請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78285完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林曉青(Hsiao-Ching Lin) | |
| dc.contributor.author | Yuan-Chun Lu | en |
| dc.contributor.author | 陸沅君 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:49:25Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 1.Lu, M.C., et al., Recent research and development of Antrodia cinnamomea. Pharmacology Therapeutics, 2013. 139(2): p. 124-156. 2.Zhang, B.B., et al., Current Advances on the Structure, Bioactivity, Synthesis, and Metabolic Regulation of Novel Ubiquinone Derivatives in the Edible and Medicinal Mushroom Antrodia cinnamomea. Journal of Agricultural and Food Chemistry, 2017. 65(48): p. 10395-10405. 3.Angamuthu, V., et al., Pharmacological activities of antroquinonol - Mini review. Chemico-Biological Interactions, 2019. 297: p. 8-15. 4.Geethangili, M. and Y.M. Tzeng, Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds. Evidence-Based Complementary and Alternative Medicine, 2011: p. 1-17. 5.Chang, W.H., M.C. Chen, and I.H. Cheng, Antroquinonol Lowers Brain Amyloid-beta Levels and Improves Spatial Learning and Memory in a Transgenic Mouse Model of Alzheimer's Disease. Scientific Reports, 2015. 5. 6.Yeh, C.T., et al., A sesquiterpene lactone antrocin from Antrodia camphorata negatively modulates JAK2/STAT3 signaling via microRNA let-7c and induces apoptosis in lung cancer cells. Carcinogenesis, 2013. 34(12): p. 2918-2928. 7.Chen, J.H., et al., Antrocin, a bioactive component from Antrodia cinnamomea, suppresses breast carcinogenesis and stemness via downregulation of beta-catenin/Notch1/Akt signaling. Phytomedicine, 2019. 52: p. 70-78. 8.Ling, Y.L., et al., Differential Gene Expression Network in Terpenoid Synthesis of Antrodia cinnamomea in Mycelia and Fruiting Bodies. Journal of Agricultural and Food Chemistry, 2017. 65(9): p. 1874-1886. 9.Jansen, B.J.M. and A. de Groot, Occurrence, biological activity and synthesis of drimane sesquiterpenoids. Natural Product Reports, 2004. 21(4): p. 449-477. 10.Xu, D., et al., Sesquiterpenes from Cultures of the Basidiomycete Clitocybe conglobata and Their 11 beta-Hydroxysteroid Dehydrogenase Inhibitory Activity. Chemical Pharmaceutical Bulletin, 2009. 57(4): p. 433-435. 11.Liermann, J.C., et al., Drimane Sesquiterpenoids from Marasmius sp Inhibiting the Conidial Germination of Plant-Pathogenic Fungi. Journal of Natural Products, 2012. 75(11): p. 1983-1986. 12.Kwon, J., et al., Cytotoxic Drimane Sesquiterpenoids Isolated from Perenniporia maackiae. Journal of Natural Products, 2018. 81(6): p. 1444-1450. 13.Lu, Z.Y., et al., Sesquiterpenoids and Benzofuranoids from the Marine-Derived Fungus Aspergillus ustus 094102. Journal of Natural Products, 2009. 72(10): p. 1761-1767. 14.Zhang, J.W., et al., Sulphureuine B, a drimane type sesquiterpenoid isolated from Laetiporus sulphureus induces apoptosis in glioma cells. Bangladesh Journal of Pharmacology, 2015. 10(4): p. 844-853. 15.Stierle, D.B., et al., Caspase-1 and-3 Inhibiting Drimane Sesquiterpenoids from the Extremophilic Fungus Penicillium solitum. Journal of Natural Products, 2012. 75(2): p. 262-266. 16.Burroughs, A.M., et al., Evolutionary genomics of the HAD superfamily: Understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. Journal of Molecular Biology, 2006. 361(5): p. 1003-1034. 17.Wang, Y.Y., et al., Insights into the molecular mechanism of dehalogenation catalyzed by D-2-haloacid dehalogenase from crystal structures. Scientific Reports, 2018. 8. 18.Aravind, L., M.Y. Galperin, and E.V. Koonin, The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. Trends in Biochemical Sciences, 1998. 23(4): p. 127-129. 19.Collet, J.F., et al., A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. Journal of Biological Chemistry, 1998. 273(23): p. 14107-14112. 20.Kuznetsova, E., et al., Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS. Journal of Biological Chemistry, 2015. 290(30): p. 18678-18698. 21.Collet, J.F., et al., Human L-3-phosphoserine phosphatase: Sequence, expression and evidence for a phosphoenzyme intermediate. Febs Letters, 1997. 408(3): p. 281-284. 22.Wang, L.B., et al., Human Symbiont Bacteroides thetaiotaomicron Synthesizes 2-Keto-3-Deoxy-D-Glycero-D-Galacto-Nononic Acid (KDN). Chemistry Biology, 2008. 15(9): p. 893-897. 23.Kuznetsova, E., et al., Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. Journal of Biological Chemistry, 2006. 281(47): p. 36149-36161. 24.Morais, M.C., et al., The crystal structure of Bacillus cereus phosphonoacetaldehyde hydrolase: Insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily. Biochemistry, 2000. 39(34): p. 10385-10396. 25.Kim, H.Y., et al., Molecular basis for the local conformational rearrangement of human phosphoserine phosphatase. Journal of Biological Chemistry, 2002. 277(48): p. 46651-46658. 26.Allen, K.N. and D. Dunaway-Mariano, Phosphoryl group transfer: evolution of a catalytic scaffold. Trends in Biochemical Sciences, 2004. 29(9): p. 495-503. 27.Caparros-Martin, J.A., I. McCarthy-Suarez, and F.A. Culianez-Macia, HAD hydrolase function unveiled by substrate screening: enzymatic characterization of Arabidopsis thaliana subclass I phosphosugar phosphatase AtSgpp. Planta, 2013. 237(4): p. 943-954. 28.Seifried, A., J. Schultz, and A. Gohla, Human HAD phosphatases: structure, mechanism, and roles in health and disease. Febs Journal, 2013. 280(2): p. 549-571. 29.Castellana, M., et al., Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nature Biotechnology, 2014. 32(10): p. 1011-+. 30.Lee, S.K., et al., Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Current Opinion in Biotechnology, 2008. 19(6): p. 556-563. 31.Christianson, D.W., Structural and Chemical Biology of Terpenoid Cyclases. Chemical Reviews, 2017. 117(17): p. 11570-11648. 32.Wendt, K.U. and G.E. Schulz, Isoprenoid biosynthesis: manifold chemistry catalyzed by similar enzymes. Structure, 1998. 6(2): p. 127-133. 33.Kwon, M., et al., Molecular cloning and characterization of drimenol synthase from valerian plant (Valeriana officinalis). Febs Letters, 2014. 588(24): p. 4597-4603. 34.Wendt, K.U., K. Poralla, and G.E. Schulz, Structure and function of a squalene cyclase. Science, 1997. 277(5333): p. 1811-1815. 35.Peters, R.J., et al., Bifunctional abietadiene synthase: Free diffusive transfer of the (+)-copalyl diphosphate intermediate between two distinct active sites. Journal of the American Chemical Society, 2001. 123(37): p. 8974-8978. 36.Blank, P.N., et al., Crystal Structure of Cucumene Synthase, a Terpenoid Cyclase That Generates a Linear Triquinane Sesquiterpene. Biochemistry, 2018. 57(44): p. 6326-6335. 37.Gao, Y., R.B. Honzatko, and R.J. Peters, Terpenoid synthase structures: a so far incomplete view of complex catalysis. Natural Product Reports, 2012. 29(10): p. 1153-1175. 38.Wendt, K.U., A. Lenhart, and G.E. Schulz, The structure of the membrane protein squalene-hopene cyclase at 2.0 angstrom resolution. Journal of Molecular Biology, 1999. 286(1): p. 175-187. 39.Tantillo, D.J., The carbocation continuum in terpene biosynthesis-where are the secondary cations? Chemical Society Reviews, 2010. 39(8): p. 2847-2854. 40.Hare, S.R. and D.J. Tantillo, Dynamic behavior of rearranging carbocations - implications for terpene biosynthesis. Beilstein Journal of Organic Chemistry, 2016. 12: p. 377-390. 41.Tantillo, D.J., Biosynthesis via carbocations: Theoretical studies on terpene formation. Natural Product Reports, 2011. 28(6): p. 1035-1053. 42.Peters, R.J. and R.B. Croteau, Abietadiene synthase catalysis: Conserved residues involved in protonation-initiated cyclization of geranylgeranyl diphosphate to (+)-copalyl diphosphate. Biochemistry, 2002. 41(6): p. 1836-1842. 43.陳建廷, 牛樟芝之倍半萜 Antrocin 的生合成途徑解析與異源表達. 2018: 國立臺灣大學生命科學院生化科學所. 44.Erijman, A., et al., Transfer-PCR (TPCR): A highway for DNA cloning and protein engineering. Journal of Structural Biology, 2011. 175(2): p. 171-177. 45.Tang, M.C., et al., Discovery of Unclustered Fungal Indole Diterpene Biosynthetic Pathways through Combinatorial Pathway Reassembly in Engineered Yeast. Journal of the American Chemical Society, 2015. 137(43): p. 13724-13727. 46.Chen, C.-T., Identification and heterologous reconstitution of the Antrocin Biosynthetic Pathway from Antrodia cinnamomea. 2018. 47.Prisic, S. and R.J. Peters, Synergistic substrate inhibition of ent-copalyl diphosphate synthase: A potential feed-forward inhibition mechanism limiting gibberellin metabolism. Plant Physiology, 2007. 144(1): p. 445-454. 48.Verghese, J., et al., Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System. Microbiology and Molecular Biology Reviews, 2012. 76(2): p. 115-158. 49.Mogk, A. and B. Bukau, Role of sHsps in organizing cytosolic protein aggregation and disaggregation. Cell Stress Chaperones, 2017. 22(4): p. 493-502. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78285 | - |
| dc.description.abstract | 牛樟芝(Antrodia cinnamomea)是一種臺灣傳統使用的中藥。在本實驗室先前的研究中,我們已經利用異源表達以及前驅物生物轉化的實驗闡明了牛樟芝活性化合物antrocin的生物合成途徑。在本篇研究中,我們使用生化方法以進一步了解參與antrocin生物合成途徑的催化酶功能。 在antrocin的生物合成途徑中,為了瞭解細胞色素P450氧化酶−AncB和AncD的功能,我們分離其微粒體萃取物,以測試P450氧化酶對於albicanol的氧化能力。另外,有兩個haloacid dehalogenase-like (HAD-like)的催化酶−AncA和AncC。AncC已知是一類新型的萜烯環化酶,具有兩種催化特性,(i)法尼基焦磷酸farnesyl pyrophosphate (FPP)的環化,生成albicanol pyrophosphate (APP),以及(ii) APP的脫磷酸作用,形成albicanol。AncA與AncC具有高度的序列相同性和相似性,但AncA僅具有去磷酸化的活性。我們將AncA、AncC與常見的HAD磷酸酶的序列作比對,發現AncA和AncC的N端區域與常見的HAD磷酸酶可以對齊並具高序列相似性。因此,我們純化了僅有N端區域的AncC,並確認它亦具有磷酸酶的活性。對於C端區域,我們對AncC做了18個點突變,藉由GC-MS分析來探討每個突變點所帶來的影響,發現了其中六個位點會降低albicanol的生產。因此,我們將這六個位點在AncA中重建,得到的AncA突變在酵母菌表達後顯示具有微弱的環化活性。 此外,我們也對子囊菌真菌(Ascomycete)進行了基因採礦分析,發現其中具有許多潛在的萜烯環化酶。我們建立萜烯環化酶演化樹,並在不同分枝中選擇了四個催化酶進行表達與功能分析,以了解其催化特性。我們的研究探討了一個新家族的HAD萜烯環化酶的催化機制,並探索其同源酶的催化功能。 | zh_TW |
| dc.description.abstract | Antrodia cinnamomea is a folk medicine traditionally used in Taiwan. In our previous study, we have elucidated the biosynthetic pathway of antrocin, one of the cytotoxic constituents from A. cinnamomea, with heterologous expression and in vivo feeding experiments. In this study, we performed biochemical methods to characterize the enzymes involved in the biosynthetic pathway of antrocin. In antrocin biosynthesis, to characterize the function of cytochrome P450 monooxygenases, AncB and AncD, we isolated the microsome extracts to test the oxidization property on albicanol. Two haloacid dehalogenase-like (HAD-like) enzymes, AncA and AncC, also participate in the antrocin pathway. AncC has been known as a new class of terpene cyclase that showed two catalytic properties, (i) cyclization of farnesyl pyrophosphate to give albicanol pyrophosphate (APP) and (ii) dephosphorylation of APP to form albicanol. AncA showed high sequence identity and similarity to AncC, but it only showed dephosphorylation activity. Sequence alignment of AncA, AncC and classical HAD-phosphatases showed that the N-terminal domain of AncA and AncC aligned well with the classical HAD-phosphatase. We purified the N-terminal domain of AncC and confirmed that it showed phosphatase activity. For the C-terminal domain, we have done eighteen point mutations on AncC and then analyzed the function of each mutant by the combination of in vivo experiments and GC-MS analysis. Six motifs were found to involve in the production of albicanol. These six motifs were reconstituted in AncA, and the mutated AncA showed weak cyclization activity. Furthermore, we performed gene mining analysis in Ascomycete fungi and found that many of them contain the homologs of terpene cyclases. Four enzyme candidates from the phylogenetic analysis have been selected and cloned to characterize their catalytic properties. Our study characterized the catalytic mechanism of the new family of HAD-like terpene cyclase and explored the function of their homologs in Ascomycete fungi. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:49:25Z (GMT). No. of bitstreams: 1 U0001-1008202011440100.pdf: 6973085 bytes, checksum: 71b7904f56dc98d8fa3689484385c006 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 i Abstract ii TABLE OF CONTENTS I LIST OF FIGURES III LIST OF TABLES V 1 Introduction 1 1.1 Introduction of Antrodia cinnamomea and antrocin 1 1.2 Introduction of drimane 3 1.3 Introduction of HAD-like enzyme 6 1.4 Introduction of terpenoid cyclases 9 1.5 Aims of this study 12 2 Methods 13 2.1 Molecular biology experiments 13 2.2 Chemical analysis 13 2.3 Construction of site-directed mutagenesis variants for expression in S. cerevisiae. 14 2.4 Heterologous reconstitution of biosynthesis in Saccharomyces cerevisiae. 14 2.5 Overexpression and Purification of Flag-tagged AncA and AncC from S. cerevisiae. 15 2.6 In gel digestion and protein ID. 15 2.7 Overexpression and purification of Flag-tagged truncated AncC from E.coli. 16 2.8 Overexpression and Purification of His-tagged truncated AstC from E.coli. 17 2.9 In vitro assay of AncC, AncA, AncC-truncated and AstC-truncated. 18 2.10 In vivo of point mutation AncC in Saccharomyces cerevisiae. 19 2.11 Preparation of microsome extracts from S. cerevisiae 19 2.12 In vitro assay of AncB and AncD. 20 2.13 In vitro assay of AncE. 20 2.14 Calibration curve for farnesol and albicanol. 20 2.15 Kinetic curve for AncC. 21 2.16 Construction of plasmids pTAex3-Aave1, pTAex3-Aave35, pTAex3-Aor340 and pATAex3-Pcor170 for expression in Aspergillus oryzae 21 2.17 Protoplasts preparation of A. oryzae NSAR1. 22 2.18 Heterologous reconstitution of Aave1, Aave35, Aor340 and Pcor170 in Aspergillus oryzae NSAR1. 22 2.19 Heterologous reconstitution of Aave1, Aave35, Aor340 and Pcor170 in Saccharomyces cerevisiae. 23 2.20 In vitro assay of Pcor170. 23 3 Results and Discussion 27 3.1 Gene within the anc cluster 27 3.2 Coexpression of AncC with AncB, AncD and AncE in Saccharomyces cerevisiae 29 3.3 Verification of the function of AncB 31 3.4 Verification of the function of AncD 33 3.5 Verification of the function of AncE 34 3.6 Verification of the function of AncC and AncA 35 3.7 MgCl2 concentration effect 40 3.8 AncC enzyme kinetics 42 3.9 Elucidation of AncC active motif 42 3.10 Verification of the function of AncC mutants 50 3.11 Substrate specificity 56 3.12 Reconstitution of AncA function 59 3.13 HAD-like enzyme in ascomycete 62 3.14 Heterologous expression in Aspergillus oryzae 70 3.15 Heterologous expression in Saccharomyces cerevisiae 72 3.16 Verification of the function of Pcor170 74 3.17 Discussion 76 4 Reference 80 5 Appendix 86 | |
| dc.language.iso | en | |
| dc.subject | 萜烯環化酶 | zh_TW |
| dc.subject | 牛樟芝 | zh_TW |
| dc.subject | antrocin | zh_TW |
| dc.subject | 倍半萜 | zh_TW |
| dc.subject | 子囊菌真菌 | zh_TW |
| dc.subject | antrocin | en |
| dc.subject | Antrodia cinnamomea | en |
| dc.subject | terpene cyclase | en |
| dc.title | 解析牛樟芝的雙功能萜烯環化酶/磷酸酶以及相關之基因體分析 | zh_TW |
| dc.title | Characterization of a bifunctional terpene cyclase/phosphatase in Antrodia cinnamomea and the related genome analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李宗璘(Tsung-Lin Li),吳世雄(Shih-Hsiung Wu),林俊宏(Chun-Hung Lin) | |
| dc.subject.keyword | 牛樟芝,antrocin,萜烯環化酶,倍半萜,子囊菌真菌, | zh_TW |
| dc.subject.keyword | Antrodia cinnamomea,antrocin,terpene cyclase, | en |
| dc.relation.page | 97 | |
| dc.identifier.doi | 10.6342/NTU202002775 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-17 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202011440100.pdf 未授權公開取用 | 6.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
