Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78258
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊燿州(Yao-Joe Yang)
dc.contributor.authorHsuan-Yu Chenen
dc.contributor.author陳翾宇zh_TW
dc.date.accessioned2021-07-11T14:48:09Z-
dc.date.available2025-08-13
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation[1] M. Manti, V. Cacucciolo, and M. Cianchetti, 'Stiffening in soft robotics: A review of the state of the art,' IEEE Robotics and Automation Magazine, vol. 23, no. 3, pp. 93-106, 2016.
[2] J. Z. Gul, M. Sajid, M. M. Rehman, G. U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, and K. H. Choi, '3D printing for soft robotics–a review,' Science and Technology of Advanced Materials, vol. 19, no. 1, pp. 243-262, 2018.
[3] M. Cianchetti, C. Laschi, A. Menciassi, and P. Dario, 'Biomedical applications of soft robotics,' Nature Reviews Materials, vol. 3, no. 6, pp. 143-153, 2018.
[4] L. Wang and F. Iida, 'Deformation in soft-matter robotics: A categorization and quantitative characterization,' IEEE Robotics and Automation Magazine, vol. 22, no. 3, pp. 125-139, 2015.
[5] X. Liang, Y. Sun, and H. Ren, 'A flexible fabrication approach toward the shape engineering of microscale soft pneumatic actuators,' IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 165-170, 2016.
[6] J. Kim, Microscale Soft Robotics: Motivations, Progress, and Outlook. Springer, 2017.
[7] M. T. Tolley, R. F. Shepherd, B. Mosadegh, K. C. Galloway, M. Wehner, M. Karpelson, R. J. Wood, and G. M. Whitesides, 'A resilient, untethered soft robot,' Soft Robotics, vol. 1, no. 3, pp. 213-223, 2014.
[8] J. D. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, 'Artificial muscle technology: physical principles and naval prospects,' IEEE Journal of Oceanic Engineering, vol. 29, no. 3, pp. 706-728, 2004.
[9] D. Drotman, S. Jadhav, M. Karimi, P. Dezonia, and M. T. Tolley, '3D printed soft actuators for a legged robot capable of navigating unstructured terrain,' in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017: IEEE, pp. 5532-5538.
[10] V. Wall, G. Zöller, and O. Brock, 'A method for sensorizing soft actuators and its application to the RBO hand 2,' in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017: IEEE, pp. 4965-4970.
[11] M. Raitor, J. M. Walker, A. M. Okamura, and H. Culbertson, 'WRAP: Wearable, restricted-aperture pneumatics for haptic guidance,' in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017: IEEE, pp. 427-432.
[12] S. Terryn, J. Brancart, D. Lefeber, G. Van Assche, and B. Vanderborght, 'Self-healing soft pneumatic robots,' Science Robotics, vol. 2, no. 9, 2017.
[13] D. Yang, M. S. Verma, J. H. So, B. Mosadegh, C. Keplinger, B. Lee, F. Khashai, E. Lossner, Z. Suo, and G. M. Whitesides, 'Buckling pneumatic linear actuators inspired by muscle,' Advanced Materials Technologies, vol. 1, no. 3, p. 1600055, 2016.
[14] M. Li, Y. Wang, A. Chen, A. Naidu, B. S. Napier, W. Li, C. L. Rodriguez, S. A. Crooker, and F. G. Omenetto, 'Flexible magnetic composites for light-controlled actuation and interfaces,' Proceedings of the National Academy of Sciences, vol. 115, no. 32, pp. 8119-8124, 2018.
[15] B. Baytekin, S. D. Cezan, H. T. Baytekin, and B. A. Grzybowski, 'Artificial heliotropism and nyctinasty based on optomechanical feedback and no electronics,' Soft Robotics, vol. 5, no. 1, pp. 93-98, 2018.
[16] H. Zeng, O. M. Wani, P. Wasylczyk, R. Kaczmarek, and A. Priimagi, 'Self‐regulating iris based on light‐actuated liquid crystal elastomer,' Advanced Materials, vol. 29, no. 30, p. 1701814, 2017.
[17] M. Rogóż, H. Zeng, C. Xuan, D. S. Wiersma, and P. Wasylczyk, 'Light‐driven soft robot mimics caterpillar locomotion in natural scale,' Advanced Optical Materials, vol. 4, no. 11, pp. 1689-1694, 2016.
[18] Y. C. Cheng, H. C. Lu, X. Lee, H. Zeng, and A. Priimagi, 'Kirigami‐based light‐induced shape‐morphing and locomotion,' Advanced Materials, vol. 32, no. 7, p. 1906233, 2020.
[19] M. Loepfe, C. M. Schumacher, U. B. Lustenberger, and W. J. Stark, 'An untethered, jumping roly-poly soft robot driven by combustion,' Soft Robotics, vol. 2, no. 1, pp. 33-41, 2015.
[20] M. T. Tolley, R. F. Shepherd, M. Karpelson, N. W. Bartlett, K. C. Galloway, M. Wehner, R. Nunes, G. M. Whitesides, and R. J. Wood, 'An untethered jumping soft robot,' in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014: IEEE, pp. 561-566.
[21] N. W. Bartlett, M. T. Tolley, J. T. Overvelde, J. C. Weaver, B. Mosadegh, K. Bertoldi, G. M. Whitesides, and R. J. Wood, 'A 3D-printed, functionally graded soft robot powered by combustion,' Science, vol. 349, no. 6244, pp. 161-165, 2015.
[22] T. Patino, R. Mestre, and S. Sanchez, 'Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications,' Lab on a Chip, vol. 16, no. 19, pp. 3626-3630, 2016.
[23] A. W. Feinberg, A. Feigel, S. S. Shevkoplyas, S. Sheehy, G. M. Whitesides, and K. K. Parker, 'Muscular thin films for building actuators and powering devices,' Science, vol. 317, no. 5843, pp. 1366-1370, 2007.
[24] S.-J. Park, M. Gazzola, K. S. Park, S. Park, V. Di Santo, E. L. Blevins, J. U. Lind, P. H. Campbell, S. Dauth, and A. K. Capulli, 'Phototactic guidance of a tissue-engineered soft-robotic ray,' Science, vol. 353, no. 6295, pp. 158-162, 2016.
[25] M. D. Bartlett, N. Kazem, M. J. Powell-Palm, X. Huang, W. Sun, J. A. Malen, and C. Majidi, 'High thermal conductivity in soft elastomers with elongated liquid metal inclusions,' Proceedings of the National Academy of Sciences, vol. 114, no. 9, pp. 2143-2148, 2017.
[26] M. Amjadi and M. Sitti, 'High-performance multiresponsive paper actuators,' ACS Nano, vol. 10, no. 11, pp. 10202-10210, 2016.
[27] C. Yuan, D. J. Roach, C. K. Dunn, Q. Mu, X. Kuang, C. M. Yakacki, T. Wang, K. Yu, and H. J. Qi, '3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers,' Soft Matter, vol. 13, no. 33, pp. 5558-5568, 2017.
[28] S. Rich, S. H. Jang, Y. L. Park, and C. Majidi, 'Liquid metal‐conductive thermoplastic elastomer integration for low‐voltage stiffness tuning,' Advanced Materials Technologies, vol. 2, no. 12, p. 1700179, 2017.
[29] S.-H. Song, M.-S. Kim, H. Rodrigue, J.-Y. Lee, J.-E. Shim, M.-C. Kim, W.-S. Chu, and S.-H. Ahn, 'Turtle mimetic soft robot with two swimming gaits,' Bioinspiration and Biomimetics, vol. 11, no. 3, p. 036010, 2016.
[30] A. Miriyev, K. Stack, and H. Lipson, 'Soft material for soft actuators,' Nature Communications, vol. 8, no. 1, pp. 1-8, 2017.
[31] T. Li, G. Li, Y. Liang, T. Cheng, J. Dai, X. Yang, B. Liu, Z. Zeng, Z. Huang, and Y. Luo, 'Fast-moving soft electronic fish,' Science Advances, vol. 3, no. 4, p. e1602045, 2017.
[32] S. I. Rich, R. J. Wood, and C. Majidi, 'Untethered soft robotics,' Nature Electronics, vol. 1, no. 2, pp. 102-112, 2018.
[33] A. Vásquez Quintero, R. Verplancke, H. De Smet, and J. Vanfleteren, 'Stretchable electronic platform for soft and smart contact lens applications,' Advanced Materials Technologies, vol. 2, no. 8, p. 1700073, 2017.
[34] A. Miyamoto, S. Lee, N. F. Cooray, S. Lee, M. Mori, N. Matsuhisa, H. Jin, L. Yoda, T. Yokota, and A. Itoh, 'Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes,' Nature Nanotechnology, vol. 12, no. 9, p. 907, 2017.
[35] M. Varga, C. Ladd, S. Ma, J. Holbery, and G. Tröster, 'On-skin liquid metal inertial sensor,' Lab on a Chip, vol. 17, no. 19, pp. 3272-3278, 2017.
[36] T. Xu, Y. Ding, Z. Wang, Y. Zhao, W. Wu, H. Fong, and Z. Zhu, 'Three-dimensional and ultralight sponges with tunable conductivity assembled from electrospun nanofibers for a highly sensitive tactile pressure sensor,' Journal of Materials Chemistry C, vol. 5, no. 39, pp. 10288-10294, 2017.
[37] W. Luo, T. Wu, B. Chen, M. Liang, and H. Zou, 'Highly stretchable conductors based on expanded graphite macroconfined in tubular rubber,' ACS Applied Materials and Interfaces, vol. 9, no. 49, pp. 43239-43249, 2017.
[38] J. A. Rogers, 'Wearable electronics: Nanomesh on-skin electronics,' Nature Nanotechnology, vol. 12, no. 9, pp. 839-840, 2017.
[39] Y.-L. Park, C. Majidi, R. Kramer, P. Bérard, and R. J. Wood, 'Hyperelastic pressure sensing with a liquid-embedded elastomer,' Journal of Micromechanics and Microengineering, vol. 20, no. 12, p. 125029, 2010.
[40] B. Zhang, Q. Dong, C. E. Korman, Z. Li, and M. E. Zaghloul, 'Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics,' Scientific Reports, vol. 3, p. 1098, 2013.
[41] Y. G. Moon, J. B. Koo, N.-M. Park, J.-Y. Oh, B. S. Na, S. S. Lee, S.-D. Ahn, and C. W. Park, 'Freely deformable liquid metal grids as stretchable and transparent electrodes,' IEEE Transactions on Electron Devices, vol. 64, no. 12, pp. 5157-5162, 2017.
[42] Y. Gao, H. Ota, E. W. Schaler, K. Chen, A. Zhao, W. Gao, H. M. Fahad, Y. Leng, A. Zheng, and F. Xiong, 'Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring,' Advanced Materials, vol. 29, no. 39, p. 1701985, 2017.
[43] A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, and P. Bastien, 'A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,' Science Translational Medicine, vol. 8, no. 366, pp. 366ra165-366ra165, 2016.
[44] C.-C. Kim, H.-H. Lee, K. H. Oh, and J.-Y. Sun, 'Highly stretchable, transparent ionic touch panel,' Science, vol. 353, no. 6300, pp. 682-687, 2016.
[45] M. A. Darabi, A. Khosrozadeh, R. Mbeleck, Y. Liu, Q. Chang, J. Jiang, J. Cai, Q. Wang, G. Luo, and M. Xing, 'Skin‐inspired multifunctional autonomic‐intrinsic conductive self‐healing hydrogels with pressure sensitivity, stretchability, and 3D printability,' Advanced Materials, vol. 29, no. 31, p. 1700533, 2017.
[46] C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai, and R. Shepherd, 'Highly stretchable electroluminescent skin for optical signaling and tactile sensing,' Science, vol. 351, no. 6277, pp. 1071-1074, 2016.
[47] M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M. Whitesides, J. A. Lewis, and R. J. Wood, 'An integrated design and fabrication strategy for entirely soft, autonomous robots,' Nature, vol. 536, no. 7617, pp. 451-455, 2016.
[48] A. D. Marchese, C. D. Onal, and D. Rus, 'Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators,' Soft Robotics, vol. 1, no. 1, pp. 75-87, 2014.
[49] B. Oh, Y.-G. Park, H. Jung, S. Ji, W. H. Cheong, J. Cheon, W. Lee, and J.-U. Park, 'Untethered Soft Robotics with Fully Integrated Wireless Sensing and Actuating Systems for Somatosensory and Respiratory Functions,' Soft Robotics, 2020.
[50] L. Qin, Y. Tang, U. Gupta, and J. Zhu, 'A soft robot capable of 2D mobility and self-sensing for obstacle detection and avoidance,' Smart Materials and Structures, vol. 27, no. 4, p. 045017, 2018.
[51] R. L. Truby, M. Wehner, A. K. Grosskopf, D. M. Vogt, S. G. Uzel, R. J. Wood, and J. A. Lewis, 'Soft somatosensitive actuators via embedded 3D printing,' Advanced Materials, vol. 30, no. 15, p. 1706383, 2018.
[52] M. Amjadi and M. Sitti, 'Self‐Sensing Paper Actuators Based on Graphite–Carbon Nanotube Hybrid Films,' Advanced Science, vol. 5, no. 7, p. 1800239, 2018.
[53] A. P. Gerratt and S. Bergbreiter, 'Microfabrication of compliant all-polymer MEMS thermal actuators,' Sensors and Actuators A: Physical, vol. 177, pp. 16-22, 2012.
[54] B. J. Hamrock, S. R. Schmid, and B. O. Jacobson, Fundamentals of Machine Elements. McGraw-Hill Higher Education, 2004.
[55] U. o. Cambridge, 'The bi-material strip.' [Online]. Available: https://www.doitpoms.ac.uk/tlplib/thermal-expansion/bimaterial-strip.php.
[56] T. W. Clyne, 'Residual Stresses in Surface Coatings and Their Effects on Interfacial Debonding,' Key Engineering Materials, vol. 116–117, pp. 307–330, 1995, doi: 10.4028/www.scientific.net/kem.116-117.307.
[57] G. Ruschau, S. Yoshikawa, and R. Newnham, 'Resistivities of conductive composites,' Journal of Applied Physics, vol. 72, no. 3, pp. 953-959, 1992.
[58] N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, 'Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor,' Acta Materialia, vol. 56, no. 13, pp. 2929-2936, 2008.
[59] S. R. Broadbent and J. M. Hammersley, 'Percolation processes,' Mathematical Proceedings of the Cambridge Philosophical Society, vol. 53, no. 03, p. 629, 2008, doi: 10.1017/s0305004100032680.
[60] J. W. Essam, 'Percolation theory,' Reports on Progress in Physics, vol. 43, no. 7, p. 833, 1980.
[61] 張繼升, '可撓式正溫度係數高分子電阻薄膜之研究,' 博士論文, 化學工程研究所, 國立清華大學, 2006.
[62] D. Stauffer, Introduction to Percolation Theory. London: Taylor and Francis, 1985.
[63] R. strumpler and J. Glatz-Reichenbach, 'FEATURE ARTICLE Conducting Polymer Composites,' Journal of Electroceramics, vol. 3, no. 4, pp. 329-346, 1999/10/01 1999, doi: 10.1023/A:1009909812823.
[64] C. Grimaldi, 'Theory of percolation and tunneling regimes in nanogranular metal films,' Physical Review B, vol. 89, no. 21, p. 214201, 2014.
[65] M. Sumita, K. Sakata, S. Asai, K. Miyasaka, and H. Nakagawa, 'Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black,' Polymer Bulletin, vol. 25, no. 2, pp. 265-271, 1991/02/01 1991, doi: 10.1007/BF00310802.
[66] H. Xu, 'Positive Temperature Coefficient Effect of Polymer Nanocomposites,' in Polymer Nanocomposites: Electrical and Thermal Properties, X. Huang and C. Zhi Eds. Cham: Springer International Publishing, 2016, pp. 83-110.
[67] Y. W. Erol Sancaktar, 'The effect of pressure on the initial establishment of conductive paths in electronically conductive adhesives,' Journal of Adhesion Science and Technology vol. 10, pp. 1221-1235, 1996.
[68] S. Luo and T. Liu, 'SWCNT/Graphite nanoplatelet hybrid thin films for self‐temperature‐compensated, highly sensitive, and extensible piezoresistive sensors,' Advanced Materials, vol. 25, no. 39, pp. 5650-5657, 2013.
[69] S. Luo and T. Liu, 'Structure–property–processing relationships of single-wall carbon nanotube thin film piezoresistive sensors,' Carbon, vol. 59, pp. 315-324, 2013.
[70] V. Skákalová, A. B. Kaiser, Y.-S. Woo, and S. Roth, 'Electronic transport in carbon nanotubes: From individual nanotubes to thin and thick networks,' Physical Review B, vol. 74, no. 8, p. 085403, 2006.
[71] A. Kaiser, V. Skakalova, and S. Roth, 'Modelling conduction in carbon nanotube networks with different thickness, chemical treatment and irradiation,' Physica E: Low-dimensional Systems and Nanostructures, vol. 40, no. 7, pp. 2311-2318, 2008.
[72] M. Amjadi, M. Turan, C. P. Clementson, and M. Sitti, 'Parallel microcracks-based ultrasensitive and highly stretchable strain sensors,' ACS Applied Materials and Interfaces, vol. 8, no. 8, pp. 5618-5626, 2016.
[73] L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.-F. Cui, and Y. Cui, 'Highly conductive paper for energy-storage devices,' Proceedings of the National Academy of Sciences, vol. 106, no. 51, pp. 21490-21494, 2009.
[74] X. Liao, Q. Liao, X. Yan, Q. Liang, H. Si, M. Li, H. Wu, S. Cao, and Y. Zhang, 'Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor,' Advanced Functional Materials, vol. 25, no. 16, pp. 2395-2401, 2015.
[75] M. Amjadi, Y. J. Yoon, and I. Park, 'Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites,' Nanotechnology, vol. 26, no. 37, p. 375501, 2015.
[76] M. Amjadi, K. U. Kyung, I. Park, and M. Sitti, 'Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: a review,' Advanced Functional Materials, vol. 26, no. 11, pp. 1678-1698, 2016.
[77] U. Khan, I. O’Connor, Y. K. Gun’ko, and J. N. Coleman, 'The preparation of hybrid films of carbon nanotubes and nano-graphite/graphene with excellent mechanical and electrical properties,' Carbon, vol. 48, no. 10, pp. 2825-2830, 2010.
[78] A. Benchirouf, C. Müller, and O. Kanoun, 'Electromechanical behavior of chemically reduced graphene oxide and multi-walled carbon nanotube hybrid material,' Nanoscale Research Letters, vol. 11, no. 1, p. 4, 2016.
[79] D. Cai, M. Song, and C. Xu, 'Highly conductive carbon‐nanotube/graphite‐oxide hybrid films,' Advanced Materials, vol. 20, no. 9, pp. 1706-1709, 2008.
[80] M. E. Circuits, 'Temperature coefficient of resistance,' May 16, 2019. [Online]. Available: https://makingcircuits.com.
[81] L. Dumée, K. Sears, J. Schütz, N. Finn, M. Duke, and S. Gray, 'Influence of the sonication temperature on the debundling kinetics of carbon nanotubes in propan-2-ol,' Nanomaterials, vol. 3, no. 1, pp. 70-85, 2013.
[82] L. Hawach Scientific Co., 'A brief introduction of vacuum filtration,' January 7, 2020. [Online]. Available: https://www.vacuumfiltrations.com/a-brief-introduction-of-vacuum-filtration/.
[83] Ossila, 'Sheet Resistance: A Guide to Theory.' [Online]. Available: https://www.ossila.com/pages/sheet-resistance-theory.
[84] I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, 'The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems,' Journal of Physics: Condensed Matter, vol. 27, no. 22, p. 223201, 2015.
[85] T. G. Beckwith, R. D. Marangoni, and J. H. Lienhard, Mechanical Measurements. Pearson Prentice Hall, 2007.
[86] M. Miao, J. McDonnell, L. Vuckovic, and S. C. Hawkins, 'Poisson’s ratio and porosity of carbon nanotube dry-spun yarns,' Carbon, vol. 48, no. 10, pp. 2802-2811, 2010.
[87] A. Hehr, Y. Song, B. Suberu, J. Sullivan, V. Shanov, and M. Schulz, 'Embedded carbon nanotube sensor thread for structural health monitoring and strain sensing of composite materials,' in Nanotube Superfiber Materials: Elsevier, 2014, pp. 671-712.
[88] Y.-C. Sun, B. D. Leaker, J. E. Lee, R. Nam, and H. E. Naguib, 'Shape programming of polymeric based electrothermal actuator (ETA) via artificially induced stress relaxation,' Scientific Reports, vol. 9, no. 1, pp. 1-12, 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78258-
dc.description.abstract本研究提出一種可感測自身形變之可撓式微型驅動器。此驅動器是由兩種不同的軟性高分子材料所組成,分別為以聚二甲基矽氧烷為主體並混有石墨與奈米碳管之導電層以及純聚二甲基矽氧烷絕緣層。此微型驅動器利用兩層材料間之熱膨脹係數差異,再搭配直流電源進行焦耳加熱,即可達成致動之功能。此外,本研究更進一步將石墨與奈米碳管以特定比例調合,中和兩者之電阻溫度係數,達到電阻值幾乎不受溫度影響之效果,使元件具備感測自身形變之能力。實驗量測結果顯示,本研究所提出之元件僅需3V的驅動電壓即可使其致動,且其應變規因子約為本研究所配製之純奈米碳管薄膜的2.6倍,顯示出良好的感測性能。而當元件通電加熱至105°C時,其電阻變化相較於室溫初始電阻值僅上升約1.5%,證實所配製之材料已大幅降低溫度對電阻之影響。此外,在位移回授控制之實驗中,本研究更利用閉迴路系統展示了不管在有無負載的情況下,皆能對元件進行精準的位移控制。實驗結果證實,此微形驅動器將具有實際應用於軟性機器人之感測訊號回饋與動作控制之潛力。zh_TW
dc.description.abstractThis work proposes a soft microactuator that has the ability to simultaneously sense and actuate merely through two input electric terminals. The proposed device is in fact a simple bilayer electrothermal actuator. The bilayer structure comprises the insulating layer and the conductive layer. The insulating layer is made of polydimethylsiloxane (PDMS)‎ and the conductive layer is composed of graphite microparticles, carbon nanotubes, and PDMS. The working principle of the actuator is based on the bimetallic phenomenon. When the device temperature was elevated by Joule heating, the mismatch of thermal expansion in the structure induces the bending of the structure. Besides, decoupled electrothermal stimulation and strain sensation is achieved by optimizing the ratio of graphite microparticles and carbon nanotubes (CNTs) in the hybrid films. The experimental results show that the proposed device can be driven by low voltages. Additionally, the gauge factor of the proposed device is about 2.6 times higher than that of the pure carbon nanotube thin film prepared in this work. When the device is heated to 105 °C, the resistance increases only about 1.5 percent above that at room temperature. Furthermore, this work also demonstrated a closed-loop system to achieve precision position control with the microactuator under different loads. The approach of the proposed device, which is in fact a simple integrated sensing and actuating mechanism, is a promising way for the developing intelligent soft robots.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:48:09Z (GMT). No. of bitstreams: 1
U0001-1208202014411200.pdf: 6064834 bytes, checksum: 090c6ac67c0858da3cbdf28e86c31a62 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
摘要 V
Abstract VII
目錄 IX
圖目錄 XIII
表目錄 XIX
符號說明 XXI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 軟性機器人之驅動 2
1.2.2 軟性機器人之感測 14
1.2.3 系統集成(System-level Integration) 20
1.2.4 自感應驅動器(Self-sensing Actuator) 23
1.3 研究動機與目的 27
1.4 論文架構 28
第二章 理論基礎 31
2.1 微型驅動器之致動機制 31
2.1.1 焦耳加熱(Joule Heating) 31
2.1.2 熱膨脹係數差異(Mismatch in Coefficient of Thermal Expansion) 32
2.2 微型驅動器之感測機制 36
2.2.1 滲透理論(Percolation Theory) 36
2.2.2 穿隧效應(Tunneling Effect) 40
2.2.3 高分子複合材料之溫度自補償特性 42
第三章 元件設計與元件製程 45
3.1 元件製作流程 45
3.2 石墨–奈米碳管分散 45
3.3 光罩設計 48
3.4 微影製程 51
3.5 石墨-奈米碳管填充 58
3.5.1 真空過濾法填充 59
3.5.2 框架拆除 60
3.6 高分子聚合物製備與填充 60
3.7 元件製程結果 62
3.7.1 電子顯微鏡(SEM)圖 62
3.7.2 元件製作成果 63
第四章 量測結果與討論 65
4.1 材料特性量測 65
4.1.1 電阻隨溫度變化量測架設 65
4.1.2 電阻隨溫度變化量測結果與討論 67
4.1.3 片電阻量測原理與架設 68
4.1.4 片電阻量測結果與討論 72
4.1.5 應變規因子(Gauge Factor)量測架設 72
4.1.6 應變規因子(Gauge Factor)量測結果與討論 73
4.1.7 材料選擇 74
4.2 元件致動特性量測 75
4.2.1 量測架設 75
4.2.2 不同驅動電壓下位移量測結果與討論 76
4.2.3 溫度對驅動電壓量測結果與討論 81
4.3 元件感測特性量測 83
4.3.1 量測架設 83
4.3.2 電阻對位移量測結果與討論 84
4.4 位移回授控制展示 85
4.4.1 位移回授控制原理 86
4.4.2 實驗架設 88
4.4.3 位移回授量測結果與討論 90
第五章 結論與未來展望 95
5.1 結論 95
5.2 未來展望 96
參考文獻 99
附錄 A 111
附錄 B 115
dc.language.isozh-TW
dc.subject回授控制zh_TW
dc.subject形變感測zh_TW
dc.subject溫度自補償zh_TW
dc.subject高分子複合材料zh_TW
dc.subject可撓式zh_TW
dc.subject微型驅動器zh_TW
dc.subjectFeedback controlen
dc.subjectPolymer compositesen
dc.subjectFlexibleen
dc.subjectMicroactuatoren
dc.subjectTemperature self-compensationen
dc.subjectDeformation sensingen
dc.title具形變感測特性之高分子複合材料微型驅動器zh_TW
dc.titleA Polymer Based Microactuator with Self-Sensing Propertyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳國聲(Kuo-Shen Chen),蘇裕軒(Yu-Hsuan Su)
dc.subject.keyword形變感測,溫度自補償,高分子複合材料,可撓式,微型驅動器,回授控制,zh_TW
dc.subject.keywordPolymer composites,Flexible,Microactuator,Temperature self-compensation,Deformation sensing,Feedback control,en
dc.relation.page118
dc.identifier.doi10.6342/NTU202003090
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
dc.date.embargo-lift2025-08-13-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-1208202014411200.pdf
  未授權公開取用
5.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved