pp. 356-67, Oct 1979.
[45] M. Y. M. Wong, E. Pickwell-MacPherson, and Y. T. Zhang, 'The acute effects of running on blood pressure estimation using pulse transit time in normotensive subjects,' (in English), European Journal of Applied Physiology, vol. 107, no. 2, pp. 169-175, Sep 2009.
[46] R. Wang, W. Jia, Z.-H. Mao, R. J. Sclabassi, and M. Sun, 'Cuff-free blood pressure estimation using pulse transit time and heart rate,' in 2014 12th international conference on signal processing (ICSP), 2014, pp. 115-118: IEEE.
[47] J. M. Bland and D. G. Altman, 'Statistical methods for assessing agreement between two methods of clinical measurement,' (in English), International Journal of Nursing Studies, vol. 47, no. 8, pp. 931-936, Aug 2010.
[48] C. Vazquez-Jaccaud, G. Paez, and M. Strojnik, 'Wavelength selection method with standard deviation: application to pulse oximetry,' Ann Biomed Eng, vol. 39, no. 7, pp. 1994-2009, Jul 2011.
[49] J. A. Pologe, 'Pulse oximetry: technical aspects of machine design,' Int Anesthesiol Clin, vol. 25, no. 3, pp. 137-53, Fall 1987.
[50] M. W. Wukitsch, M. T. Petterson, D. R. Tobler, and J. A. Pologe, 'Pulse oximetry: analysis of theory, technology, and practice,' J Clin Monit, vol. 4, no. 4, pp. 290-301, Oct 1988.
[51] T. L. Rusch, R. Sankar, and J. E. Scharf, 'Signal processing methods for pulse oximetry,' Comput Biol Med, vol. 26, no. 2, pp. 143-59, Mar 1996.
[52] B. H. Brown, R. H. Smallwood, D. C. Barber, P. Lawford, and D. Hose, Medical physics and biomedical engineering. New York, London: Taylor Francis, 1999.
[53] A. Ibrahim, Y. Ryu, and M. Saidpour, 'Stress Analysis of Thin-Walled Pressure Vessels,' Modern Mechanical Engineering, vol. 05, no. 01, pp. 1-9, 2015.
[54] C. R. Ethier and C. A. Simmons, Introductory biomechanics: from cells to organisms. New York: Cambridge University Press, 2007.
[55] R. Mukkamala et al., 'Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice,' IEEE Trans Biomed Eng, vol. 62, no. 8, pp. 1879-901, Aug 2015.
[56] N. Westerhof, N. Stergiopulos, and M. I. M. Noble, Snapshots of Hemodynamics. New York: Springer, 2010.
[57] G. J. Langewouters, K. H. Wesseling, and W. J. Goedhard, 'The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model,' J Biomech, vol. 17, no. 6, pp. 425-35, 1984.
[58] A. Jadooei, O. Zaderykhin, and V. Shulgin, 'Adaptive algorithm for continuous monitoring of blood pressure using a pulse transit time,' in 2013 IEEE XXXIII international scientific conference electronics and nanotechnology (ELNANO), 2013, pp. 297-301: IEEE.
[59] Ni.com. 多功能I/O介面卡. Retrived July 13, 2020, from https://www.ni.com/zh-tw/shop/select/multifunction-io-device
[60] Ni.com. C系列電壓輸入模組. Retrived July 13, 2020, from https://www.ni.com/zh-tw/shop/select/c-series-voltage-input-module
[61] Acalbfi.com. Dynamic signal analyser, DC to 102.4 kHz bandwidth Retrived July 13, 2020, from https://www.acalbfi.com/nl/Electronic-test-and-measurement/Oscilloscopes-Analysers-Meters/Spectrum-analysers/p/Dynamic-signal-analyser--DC-to-102-4-kHz-bandwidth/00000005BX#!prettyPhoto
[62] Mathworks.com. Bandpass. Retrived July 13, 2020, from https://www.mathworks.com/help/signal/ref/bandpass.html
[63] Glneurotech.com. Physiological Monitor Compact Wireless Physiology Monitor. Retrived July 13, 2020, from https://www.glneurotech.com/physiology-monitor /
[64] M. Elgendi, 'On the analysis of fingertip photoplethysmogram signals,' Curr Cardiol Rev, vol. 8, no. 1, pp. 14-25, Feb 2012.
[65] A. J. Camm et al., 'Heart Rate Variability,' Circulation, vol. 93, no. 5, pp. 1043-1065, 1996.
[66] S. W. Lee, P. F. Fischer, F. Loth, T. J. Royston, J. K. Grogan, and H. S. Bassiouny, 'Flow-induced vein-wall vibration in an arteriovenous graft,' (in English), Journal of Fluids and Structures, vol. 20, no. 6, pp. 837-852, Aug 2005.
[67] V. Gemignani, F. Faita, L. Ghiadoni, E. Poggianti, and M. Demi, 'A system for real-time measurement of the brachial artery diameter in B-mode ultrasound images,' IEEE Trans Med Imaging, vol. 26, no. 3, pp. 393-404, Mar 2007.
[68] 邱時雍, '非接觸式血壓監測之研究-運用三維疊紋干涉術量測手腕表面脈搏振動,' 國立臺灣大學工程科學及海洋工程學研究所, 臺北市, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78300-
dc.description.abstract現今的血壓量測方法仍是以脈壓袖帶為基礎的接觸式量測為主,包含聽音診斷法與示波振幅法。傳統的接觸式血壓量測方法具有高準確度的優點,卻也伴隨著不少缺點,如操作上的不便性、容易造成受試者不舒適與不適合做長時間的量測等。再者也不適用於動脈硬化與心房顫動的患者。因此為實現非接觸式的血壓量測方法,本研究開發以脈衝傳遞時間 (Pulse Transit Time, PTT) 為基礎的血壓量測方法,以同時量測手指與耳朵的光體積描記 (Photoplethysmography, PPG) 訊號來改善接觸式量測的缺點。本方法僅需將附有LED與光感測器的PPG裝置貼附皮膚表面以取代傳統的脈壓袖帶進行量測,計算由二相異位置的PPG訊號間的PTT並與足夠的血壓資訊建立血壓迴歸模型,將可實現簡便的連續血壓監測。
在非接觸式血壓量測方法中,PTT為血壓模型迴歸的泛用參數。一般來說,PTT定義為心電圖 (Electrocardiography, ECG) 中R波峰值 (R peak) 與PPG足點 (Foot point) 間的時間差,二者在生理意義上相近,因此定義其時間差為脈搏波傳遞至目標位置所需的時間,亦即PTT。然而,ECG訊號容易受電壓干擾、汗水與電極貼片狀態等因素影響,進而影響PTT計算的穩定度,因此在本研究中以同時量測二相異位置的PPG波形計算所得之PTT取代傳統PTT定義。許多研究指出PTT與血壓間具有高度相關,包含收縮壓、舒張壓與脈壓。以PWV或PTT為參數所建立的血壓模型主要針對心搏力對血壓造成的影響,亦即脈壓,因此本研究中以脈壓為目標建立迴歸模型。
為計算PTT作為脈壓迴歸的參數,本研究建立一套系統用以同時量測耳朵與手指的PPG訊號,並透過商用儀器進行系統驗證以確保訊號準確度,再針對PPG波形上的特徵開發演算法以針對波形上各特徵點進行擷取,即使是在波形特徵較不明顯的非典型PPG波形中仍適用,在此以二訊號中最大斜率點 (Max slope point) 的時間差定義為PTT。在脈壓迴歸模型中,本研究以PTT為基礎參數,再加以結合流體力學與材料力學理論與適當假設所推導出的脈壓迴歸模型,以力學模型為基礎選取適合的參數進行迴歸,並探討流體力學中體積流率與光學PPG波形特徵間斜率的對應關係後引入脈壓迴歸模型作為參數,最後將本研究所推導出的脈壓迴歸模型與目前文獻中提出的各脈壓模型做比較,並分析模型中各項參數與脈壓的關係及比重以探討各參數對脈壓的影響程度並驗證血管力學模型。最後由單一受試者和複數受試者的迴歸結果可看出,將參數取對數後進行迴歸的脈壓模型在擬合程度上均呈現出顯著的改善,證明脈壓與各項參數之間存在指數關係,並驗證該迴歸模型可適用於不同受試者。
zh_TW
dc.description.abstractNowadays, cuff-based blood pressure (BP) monitoring is still a wild spread standard method for health care, which including auscultatory and oscillometric. Both of these methods provide high accuracy. Nevertheless, cuff-based BP monitoring methods present disadvantages such as inconvenience, discomfort, and is inappropriate for long time measuring. Moreover, cuff-based BP measurement is not applicable for subjects with stiff artery or atrial fibrillation problems. To achieve the goal of blood pressure measurement without cuff-based method, an innovative BP monitoring method based on pulse transit time (PTT) was proposed in this study. By measuring photoplethysmography (PPG) signals at finger and ear simultaneously, the issues of cuff-based BP measurement mentioned above could be improved. Thus, two PPG pods with LED and photodetector which required simply contact to skin surface were utilized to replace the inflated cuff. With the two different positioned PPG pods, the PTT could be calculated from the PPG waveforms. Combined with adequate BP data, a simple continuous BP measurement via successive PPG will be fulfilled.
For cuff-less BP monitoring, PTT is a wild used parameter. In traditional, the PTT was defined as the time difference between the R-peak of an electrocardiogram (ECG) and the foot point of PPG waveform which represents the moment when blood flow is rushing out of aortic valve. However, the ECG signal is affected by voltage interference, sweat and the state of patches easily which could make the instability of the PTT calculation based on ECG and PPG signals. In this study, the traditional PTT calculation was replaced by detecting two different positioned PPG waveforms at the same time. Several researches have shown the high correlation between PTT and BP, both of systolic blood pressure (SBP), diastolic blood pressure (DBP) and pulse pressure (PP). The BP regression model based on PWV or PTT was established for investigating the effect of heart beat force on BP, that is PP. Therefore, PP is the target of regression in this study.
In order to calculate PTT for PP regression model, this study built a system for measuring ear and finger PPG signals at the same time and validated the system by a commercial instrument to ensure the accuracy of measurement. Before PTT calculation, this study developed an algorithm for PPG feature extraction on both typical and untypical PPG waveforms, then defined PTT as the time difference between max slope points on two PPG signals. Besides adapting PTT as the parameter for PP regression model, more parameters were chosen from artery mechanics model which was based on fluid and material mechanics theory and with appropriate assumptions. Here introduced the slope on PPG waveform between characteristic points as the regression parameter which was corresponding to flow rate in artery. Furthermore, this study analyzed the effect and weighting of each parameter in PP regression model to validate the artery mechanics model. Finally, by comparing with the existed PP regression models, the new PP regression model which was proposed in this study by introducing, and showed great improvement on R2 performance either in the results of single subject or multiple subjects regression.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:50:06Z (GMT). No. of bitstreams: 1
U0001-0708202017552600.pdf: 6058710 bytes, checksum: 99dccc69bdefd13548cd889cb96f356f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
目錄 vii
圖目錄 ix
表目錄 xii
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 現有血壓量測方法比較 4
1.2.2 生理訊號: PPG 10
1.2.3 生理訊號: 血氧飽和度 12
1.2.4 生理訊號: 心率 14
1.2.5 生理訊號: PTT 17
1.2.6 PTT與血壓相關性 18
1.3 研究方法與目標 20
1.4 論文架構 20
第2章 研究原理 22
2.1 血氧飽和度計算 22
2.2 PTT與血管參數 25
2.3 血管流體力學模型 29
2.3.1 圓柱座標之準穩態平衡 29
2.3.2 卡式座標之準穩態平衡 31
2.4 現有血壓迴歸模型 33
第3章 實驗架設與訊號分析 37
3.1 PPG量測裝置 37
3.1.1 LED與光感測器電路圖 37
3.1.2 濾波器PSpice模擬與網路分析 39
3.1.3 數位濾波器設計 40
3.1.4 系統驗證 44
3.2 PPG訊號與血壓量測實驗架構 45
3.3 PPG特徵點擷取 50
3.4 PTT計算 52
第4章 實驗結果與討論 53
4.1 血氧飽和度迴歸模型比較與討論 53
4.2 心率變異率分析 55
4.3 脈壓迴歸模型推導與分析 56
4.4 單一受試者脈壓迴歸模型比較與討論 62
4.5 複數受試者脈壓迴歸模型比較與討論 63
第5章 結論與未來展望 66
5.1 結論 66
5.2 未來展望 67
參考文獻 68
dc.language.isozh-TW
dc.title以相異位置PPG訊號間脈衝傳遞時間建立血壓量測模型zh_TW
dc.titleBlood pressure measurement based on pulse transit time from different positioned photoplethysmography signalsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor吳文中(Wen-Jong Wu)
dc.contributor.oralexamcommittee李舒昇(Shu-Sheng Lee),黃君偉(Jiun-Woei Huang)
dc.subject.keyword脈衝傳遞時間,光體積描記訊號,連續血壓量測,脈壓迴歸模型,zh_TW
dc.subject.keywordpulse transit time (PTT),photoplethysmography,continuous blood pressure monitoring,pulse pressure (PP) regression model,en
dc.relation.page76
dc.identifier.doi10.6342/NTU202002663
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-0708202017552600.pdf
  目前未授權公開取用
5.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved