Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78272
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor胡孟君(Meng-Chun Hu)
dc.contributor.authorChih-Yu Tangen
dc.contributor.author湯智宇zh_TW
dc.date.accessioned2021-07-11T14:48:50Z-
dc.date.available2025-08-11
dc.date.copyright2020-09-07
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citationBlanz J, Schweizer M, Auberson M, Maier H, Muenscher A, Hubner CA, Jentsch TJ. 2007. Leukoencephalopathy upon disruption of the chloride channel ClC-2. J Neurosci 27: 6581-6589.
Bosl MR, Stein V, Hubner C, Zdebik AA, Jordt SE, Mukhopadhyay AK, Davidoff MS, Holstein AF, Jentsch TJ. 2001. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption. EMBO J 20: 1289-1299.
Bosmann HB, Hales KH, Li X, Liu Z, Stocco DM, Hales DB. 1996. Acute in vivo inhibition of testosterone by endotoxin parallels loss of steroidogenic acute regulatory (StAR) protein in Leydig cells. Endocrinology 137: 4522-4525.
Budnik LT, Jähner D, Mukhopadhyay AK. 1999. Inhibitory effects of TNFα on mouse tumor Leydig cells: possible role of ceramide in the mechanism of action. Molecular and Cellular Endocrinology 150: 39-46.
Catalan MA, Flores CA, Gonzalez-Begne M, Zhang Y, Sepulveda FV, Melvin JE. 2012. Severe defects in absorptive ion transport in distal colons of mice that lack ClC-2 channels. Gastroenterology 142: 346-354.
Davey RA, Grossmann M. 2016. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev 37: 3-15.
Depienne C, Bugiani M, Dupuits C, Galanaud D, Touitou V, Postma N, van Berkel C, Polder E, Tollard E, Darios F et al. 2013. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study. The Lancet Neurology 12: 659-668.
Di Bella D, Pareyson D, Savoiardo M, Farina L, Ciano C, Caldarazzo S, Sagnelli A, Bonato S, Nava S, Bresolin N et al. 2014. Subclinical leukodystrophy and infertility in a man with a novel homozygous CLCN2 mutation. Neurology 83: 1217-1218.
Dohle GR, Smit M, Weber RF. 2003. Androgens and male fertility. World J Urol 21: 341-345.
Edwards MM, Marin de Evsikova C, Collin GB, Gifford E, Wu J, Hicks WL, Whiting C, Varvel NH, Maphis N, Lamb BT et al. 2010. Photoreceptor degeneration, azoospermia, leukoencephalopathy, and abnormal RPE cell function in mice expressing an early stop mutation in CLCN2. Invest Ophthalmol Vis Sci 51: 3264-3272.
Fu SJ, Hu MC, Peng YJ, Fang HY, Hsiao CT, Chen TY, Jeng CJ, Tang CY. 2020. CUL4-DDB1-CRBN E3 Ubiquitin Ligase Regulates Proteostasis of ClC-2 Chloride Channels: Implication for Aldosteronism and Leukodystrophy. Cells 9.
Goosen P, Swart AC, Storbeck KH, Swart P. 2013. Allosteric interaction between 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4) isomerase and cytochrome b5 influences cofactor binding. FASEB J 27: 322-332.
Hales DB, Greene R. 1998. Arginine Vasopressin Inhibition of Cytochrome P450c17 and Testosterone Production in Mouse Leydig Cells. Endocrine 8: 19-28.
Hales KH, Diemer T, Ginde S, Shankar BK, Roberts M, Bosmann HB, Hales DB. 2000. Diametric effects of bacterial endotoxin lipopolysaccharide on adrenal and Leydig cell steroidogenic acute regulatory protein. Endocrinology 141: 4000-4012.
Hedger MP. 2011. Immunophysiology and pathology of inflammation in the testis and epididymis. J Androl 32: 625-640.
Holst JP, Soldin OP, Guo T, Soldin SJ. 2004. Steroid hormones: relevance and measurement in the clinical laboratory. Clin Lab Med 24: 105-118.
Hong CY, Park JH, Ahn RS, Im SY, Choi HS, Soh J, Mellon SH, Lee K. 2004. Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol 24: 2593-2604.
Hutchison GR, Scott HM, Walker M, McKinnell C, Ferrara D, Mahood IK, Sharpe RM. 2008. Sertoli cell development and function in an animal model of testicular dysgenesis syndrome. Biol Reprod 78: 352-360.
Jentsch TJ, Stein V, Weinreich F, Zdebik AA. 2002. Molecular structure and physiological function of chloride channels. Physiol Rev 82: 503-568.
Leisegang K, Henkel R. 2018. The in vitro modulation of steroidogenesis by inflammatory cytokines and insulin in TM3 Leydig cells. Reprod Biol Endocrinol 16: 26.
Lembo AJ, Johanson JF, Parkman HP, Rao SS, Miner PB, Jr., Ueno R. 2011. Long-term safety and effectiveness of lubiprostone, a chloride channel (ClC-2) activator, in patients with chronic idiopathic constipation. Dig Dis Sci 56: 2639-2645.
Li MY, Zhu XL, Zhao BX, Shi L, Wang W, Hu W, Qin SL, Chen BH, Zhou PH, Qiu B et al. 2019. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS-AMPK-mTOR axis. Cell Death Dis 10: 489.
Lin YC, Chiu CH, Liu HC, Wang JY. 2018. Curcumin downregulates 8-br-cAMP-induced steroidogenesis in mouse Leydig cells by suppressing the expression of Cyp11a1 and StAR independently of the PKA-CREB pathway. Endocr J 65: 833-840.
Lu YC, Yeh WC, Ohashi PS. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42: 145-151.
Manna PR, Dyson MT, Eubank DW, Clark BJ, Lalli E, Sassone-Corsi P, Zeleznik AJ, Stocco DM. 2002. Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol Endocrinol 16: 184-199.
Martinat N, Crepieux P, Reiter E, Guillou F. 2005. Extracellular signal-regulated kinases (ERK) 1, 2 are required for luteinizing hormone (LH)-induced steroidogenesis in primary Leydig cells and control steroidogenic acute regulatory (StAR) expression. Reprod Nutr Dev 45: 101-108.
Mauduit C, Gasnier F, Rey C, Chauvin MA, Stocco DM, Louisot P, Benahmed M. 1998. Tumor necrosis factor-alpha inhibits leydig cell steroidogenesis through a decrease in steroidogenic acute regulatory protein expression. Endocrinology 139: 2863-2868.
Nieschlag E, Behre HM, Rommerts FFG. 1998. Testosterone: An overview of biosynthesis, transport, metabolism and nongenomic actions. Springer.
O'Bryan MK, Schlatt S, Phillips DJ, de Kretser DM, Hedger MP. 2000. Bacterial lipopolysaccharide-induced inflammation compromises testicular function at multiple levels in vivo. Endocrinology 141: 238-246.
Pan Y, Liu Y, Wang L, Xue F, Hu Y, Hu R, Xu C. 2016. MKP-1 attenuates LPS-induced blood-testis barrier dysfunction and inflammatory response through p38 and IkappaBalpha pathways. Oncotarget 7: 84907-84923.
Park E, Song CH, Park JI, Ahn RS, Choi HS, Ko C, Lee K. 2014. Transforming growth factor-beta1 signaling represses testicular steroidogenesis through cross-talk with orphan nuclear receptor Nur77. PLoS One 9: e104812.
Petersen C, Soder O. 2006. The sertoli cell--a hormonal target and 'super' nurse for germ cells that determines testicular size. Horm Res 66: 153-161.
Reddy MM, Mahipal SV, Subhashini J, Reddy MC, Roy KR, Reddy GV, Reddy PR, Reddanna P. 2006. Bacterial lipopolysaccharide-induced oxidative stress in the impairment of steroidogenesis and spermatogenesis in rats. Reprod Toxicol 22: 493-500.
Shang T, Zhang X, Wang T, Sun B, Deng T, Han D. 2011. Toll-like receptor-initiated testicular innate immune responses in mouse Leydig cells. Endocrinology 152: 2827-2836.
Svechnikov K, Izzo G, Landreh L, Weisser J, Soder O. 2010. Endocrine disruptors and Leydig cell function. J Biomed Biotechnol 2010.
Thompson CH, Olivetti PR, Fuller MD, Freeman CS, McMaster D, French RJ, Pohl J, Kubanek J, McCarty NA. 2009. Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels. J Biol Chem 284: 26051-26062.
Wang F, Liu W, Jiang Q, Gong M, Chen R, Wu H, Han R, Chen Y, Han D. 2019. Lipopolysaccharide-induced testicular dysfunction and epididymitis in mice: a critical role of tumor necrosis factor alphadagger. Biol Reprod 100: 849-861.
Wang H, Xu M, Kong Q, Sun P, Yan F, Tian W, Wang X. 2017. Research and progress on ClC2 (Review). Mol Med Rep 16: 11-22.
Zirkin BR, Papadopoulos V. 2018. Leydig cells: formation, function, and regulation. Biol Reprod 99: 101-111.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78272-
dc.description.abstract睪丸為精子生成與睪固酮合成的重要器官,主要有曲精細管和間質,而睪固酮是由間質的萊氏細胞所合成。睪固酮對男性生殖系統的發育與精子生成的調控扮演了關鍵角色。睪固酮的合成由LH透過cAMP調控,cAMP會促進類固醇生成基因Star、Cyp11a1、Cyp17a1、Hsd3b1等的表現,進而促進睪固酮的生成。氯離子通道蛋白2 (Chloride channel-2, ClC-2) 為第一型氯離子通道蛋白家族中的一員,廣泛分布於人體各個組織器官中,扮演了調節細胞內外離子濃度的重要角色。先前研究發現ClC-2缺乏使小鼠無法正常產生精子,導致公鼠不孕。臨床也有ClC-2突變的男性患者發現無精症狀的案例,說明ClC-2對精子生成具有重要性,但ClC-2在睪丸的生理功能尚不清楚。本篇論文利用小鼠萊氏腫瘤細胞株MA-10以及睪丸分離的初代萊氏細胞探討ClC-2在睪固酮生成中可能扮演的角色。此外,已知男性不孕症患者中有5 ~ 10% 病例的病因和發炎反應相關,有研究指出LPS與其下游的促發炎因子TNFα會抑制小鼠睪固酮生成。本篇論文亦以MA-10以及萊氏細胞的模式,分析LPS、TNFα對睪固酮生成相關基因表現的影響。
西方墨點法結果顯示,在MA-10細胞與萊氏細胞中都可以偵測到ClC-2蛋白質的表現。在MA-10中將ClC-2 knockdown會使Cyp11a1以及Hsd3b1的mRNA和蛋白質量減少。MA-10給予ClC-2抑制劑GaTx2處理,只觀察到在有8-br-cAMP情況下Cyp11a1蛋白質量減少;在萊氏細胞則使Cyp17a1 mRNA量下降,另外在有8-br-cAMP情況下會使Star mRNA增加。此外,我們還分析ClC-2促進劑lubiprostone的效應,在MA-10有8-br-cAMP情況下會增加Hsd3b1蛋白質的量,另外也使Cyp17a1蛋白質增加,但卻造成Cyp11a1 mRNA減少;在萊氏細胞則都沒有效應。由於這些處理沒有得到一致性結論,因此ClC-2在睪固酮生成所扮演的角色有待更多的研究。
LPS處理萊氏細胞使Star mRNA及Hsd3b1蛋白質量減少;另外在有8-br-cAMP情況下會使Cyp17a1蛋白質量下降,但在MA-10則是Cyp17a1 mRNA減少。TNFα的處理會使MA-10與萊氏細胞中大部分睪固酮生成相關基因表現量降低,其中以Cyp11a1、Hsd3b1最明顯。這些結果說明TNFα可經由抑制睪固酮生成基因的表現而影響睪固酮的合成。
zh_TW
dc.description.abstractTestis is the organ for spermatogenesis and testosterone production. It is mainly comprised of seminiferous tubules and interstitium. Testosterone is synthesized by Leydig cell in the interstitium. Testosterone plays a crucial role in reproductive system development and spermatogenesis. Testosterone synthesis is regulated by LH through cAMP that stimulates the expression of steroidogenic genes including Star, Cyp11a1, Cyp17a1, Hsd3b1, and thereby promotes the production of testosterone. Chloride channel protein 2 (ClC-2) is a member of the class I ClC family, which is widely presented in various tissues and organs in human. It plays an important role in regulating ion concentration between intracellular and extracellular. Previous studies found that lacking ClC-2 prevented mice from producing sperm normally which caused male mice infertility. A clinical case report indicated that a male patient with ClC-2 mutation had azoospermia. These studies indicate the importance of ClC-2 in spermatogenesis. However, the physiological function of ClC-2 in testis remains unknown. In this study we used mice tumor Leydig cells MA-10 and primary Leydig cells isolated from the testis to investigate the role of ClC-2 in testosterone biosynthesis. Moreover, it is known that 5 ~ 10% of male infertility patients have an etiology related to inflammation. LPS and its downstream pro-inflammatory cytokine TNFα has been shown to inhibit mice testosterone synthesis. Therefore, we also analyzed the effect of LPS and TNFα on the expression of genes involved in testosterone synthesis.
Western blot results revealed that ClC-2 proteins were present in both MA-10 and Leydig cells. ClC-2 knockdown led to a decrease in the mRNA and protein levels of Cyp11a1 and Hsd3b1 in MA-10. MA-10 was further treated with ClC-2 inhibitor GaTx2 and the results showed that only Cyp11a1 protein level was reduced in the presence of 8-br-cAMP. In Leydig cell, GaTx2 reduced Cyp17a1 mRNA but increased Star mRNA in the presence of 8-br-cAMP. In addition, treatment of MA-10 cell ClC-2 activator lubiprostone resulted in the increase of Cyp17a1 protein level and also Hsd3b1 protein in the presence of 8-br-cAMP; however, the Cyp11a1 mRNA was decreased by lubiprostone. Lubiprostone had no significant effects on Leydig cells. Because there are no consistent results from these treatments, the role of ClC-2 in the synthesis of testosterone needs further studies.
Our data also showed that TNFα, but not LPS, had significantly inhibitory effect on the expression of steroidogenic genes in MA-10 and Leydig cells. The results suggest that TNFα may affect testosterone production by inhibiting the expression of genes involved in testosterone synthesis.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:48:50Z (GMT). No. of bitstreams: 1
U0001-1108202010492900.pdf: 3403380 bytes, checksum: 1f486d4711b441a54598f3236ea34461 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 I
表次 IV
圖次 V
摘要 VI
Abstract VIII
第一章 序論 1
一、睪丸的結構與功能簡介 1
二、類固醇荷爾蒙 (Steroid hormone) 1
三、睪固酮 (Testosterone) 的生成與作用 2
四、氯離子通道蛋白2 (Chloride channel protein 2,ClC-2) 2
五、ClC-2與睪丸之關係 3
六、LPS、TNFα對睪丸生理功能之影響 4
七、研究目的 5
第二章 材料與方法 6
一、藥品 6
二、細胞培養 6
三、小鼠初代萊氏細胞培養 7
四、蛋白質萃取 7
五、西方墨點法 (Western blot) 8
六、RNA萃取 11
七、反轉錄酶-聚合酶連鎖反應 (Reverse transcriptase PCR, RT-PCR) 11
八、即時性聚合酶連鎖反應 (Real-time PCR) 11
九、shRNA knockdown 13
十、MTT assay 14
十一、統計方法 14
第三章 結果 15
一、cAMP對睪固酮生成基因表現之影響 15
二、小鼠萊氏細胞有ClC-2表現 16
三、ClC-2對睪固酮生成基因的影響 16
四、ClC-2對MA-10細胞生長之影響 18
五、LPS對睪固酮生成基因的影響 18
六、TNFα對睪固酮生成的影響 19
第四章 討論 22
一、cAMP對睪固酮生成基因的影響 22
二、ClC-2在萊氏細胞的表現 23
三、ClC-2對睪固酮生成基因的影響 23
四、LPS、TNFα對睪固醇生成基因的影響 24
dc.language.isozh-TW
dc.subjectClC-2zh_TW
dc.subject萊氏細胞zh_TW
dc.subject睪固酮生成zh_TW
dc.subjectLPSzh_TW
dc.subjectTNFαzh_TW
dc.subjectTNFαen
dc.subjectClC-2en
dc.subjectLeydig cellsen
dc.subjectTestosterone synthesisen
dc.subjectLPSen
dc.title探討ClC-2、LPS、TNFα於小鼠睪丸萊氏細胞中對睪固酮生成基因表現之影響zh_TW
dc.titleEffect of ClC-2, LPS, TNFα on the expression of genes involved in testosterone synthesis in mouse Leydig cellen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭瓊娟(Chung-Jiuan Jeng),湯志永(Chih-Yung Tang),楊豐名(Feng-Ming Yang)
dc.subject.keywordClC-2,萊氏細胞,睪固酮生成,LPS,TNFα,zh_TW
dc.subject.keywordClC-2,Leydig cells,Testosterone synthesis,LPS,TNFα,en
dc.relation.page52
dc.identifier.doi10.6342/NTU202002907
dc.rights.note有償授權
dc.date.accepted2020-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
dc.date.embargo-lift2025-08-11-
Appears in Collections:生理學科所

Files in This Item:
File SizeFormat 
U0001-1108202010492900.pdf
  Restricted Access
3.32 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved