請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78266完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲(Ming-Syan Chen) | |
| dc.contributor.author | Jyun-Sian Wu | en |
| dc.contributor.author | 吳俊賢 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:48:32Z | - |
| dc.date.available | 2025-08-20 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | Imageclef-da dataset. M. Cao, X. Zhou, Y. Xu, Y. Pang, and B. Yao. Adversarial domain adaptation with semantic consistency for cross-domain image classification. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pages 259–268, 2019. S. Cicek and S. Soatto. Unsupervised domain adaptation via regularized conditional alignment. In Proceedings of the IEEE International Conference on Computer Vision, pages 1416–1425, 2019. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large- scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009. Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495, 2014. Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marc- hand, and V. Lempitsky. Domain-adversarial training of neural networks. The Journal of Machine Learning Research, 17(1):2096–2030, 2016. M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li. Deep reconstruction- classification networks for unsupervised domain adaptation. In European Conference on Computer Vision, pages 597–613. Springer, 2016. Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In Advances in neural information processing systems, pages 529–536, 2005. A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773, 2012. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. A. Efros, and T. Darrell. Cycada: Cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213, 2017. G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann. Contrastive adaptation network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4893–4902, 2019. M.-Y. Liu and O. Tuzel. Coupled generative adversarial networks. In Advances in neural information processing systems, pages 469–477, 2016. M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791, 2015. M. Long, Z. Cao, J. Wang, and M. I. Jordan. Conditional adversarial domain adaptation. In Advances in Neural Information Processing Systems, pages 1640–1650, 2018. M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu. Transfer feature learning with joint distribution adaptation. In Proceedings of the IEEE international conference on computer vision, pages 2200–2207, 2013. M. Long, H. Zhu, J. Wang, and M. I. Jordan. Unsupervised domain adaptation with residual transfer networks. In Advances in neural information processing systems, pages 136–144, 2016. M. Long, H. Zhu, J. Wang, and M. I. Jordan. Deep transfer learning with joint adaptation networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 2208–2217. JMLR. org, 2017. Y. Pan, T. Yao, Y. Li, Y. Wang, C.-W. Ngo, and T. Mei. Transferrable prototypical networks for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2239–2247, 2019. Z. Pei, Z. Cao, M. Long, and J. Wang. Multi-adversarial domain adaptation. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018. P. O. Pinheiro. Unsupervised domain adaptation with similarity learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8004–8013, 2018. S. Roy, A. Siarohin, E. Sangineto, S. R. Bulo, N. Sebe, and E. Ricci. Unsupervised domain adaptation using feature-whitening and consensus loss. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9471–9480, 2019. K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In European conference on computer vision, pages 213–226. Springer, 2010. K. Saito, Y. Ushiku, T. Harada, and K. Saenko. Adversarial dropout regularization. arXiv preprint arXiv:1711.01575, 2017. K. Saito, K. Watanabe, Y. Ushiku, and T. Harada. Maximum classifier discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3723–3732, 2018. Y. Shi and F. Sha. Information-theoretical learning of discriminative clusters for unsupervised domain adaptation. arXiv preprint arXiv:1206.6438, 2012. R. Shu, H. H. Bui, H. Narui, and S. Ermon. A dirt-t approach to unsupervised domain adaptation. arXiv preprint arXiv:1802.08735, 2018. E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7167–7176, 2017. H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan. Deep hashing network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5018–5027, 2017. X. Wang, L. Li, W. Ye, M. Long, and J. Wang. Transferable attention for domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 5345–5352, 2019. J. Zhang, Z. Ding, W. Li, and P. Ogunbona. Importance weighted adversarial nets for partial domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8156–8164, 2018. W. Zhang, W. Ouyang, W. Li, and D. Xu. Collaborative and adversarial network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3801–3809, 2018. Y. Zhang, T. Liu, M. Long, and M. I. Jordan. Bridging theory and algorithm for domain adaptation. arXiv preprint arXiv:1904.05801, 2019. Y. Zhang, H. Tang, K. Jia, and M. Tan. Domain-symmetric networks for adversarial domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5031–5040, 2019. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78266 | - |
| dc.description.abstract | 無監督式域適應的目標是訓練一個泛化的分類器來去預測目標資料的類別,來源資料是有被標註的,但是目標資料卻沒有被標註,且來源資料跟目標資料的分布有一定的落差。先前的論文已經在對齊來源跟目標資料取得一定的進步。然後這些論文的表現依然會受到一定程度的限制,因為他們少考慮了類別層級的問題,而那些問題會影響分類器的邊界效果。因此最近有研究開始考慮類別層級的問題並且給目標資料假標記來解決問題。在這篇論文中,我們提出了一個創新的架構-具注意力機制之類別層級映射模型,去更進一步的改進先前的研究。我們利用了源分類器將兩個域的不同類別的特徵分開,再提出了一個嶄新的目標函數-軟性類別層級差異去將兩個域的相同類別的特徵作對齊,但由於目標域沒有標注,所以我們同時利用源域目標域做K-means集群分析拿到中心點,對於每筆目標域資料看它離哪個中心點最近去給相對的假標注。另外,先前有用假標注的研究可能會有錯誤標注的問題,錯誤的標注將會造成對齊的錯誤進而影響分類。因此我們考慮了假標注的可靠性,我們不僅使用了假標註並且對於每個假標註我們會給一個信心值來決定對齊程度的大小。此外,對於圖片而言,並不是每個區域都適合做域適應,因此我們設計了一個注意力機制去找出適合做域適應的區域。根據實驗結果,我們的模型取得了一定的成功並且贏了許多先進的研究。 | zh_TW |
| dc.description.abstract | Unsupervised Domain Adaptation (UDA) aims to train a classifier to predict the category of unlabeled data on target domain given labeled data on source domain. Previous methods make remarkable progress in learning aligned domain-invariant representations. However, the performance of these methods is limited because they ignored categorical information which results in misleading decision boundaries. Therefore, recent researches take the issue into consideration and some of them try to assign pseudo labels to target domain data. In this paper, we propose a novel model architecture named Attentive Class-Aware Mapping Network (ACMN) to improve the class-aware alignment. We use a domain classifier separate data representations from different domains which empirically help the class-aware alignment. Then we employs novel discrepancy objective function \textit{Soft-Class Discrepancy (SCD)} to align representations within the identical categories through pseudo labels from spherical K-means clustering. Note that previous approaches may run the risk of misleading domain alignment due to the unreliability of pseudo labels. In view of this, we consider the reliability of pseudo labels and assign the confidence values to pseudo labels. Moreover, because not all the regions are suitable for domain alignment in an image, we design a novel attention mechanism to find proper transferable regions. Experimental results on several UDA benchmarks show that our method consistently outperforms the state-of-the-art approaches. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:48:32Z (GMT). No. of bitstreams: 1 U0001-1108202018004300.pdf: 3013119 bytes, checksum: 29455348e8d70f07f15f46f113a0a526 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv Contents vi List of Figures viii List of Tables ix 1 Introduction 1 2 Related Work 6 3 Methodology 8 3.1 Domain Alignment by Maximum Mean Discrepancy 9 3.2 Class-aware Representations Mapping 11 3.3 Target Domain Pseudo Label and Confidence 12 3.4 Domain-wise Splitting through Domain Classifier and Object Classifier 14 3.5 Discrepancy-based Attention Mechanism 14 3.6 Entropy Minimization Principle 16 3.7 Training Process and Overall Objective Function 16 4 Experiments 19 4.1 Datasets 19 4.2 Baselines 20 4.3 Implementation Details 20 4.4 Results Discussion 21 4.5 Analysis 24 5 Conclusion 27 References 28 | |
| dc.language.iso | en | |
| dc.subject | 對抗式學習 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 遷移學習 | zh_TW |
| dc.subject | 域適應 | zh_TW |
| dc.subject | 分類 | zh_TW |
| dc.subject | 聚類 | zh_TW |
| dc.subject | Classification | en |
| dc.subject | Adversarial Learning | en |
| dc.subject | Domain Adaptation | en |
| dc.subject | Clustering | en |
| dc.subject | Transfer Learning | en |
| dc.subject | Deep Learning | en |
| dc.title | 具注意力機制之類別層級映射模型用於無監督式域適應 | zh_TW |
| dc.title | ACMN: Attentive Class-Aware Mapping Network for Unsupervised Domain Adaptation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴志華(Chih-Hua Tai),陳怡伶(Yi-Ling Chen),楊得年(De-Nian Yang) | |
| dc.subject.keyword | 深度學習,遷移學習,域適應,分類,聚類,對抗式學習, | zh_TW |
| dc.subject.keyword | Deep Learning,Transfer Learning,Domain Adaptation,Classification,Clustering,Adversarial Learning, | en |
| dc.relation.page | 32 | |
| dc.identifier.doi | 10.6342/NTU202002995 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202018004300.pdf 未授權公開取用 | 2.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
