Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78286
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chin-Kung Lee)
dc.contributor.authorYuan-Ting Kaoen
dc.contributor.author高苑庭zh_TW
dc.date.accessioned2021-07-11T14:49:27Z-
dc.date.available2022-08-31
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation[1] K. Uchino, 'Introduction to piezoelectric actuators: research misconceptions and rectifications,' Japanese Journal of Applied Physics, vol. 58, no. SG, p. SG0803, 2019.
[2] T. Takano and Y. Tomikawa, 'Linearly moving ultrasonic motor using a multi-mode vibrator,' Japanese Journal of Applied Physics, vol. 28, no. S1, p. 164, 1989.
[3] 朱宗祐, '雙頻雙模態壓電馬達之最佳化設計,' 碩士論文, 國立臺灣大學應用力學研究所, 2018.
[4] 林育民, '以雙頻雙模態激發之二維傳遞波產生器開發及在二維壓電馬達之應用,' 碩士論文, 國立臺灣大學工程科學及海洋工程學研究所, 2019.
[5] H. Barth, 'Ultrasonic driven motor,' IBM Tech. Disclosure Bull., vol. 16, p. 2263, 1973.
[6] T. Sashida and T. Kenjo, An introduction to ultrasonic motors. Oxford: Clarendon Press Oxford, 1993.
[7] G. L. Smith, R. Q. Rudy, R. G. Polcawich, and D. L. DeVoe, 'Integrated thin-film piezoelectric traveling wave ultrasonic motors,' Sensors and Actuators A: Physical, vol. 188, pp. 305-311, 2012.
[8] M. Kuribayashi, S. Ueha, and E. Mori, 'Excitation conditions of flexural traveling waves for a reversible ultrasonic linear motor,' The Journal of the Acoustical Society of America, vol. 77, no. 4, pp. 1431-1435, 1985.
[9] K. J. Son, V. Kartik, J. A. Wickert, and M. Sitti, 'An ultrasonic standing-wave-actuated nano-positioning walking robot: Piezoelectric-metal composite beam modeling,' Journal of vibration and control, vol. 12, no. 12, pp. 1293-1309, 2006.
[10] H. Hariri, Y. Bernard, and A. Razek, 'A traveling wave piezoelectric beam robot,' Smart Materials and Structures, vol. 23, no. 2, p. 025013, 2013.
[11] H. Hariri, Y. Bernard, and A. Razek, '2-D traveling wave driven piezoelectric plate robot for planar motion,' IEEE/ASME Transactions on Mechatronics, vol. 23, no. 1, pp. 242-251, 2018.
[12] P. I. P. G. C. KG. Positioning with Piezo Systems [Online]. Available: www.PI.WS.
[13] L. Chassagne et al., 'A 2D nano-positioning system with sub-nanometric repeatability over the millimetre displacement range,' Measurement Science and Technology, vol. 18, no. 11, p. 3267, 2007.
[14] Piezoelectric Motor Market Forecast, Trend Analysis Competition Tracking - Global Market Insights 2019 to 2029. [Online]. Available: https://www.factmr.com/report/2438/piezoelectric-motormarket
[15] B.-G. Loh and P. Ro, 'An object transport system using flexural ultrasonic progressive waves generated by two-mode excitation,' IEEE transactions on ultrasonics, ferroelectrics, frequency control, vol. 47, no. 4, pp. 994-999, 2000.
[16] E. T. C. Ltd. PIEZOELECTRIC CERAMIC MATERIAL PROPERTIES [Online]. Available: http://www.eleceram.com.tw/en/product-258833/PIEZOELECTRIC-CERAMICS-Ring.html
[17] B. Jaffe, Piezoelectric ceramics. London and New York: Elsevier, 2012.
[18] W. G. Hankel, 'Uber die aktinound piezoelektrischen eigenschaften des bergkrystalles und ihre beziehung zu den thermoelektrischen,' Abh. Sächs, vol. 12, p. 457, 1881.
[19] M. Lippmann, 'On the principle of the conservation of electricity,' The London, Edinburgh and Dublin philosophical magazine and journal of science, vol. 12, no. 73, pp. 151-154, 1881.
[20] E. Fukada and I. Yasuda, 'On the piezoelectric effect of bone,' Journal of the physical society of Japan, vol. 12, no. 10, pp. 1158-1162, 1957.
[21] 吳朗, 電子陶瓷: 壓電陶瓷. 全欣資訊圖書股份有限公司,台北市, 1994.
[22] 溫志偉, '以溶-凝膠法製備之層狀鋯鈦酸薄膜微結構分析及生物相容性評估,' 碩士論文, 國立高雄應用科技大學機械與精密工程研究所, 2005.
[23] D. Nelson, 'Theory of nonlinear electroacoustics of dielectric, piezoelectric, and pyroelectric crystals,' The Journal of the Acoustical Society of America, vol. 63, no. 6, pp. 1738-1748, 1978.
[24] C.-K. Lee, 'Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships,' The Journal of the Acoustical Society of America, vol. 87, no. 3, pp. 1144-1158, 1990.
[25] A. Warner, D. Berlincourt, A. Meitzler, H. Tiersten, G. Coquin, and I. Welsh, 'IEEE standard on piezoelectricity (ANSI/IEEE standard 176-1987),' Technical report, The Institute of Electrical and Electronics Engineers, Inc1988.
[26] K. Graff, 'Wave Motion in Elastic Solids. Courier Corporation,' ed: Oxford, 1975, pp. 229-265.
[27] M. Feldman and s. processing, 'Hilbert transform in vibration analysis,' Mechanical systems, vol. 25, no. 3, pp. 735-802, 2011.
[28] V. Malladi, D. Avirovik, S. Priya, and P. Tarazaga, 'Characterization and representation of mechanical waves generated in piezo-electric augmented beams,' Smart Materials Structures, vol. 24, no. 10, p. 105026, 2015.
[29] 許聿翔, '壓電系統其力電場互動之理論與實驗: 壓電變壓器, 柔性結構控制, 及自由落體感應子之創新突破基礎,' 碩士論文, 國立臺灣大學應用力學研究所, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78286-
dc.description.abstract本研究宗旨在於開發以行進波驅動之二維壓電平板致動器系統,並控制其在平面上可達成多方向之運動。在結構設計上,本研究使用壓電材料與不鏽鋼薄板之複合結構,使用PZT作為致動器,並以不鏽鋼薄板經由板金加工後來模擬簡支端的邊界條件,在此邊界條件下有利於數學模型的建立,並可求得簡單的解析解,來完成數值模擬的部分。從結構的設計上,本研究僅使用一個壓電致動器就可以達成在多方向的運動控制,具有製造成本低與可控性高的特點。在驅動方法上,本研究採用整數倍頻驅動方法,並非直接驅動在共振頻率上,而是透過靠近共振頻率的兩個呈整數倍關係的頻率疊加,使得產生的行進波形具有週期性,也提升其穩定性。此一驅動方法也藉由有限元素模擬驗證其可行性。由於驅動頻率和結構共振頻率間存在著相位差,因此本研究也透過實驗量測的結果,利用等效電路(equivalent circuit)與波德圖(Bode plot)計算並補償其相位差值。
本研究引用了希爾伯特轉換理論進行最佳化參數設計,並對產生的行進波進行定量分析,評估行進波的效率;在數值模擬的部分透過調控兩輸入訊號間之電壓比值與相位差值,探討輸入的電壓比值與相位差值對於產生行進波的影響,分別在結構之x方向與y方向上產生穩定的行進波;在實驗上以雷射測振儀也驗證了理論與數值模擬的正確性,最後透過不同的輸入電壓大小與荷重實驗,量測系統之運動速度,來分析其驅動效率。本研究開發之二維壓電平板致動器在x方向上,輸入電壓比為72V:108V下,運動速度最高可達3.45 mm/s,而其可負載至最大荷重為26.2g,加上整體結構的重量共為43.6g;而在y方向上,輸入電壓比為64.3V:115.7V下,運動速度最高可達5.50 mm/s,其可負載至最大荷重為30.2g,加上整體結構的重量共為47.6g,驗證了此二維壓電平板致動器的效能。
zh_TW
dc.description.abstractThe aim of this work is to develop a planar type two-dimensional piezoelectric actuator system driven by traveling waves and to control its multi-direction planar motion. This piezoelectric actuator is composed of one 45mm by 31.8mm by 0.2mm PZT plate and a 50mm by 40mm by 10mm stainless steel box made of 0.5 mm thickness shim. The PZT was served as an actuator mounted on top of a bent stainless steel on four edges of a rectangular plate to simulate simply supported boundary condition on all edges. To use a single PZT sheet to drive the piezoelectric actuator moving multi-directionally, a two-dimensional analytical model was developed, and numerical and finite element analyses are used to assist the design for optimization.
To achieve multi-directional motorization, a two-integer-frequency two-mode (TIF-TM) method was adopted in this study. By setting the driving frequencies of the activated modes to be an integer multiplier, we could stabilize the period of the generated traveling waves and thus increase the propelling efficiency. In order to verify the feasiblilty of TIF-TM method, FEM simulation was applied. Since the driving frequencies deviated from the corresponding resonant frequency, phase compensation calculated by Bode plot was added to minimize the phase lag. It is verified that one piezoelectric actuator is sufficient to create multi-dimensional locomotion, which is superior to previously reported methods that all need more than one piezoelectric sheet. This design has advantages of low manufacturing cost and high controllability.
Furthermore, optimization was approached using Hilbert transform, where the voltage ratio and phase difference of the driving signal are optimized. The contribution of driving voltage ratio and phase difference to generating a traveling wave in both x- and y-directions are analyzed and discussed by using numerical sumulation. It is also experimentally verified by measuring the vibrating profile of the planar type two-dimensional piezoelectric actuator system. Last but not least, the velocity test was done under different input voltage and preloads. It is verified that the moving speed can reach 3.45 mm/s in x-direcion under the condition of 72V:108V voltage ratio, and its maximum loading is 43.6g. On the other hand, the maximum moving speed in y-direction is 5.50 mm/s, and its maximun loading is 47.6g.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:49:27Z (GMT). No. of bitstreams: 1
U0001-1008202010010800.pdf: 12590632 bytes, checksum: 11aacdf07d1dd46340806de60ba2c16d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 xv
第1章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 壓電致動器介紹 2
1.2.2 應用於小型機器人系統之微型壓電致動器介紹 5
1.2.3 壓電致動器產業與市場趨勢 8
1.3 論文架構 11
第2章 壓電致動器之結構設計 12
2.1 設計理念 12
2.2 系統架構 13
2.3 結構設計 14
2.3.1 材料選擇 14
2.3.2 二維壓電致動器結構 17
第3章 壓電材料介紹及理論推導 18
3.1 材料介紹 18
3.1.1 起源 18
3.1.2 壓電效應 18
3.1.3 壓電材料種類 20
3.2 理論推導 21
3.2.1 壓電材料物性方程式 21
3.2.2 壓電薄板物性方程式 24
3.3 二維壓電致動器理論 29
3.3.1 統御方程式推導 29
3.3.2 整數倍頻驅動理論 37
3.3.3 相位補償方法 38
3.4 希爾伯特轉換 41
3.4.1 理論介紹 41
3.4.2 最佳化分析 43
第4章 二維壓電致動器之開發 50
4.1 壓電片位置設計 50
4.2 輸入訊號設計 55
第5章 有限元素模擬分析 57
5.1 有限元素模型之建立與參數設定 57
5.2 結構模態分析 59
5.3 x 方向行進波運動分析 60
5.4 y 方向行進波運動分析 64
第6章 數值模擬分析 68
6.1 數值模型之建立與參數設定 68
6.2 結構模態分析 69
6.3 以希爾伯特轉換設計x方向行進波最佳驅動參數 70
6.3.1 不同相位差的貢獻與影響 70
6.3.2 不同電壓比的貢獻與影響 75
6.3.3 行進波方向控制與最佳化行進波 79
6.4 以希爾伯特轉換設計y方向行進波最佳驅動參數 82
6.4.1 不同相位差的貢獻與影響 82
6.4.2 不同電壓比的貢獻與影響 87
6.4.3 行進波方向控制與最佳化行進波 91
第7章 二維壓電致動器之實驗結果與討論 95
7.1 二維壓電致動器之共振頻量測 95
7.2 二維壓電致動器之系統架設 96
7.3 x方向行進波實驗驗證 97
7.3.1 不同相位差的貢獻與影響實驗驗證 97
7.3.2 不同電壓比的貢獻與影響實驗驗證 101
7.3.3 最佳化行進波之實驗驗證 103
7.4 y方向行進波實驗驗證 104
7.4.1 不同相位差的貢獻與影響實驗驗證 104
7.4.2 不同電壓比的貢獻與影響實驗驗證 108
7.4.3 最佳化行進波之實驗驗證 110
7.5 二維壓電致動器驅動x方向行進波實驗 111
7.5.1 不同驅動電壓之移動速度比較 111
7.5.2 不同荷重之移動速度比較 114
7.6 二維壓電致動器驅動y方向行進波實驗 119
7.6.1 不同驅動電壓之移動速度比較 119
7.6.2 不同荷重之移動速度比較 123
7.7 二維壓電致動器之連續驅動 127
第8章 結論與未來展望 131
8.1 結論 131
8.2 未來展望 132
REFERENCES 133
dc.language.isozh-TW
dc.title以希爾伯特轉換最佳化多方向傳遞波驅動的二維壓電平板致動器
zh_TW
dc.titleOptimizing a planar type two-dimensional piezoelectric actuator for multi-dimensional traveling waves using Hilbert transformen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.advisor-orcid李世光(0000-0001-7587-283X)
dc.contributor.coadvisor吳文中(Wen-Jong Wu),許聿翔(Yu-Hsiang Hsu)
dc.contributor.coadvisor-orcid吳文中(0000-0003-0223-249X),許聿翔(0000-0002-9759-7848)
dc.contributor.oralexamcommittee吳光鐘(Kuang-Chong Wu),謝志文(Chih-Wen Hsieh)
dc.contributor.oralexamcommittee-orcid吳光鐘(0000-0001-8218-1869)
dc.subject.keyword壓電致動器,行進波,整數倍頻驅動,希爾伯特轉換,zh_TW
dc.subject.keywordpiezoelectric actuator,traveling wave,two-integer-frequency two-mode,Hilbert transform,en
dc.relation.page134
dc.identifier.doi10.6342/NTU202002765
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-1008202010010800.pdf
  目前未授權公開取用
12.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved