請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78278完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江茂雄(Mao-Hsiung Chiang) | |
| dc.contributor.author | Ke-Xuan Luo | en |
| dc.contributor.author | 羅可瑄 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:49:06Z | - |
| dc.date.available | 2025-08-01 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-10 | |
| dc.identifier.citation | [1] T. Ackermann and L. Söder, 'Wind energy technology and current status: a review,' Renewable and sustainable energy reviews, vol. 4, no. 4, pp. 315-374, 2000. [2] K. A. Stol, 'Dynamics Modeling. and Periodic Control of Horizontal-Axis Wind Turbines,' University of Colorado, 2001. [3] A. E. Lopez, 'Model-based analysis of control strategies for a variable speed wind turbine,' 2003. [4] P. Delarue, A. Bouscayrol, A. Tounzi, X. Guillaud, and G. Lancigu, 'Modelling, control and simulation of an overall wind energy conversion system,' Renewable Energy, vol. 28, no. 8, pp. 1169-1185, 2003. [5] A.-R. Sharif-Razi, 'Discrete time blade pitch control for wind turbine torque regulation with digitally simulated random turbulence excitation,' Oregon State Univ., Corvallis (USA), 1986. [6] S. M. B. Wilmshurst, 'Control strategies for Wind turbines,' Wind Eng., vol. 12, no. 4, pp. 236-249, 1988. [7] R. Jones and G. Smith, 'High quality mains power from variable-speed wind turbines,' in Renewable Energy-Clean Power 2001, 1993., International Conference on, 1993: IET, pp. 202-206. [8] J. Freeman and M. Balas, 'An investigation of variable speed horizontal-axis wind turbines using direct model-reference adaptive control,' in Proc. 18th ASME Wind Energy Symp, 1999, pp. 66-76. [9] M. Idan and D. Lior, 'Continuous variable speed wind turbine: Transmission concept and robust control,' Wind engineering, vol. 24, no. 3, pp. 151-167, 2000. [10] Y. Song, B. Dhinakaran, and X. Bao, 'Variable speed control of wind turbines using nonlinear and adaptive algorithms,' Journal of Wind Engineering and Industrial Aerodynamics, vol. 85, no. 3, pp. 293-308, 2000. [11] H. Guo and Q. Guo, 'H∞ Control of Adjustable-Pitch Wind Turbine Adjustable-Pitch System,' in Power Electronics and Motion Control Conference, 2006. IPEMC 2006. CES/IEEE 5th International, 2006, vol. 2: IEEE, pp. 1-4. [12] Z. Lin and G. Qingding, 'Adjustable-pitch and variable-speed control of wind turbines using nonlinear algorithm,' in Electrical Machines and Systems, 2003. ICEMS 2003. Sixth International Conference on, 2003, vol. 1: IEEE, pp. 270-273. [13] R. Sakamoto et al., 'Output power leveling of wind turbine generator for all operating regions by pitch angle control,' in IEEE Power Engineering Society General Meeting, 2005, 2005: IEEE, pp. 45-52. [14] X. Zhang, W. Wang, Y. Liu, and J. Cheng, 'Fuzzy control of variable speed wind turbine,' in 2006 6th World Congress on Intelligent Control and Automation, 2006, vol. 1: IEEE, pp. 3872-3876. [15] H. Liu, Y. Lin, and W. Li, 'Study on control strategy of individual blade pitch-controlled wind turbine,' in 2006 6th World Congress on Intelligent Control and Automation, 2006, vol. 2: IEEE, pp. 6489-6492. [16] J. Yang, J. Li, J. Wu, and J. Yang, 'Fuzzy Adaptive Control of Novel Brushless Doubly-fed Wind Turbine,' in 2006 6th World Congress on Intelligent Control and Automation, vol. 2: IEEE, pp. 8241-8245. [17] K. E. Johnson, L. Y. Pao, M. J. Balas, and L. J. Fingersh, 'Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture,' IEEE control systems, vol. 26, no. 3, pp. 70-81, 2006. [18] T. Senjyu, R. Sakamoto, N. Urasaki, T. Funabashi, H. Fujita, and H. Sekine, 'Output power leveling of wind turbine generator for all operating regions by pitch angle control,' IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 467-475, 2006. [19] H. Camblong, G. Tapia, and M. Rodriguez, 'Robust digital control of a wind turbine for rated-speed and variable-power operation regime,' IEE Proceedings-Control Theory and Applications, vol. 153, no. 1, pp. 81-91, 2006. [20] Y.-S. Kim, I.-Y. Chung, and S.-I. Moon, 'An analysis of variable-speed wind turbine power-control methods with fluctuating wind speed,' Energies, vol. 6, no. 7, pp. 3323-3338, 2013. [21] R. Pena, J. Clare, and G. Asher, 'Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation,' IEE Proceedings-Electric Power Applications, vol. 143, no. 3, pp. 231-241, 1996. [22] 刘其辉, 贺益康, and 张建华, '交流励磁变速恒频风力发电机的运行控制及建模仿真,' 中国电机工程学报, vol. 26, no. 5, pp. 43-50, 2006. [23] S.-Y. Yang, Y.-K. Wu, H.-J. Lin, and W.-J. Lee, 'Integrated mechanical and electrical DFIG wind turbine model development,' IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 2090-2102, 2014. [24] 關宏亮, '大規模風電場接入電力系統的小干擾穩定性研究,' 華北電力大學, 2008. [25] 杨黎晖 and 马西奎, '双馈风电机组对电力系统低频振荡特性的影响 [J],' 中国电机工程学报, vol. 31, no. 10, pp. 19-25, 2011. [26] 苏展, 徐谦, 孙黎滢, 周明, and 李庚银, '含 DFIG 的电力系统随机建模及小干扰随机稳定分析,' 电网技术, vol. 39, no. 9, pp. 2404-2410, 2015. [27] J. M. Jonkman, 'Dynamics of offshore floating wind turbines—model development and verification,' Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, vol. 12, no. 5, pp. 459-492, 2009. [28] J. J. A. Robertson, F. Vorpahl, W. Popko, J. Qvist, L. Frøyd, X. Chen, J. Azcona, E. Uzunoglu, C. Guedes Soares, C. Luan, H. Yutong, F. Pengcheng, A. Yde, T. Larsen, J. Nichols, R. Buils, L. Lei, T. Anders Nygard, D. Manolas, A. Heege, S. Ringdalen Vatne, H. Ormberg, T. Duarte, C. Godreau, H. Fabricius Hansen, A. Wedel Nielsen, H. Riber, C. Le Cunff, R. Abele, F. Beyer, A. Yamaguchi, K. Jin Jung, H. Shin, W. Shi, H. Park, M. Alves, and M. Guérinel, 'Offshore Code Comparison Collaboration Continuation Within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System,' June 8–13, 2014. [29] M. A. Joao Cruz, 'Floating offshore wind energy: The next generation of wind energy,' 2016. [30] Y. Liu, S. Li, Q. Yi, and D. Chen, 'Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review,' Renewable and Sustainable Energy Reviews, vol. 60, pp. 433-449, 2016. [31] H. Namik and K. Stol, 'Performance analysis of individual blade pitch control of offshore wind turbines on two floating platforms,' Mechatronics, vol. 21, no. 4, pp. 691-703, 2011. [32] B. Wen, X. Tian, X. Dong, Z. Peng, and W. Zhang, 'Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine,' Energy, vol. 141, pp. 2054-2068, 2017. [33] D. Matha, Impact of aerodynamics and mooring system on dynamic response of floating wind turbines. Verlag Dr. Hut, 2017. [34] B. Boukhezzar, L. Lupu, H. Siguerdidjane, and M. Hand, 'Multivariable control strategy for variable speed, variable pitch wind turbines,' Renewable Energy, vol. 32, no. 8, pp. 1273-1287, July 2007. [35] J. Zhang, M. Cheng, and Z. Chen, 'Design of Wind Turbine Controller by Using Wind Turbine Codes,' presented at the International Conference on Electrical Machines and System, Oct. 2008. [36] 張建忠 and 程明, '基於非線性控制的永磁風力發電機最大風能跟蹤,' 電網技術, vol. 34, no. 6, June 2010. [37] R. Fadaeinedjad, G. Moschopoulos, and M. Moallem, 'Simulation of a Wind Turbine with Doubly-Fed Induction Machine Using FAST and Simulink,' presented at the International Symposium on Industrial Electronics, July 2006. [38] R. Fadaeinedjad, M. Moallem, and G. Moschopoulos, 'Simulation of a Wind Turbine with Doubly Fed Induction Generator by FAST and Simulink,' presented at the IEEE Transactions on Energy Conversion, June 2008. [39] S. B. Krishna and S. V. Reeba, 'Simulation of Wind Turbine with Switched Reluctance Generator by FAST and Simulink,' presented at the National Conference on Technological Trends, Nov 2009. [40] 陸仁凱 and 張欽然, '應用FAST/SIMULINK進行150kW風機IEC-61400-1負載計算,' presented at the 台灣風能學術研討會, Dec. 2009. [41] G. Mandic and A. Nasiri, 'Modeling and Simulation of a Wind Turbine System with Ulracapacitors for Short-Term Power Smoothing,' presented at the International Symposium on Industrial Electronics, July 2010. [42] R. Fadaeinedjad, G. Moschopoulos, and A. Ghareveisi, 'Utilizing a STATCOM to Prevent the Flicker Propagation in a Wind Power System,' presented at the IEEE Energy Conversion Congress and Exposition, Sep. 2010. [43] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, 'Definition of a 5-MW reference wind turbine for offshore system development,' National Renewable Energy Lab.(NREL), Golden, CO (United States), 2009. [44] S. Suryanarayanan and A. Dixit, 'Control of large wind turbines: Review and suggested approach to multivariable design,' in Proceedings of the National Conference on Controls and Dynamic Systems, 2005: Citeseer. [45] A. Robertson et al., 'Definition of the semisubmersible floating system for phase II of OC4,' National Renewable Energy Lab.(NREL), Golden, CO (United States), 2014. [46] J. J. A. Robertson, M. Masciola, and H. Song, A. Goupee and A. Coulling, C. Luan, 'Definition of the Semisubmersible Floating System for Phase II of OC4,' September 2014. [47] 卞松江, 吕晓美, 相会杰, 刘连根, and 梁冰, '交流励磁变速恒频风力发电系统控制策略的仿真研究,' 中国电机工程学报, vol. 25, no. 16, pp. 57-62, 2005. [48] J. Slootweg, H. Polinder, and W. Kling, 'Dynamic modelling of a wind turbine with doubly fed induction generator,' in Power Engineering Society Summer Meeting, 2001, 2001, vol. 1: IEEE, pp. 644-649. [49] 王敬淞, '大型風力發電機整合模擬與創新液壓變旋角控制實驗系統之研究,' 臺灣大學工程科學及海洋工程學研究所學位論文, no. 2016 年, pp. 1-177, 2016. [50] A. N. R. J.M. Jonkman, G.J. Hayman, 'HydroDyn User’s Guide and Theory Manual.' | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78278 | - |
| dc.description.abstract | 本篇研究旨在發展半潛式之浮動式離岸型風力發電機全機組運轉模擬分析及控制,整合空氣動力、波浪力、風機機組動態、半潛式載台動態、錨碇系統動態、風機子系統及控制系統等,進行全機組建模及動態模擬分析。本論文以軟體FAST結合軟體WAMIT以及軟體MATLAB/SIMULINK建立5MW風機、OC4半潛式載台及錨碇系統進行全機組動態模擬與分析。首先於FAST建立風力發電機之運動模型,包含半潛式載台、錨碇系統、塔架、葉片及機艙模型等,並進行葉片氣動力分析(Aerodynamic Analysis),再輸入由WAMIT預先計算的浮台水動力係數來進行水動力分析(Hydrodynamic Analysis),以及在MATLAB/SIMULINK建立風機之子系統,包含:雙饋式感應發電機控制系統、併網側控制系統、變旋角控制系統(pitch angle)及變轉速控制系統等閉迴路控制系統。整合風機之運轉控制策略與控制理論,使風機能在額定風速下執行變轉速控制,控制風機轉速再不超過額定轉速為前提下追蹤最佳尖速比,擷取所能擷取的最大風能。在額定風速上同時執行變轉速控制與葉片變旋角控制,使風機能保持轉速於額定轉速,並調節發電功率維持於額定功率5MW。最後探討浮動式風機載台之移動性(Mobility)對發電功率之影響,在低於額定風速區,發電功率振盪與正向相對風速呈現正相關,在高於額定風速區,葉片變旋角系統之啟動將使風機塔頂受力改變,進而影響輸出功率呈現二次過衝之現象,本研究對此提出主動式平衡系統做為改善策略。 | zh_TW |
| dc.description.abstract | The objective of this study is to develop the co-simulation analysis of aerodynamics, wave force, mechanism dynamics and control system dynamics for the semi-submersible floating wind turbine. This paper investigates the dynamic simulation and analysis for the OC4-DeepCwind semi-submersible floating wind turbine by combining the software of FAST, WAMIT and MATLAB/SIMULINK. FAST serves to build the motion models of floating foundation, mooring system, tower, blades and nacelle of the wind turbine, and the aerodynamic analysis of blade. WAMIT executes the hydrodynamic analysis of floating foundation. MATLAB/SIMULINK is used to establish the subsystem dynamic models for analysis and design of wind turbines. The subsystems comprise the closed-loop control systems of the doubly-fed induction generator, the grid side control, the variable-pitch control system and the variable-speed control system. By integrating the operation control strategy, we can realize the maximum power output while the wind speed is above cut-in speed and under the rated wind speed through the generator-side control for tracking the desired rotor rotational speed calculated according to the optimal tip-speed ratio. To avoid damage, the rotor rotational speed is limited to avoid exceeding the rated rotational speed. While the wind speed is above the rated wind speed, the hydraulic pitch control system starts to adjust the pitch angle of the blades to maintain the rated output power. The variable-pitch control and the variable-speed control of the semi-submersible offshore wind turbine can be achieved under different wind conditions. Finally, the impact of the floating turbine mobility on the power output is discussed. While the wind speed is under the rated wind speed, the power oscillation is positively related to the perpendicular relative wind speed. While the wind speed is above the rated wind speed, the hydraulic pitch control system starts to adjust the pitch angle of the blades and changes the force and moment of the tower top. The power output is affected and exhibit the phenomenon of secondary power overshoot. The study proposes the active floating foundation balance control system to improve the impact of floating wind turbine mobility on power output. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:49:06Z (GMT). No. of bitstreams: 1 U0001-1008202016371000.pdf: 24566244 bytes, checksum: 529ecd4ef5a8f2bc0e978554ae24b2e9 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 xi 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 風力發電機系統回顧 2 1-2-2 風機模擬軟體FAST回顧 4 1-3 研究動機 5 1-4 本文架構 6 第2章 5MW風力發電機架構及運動模型的建立 7 2-1 浮動式風力發電機模擬軟體介紹 7 2-2 風力發電機運動模型建立 9 2-2-1 建立塔架運動模型 10 2-2-2 建立葉片運動模型 12 2-2-3 建立機艙運動模型 13 2-2-4 建立浮台運動模型 14 2-2-5 建立錨碇系統繫纜運動模型 16 第3章 風力發電機之非線性數學模型 18 3-1 雙饋式感應發電機系統 18 3-1-1 雙饋式感應發電機數學動態模型 20 3-1-2 發電機定子磁通鏈定向方法 24 3-1-3 發電機側向量勵磁控制 26 3-2 併網側控制系統 30 3-3 閥控液壓葉片變旋角系統 36 3-3-1 閥控液壓葉片變旋角系統設計 37 3-3-2 閥控液壓葉片變旋角系統數學模型 38 第4章 控制理論與策略 45 4-1 風力發電機控制策略 45 4-2 主動平衡修正控制 47 4-2-1 發電功率振盪及二次過衝之成因 47 4-2-2 主動平衡修正系統設計 50 第5章 模擬結果與討論 52 5-1 發電機雙閉迴路控制 54 5-2 併網側控制 59 5-3 發電機變轉速控制 64 5-4 葉片變旋角控制 68 5-5 全機組變轉速變旋角動態模擬 70 5-5-1 追蹤最佳尖速比區 70 5-5-2 額定轉速區 78 5-5-3 功率恆定區 86 5-5-4 全區域變轉速變旋角動態模擬 94 5-6 主動式平衡系統 102 5-6-1 修正幅度平衡測試 106 5-6-2 主動式平衡控制系統對功率振盪影響情形 115 5-6-3 主動式平衡控制系統對二次過衝修正情形 124 第6章 結論與未來展望 132 6-1 結論 132 6-2 未來展望 133 參考文獻 134 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雙饋式感應發電機 | zh_TW |
| dc.subject | 半潛式之浮動式風機 | zh_TW |
| dc.subject | 功率振盪 | zh_TW |
| dc.subject | 功率二次過衝 | zh_TW |
| dc.subject | 主動式平衡系統 | zh_TW |
| dc.subject | 風機移動性(Mobility) | zh_TW |
| dc.subject | semi-submersible offshore wind turbine | en |
| dc.subject | doubly-fed induction generator | en |
| dc.subject | floating wind turbine mobility | en |
| dc.subject | power oscillation | en |
| dc.subject | secondary power overshoot | en |
| dc.subject | active floating foundation balance control system | en |
| dc.title | 5MW離岸浮動半潛式風力發電機整合雙饋式感應發電機與併網之全機組運轉分析及控制之研究 | zh_TW |
| dc.title | Analysis and Control for a 5MW Semi-submersible Floating Offshore Wind Turbine Combining with Doubly-Fed Induction Generator and Grid | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳義男(Yih-Nan Chen) | |
| dc.contributor.oralexamcommittee | 吳聰能(Cong-Neng Wu),鍾清枝(Qing-Zhi Zhong) | |
| dc.subject.keyword | 半潛式之浮動式風機,雙饋式感應發電機,風機移動性(Mobility),功率振盪,功率二次過衝,主動式平衡系統, | zh_TW |
| dc.subject.keyword | semi-submersible offshore wind turbine,doubly-fed induction generator,floating wind turbine mobility,power oscillation,secondary power overshoot,active floating foundation balance control system, | en |
| dc.relation.page | 137 | |
| dc.identifier.doi | 10.6342/NTU202002833 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202016371000.pdf 未授權公開取用 | 23.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
