請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78257完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡文聰(Andrew M. Wo) | |
| dc.contributor.author | Yi-Chen Chou | en |
| dc.contributor.author | 周奕辰 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:48:06Z | - |
| dc.date.available | 2025-08-11 | |
| dc.date.copyright | 2020-08-14 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-12 | |
| dc.identifier.citation | G. Brock, E. Castellanos-Rizaldos, L. Hu, C. Coticchia, and J. J. Skog, 'Liquid biopsy for cancer screening, patient stratification and monitoring,' vol. 4, no. 3, pp. 280-290, 2015. K. Schulze, C. Gasch, K. Staufer, B. Nashan, A. W. Lohse, K. Pantel, S. Riethdorf, and H. J. I. j. o. c. Wege, 'Presence of EpCAM‐positive circulating tumor cells as biomarker for systemic disease strongly correlates to survival in patients with hepatocellular carcinoma,' vol. 133, no. 9, pp. 2165-2171, 2013. N. Bednarz-Knoll, C. Alix-Panabières, and K. J. B. C. R. Pantel, 'Clinical relevance and biology of circulating tumor cells,' vol. 13, no. 6, p. 228, 2011. M. Stroun, J. Lyautey, C. Lederrey, A. Olson-Sand, and P. Anker, 'About the possible origin and mechanism of circulating DNA: Apoptosis and active DNA release,' vol. 313, no. 1-2, pp. 139-142, 2001. S. A. Bellingham, B. Guo, B. Coleman, and A. F. Hill, 'Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?,' vol. 3, p. 124, 2012. T. An, S. Qin, Y. Xu, Y. Tang, Y. Huang, B. Situ, J. M. Inal, and L. J. J. o. e. v. Zheng, 'Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis,' vol. 4, no. 1, p. 27522, 2015. B. Madhavan, S. Yue, U. Galli, S. Rana, W. Gross, M. Müller, N. A. Giese, H. Kalthoff, T. Becker, and M. W. J. I. j. o. c. Büchler, 'Combined evaluation of a panel of protein and miRNA serum‐exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity,' vol. 136, no. 11, pp. 2616-2627, 2015. G. Chen, A. C. Huang, W. Zhang, G. Zhang, M. Wu, W. Xu, Z. Yu, J. Yang, B. Wang, H. Sun, H. Xia, Q. Man, W. Zhong, L. F. Antelo, B. Wu, X. Xiong, X. Liu, L. Guan, T. Li, S. Liu, R. Yang, Y. Lu, L. Dong, S. McGettigan, R. Somasundaram, R. Radhakrishnan, G. Mills, Y. Lu, J. Kim, Y. H. Chen, H. Dong, Y. Zhao, G. C. Karakousis, T. C. Mitchell, L. M. Schuchter, M. Herlyn, E. J. Wherry, X. Xu, and W. Guo, 'Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response,' Nature, vol. 560, no. 7718, pp. 382-386, 2018/08/01 2018. C. Z. J. Lim, Y. Zhang, Y. Chen, H. Zhao, M. C. Stephenson, N. R. Y. Ho, Y. Chen, J. Chung, A. Reilhac, T. P. Loh, C. L. H. Chen, and H. Shao, 'Subtyping of circulating exosome-bound amyloid β reflects brain plaque deposition,' Nature Communications, vol. 10, no. 1, p. 1144, 2019/03/08 2019. H. A. Krebs, 'Chemical Composition of Blood Plasma and Serum,' vol. 19, no. 1, pp. 409-430, 1950. B. W. Sódar, Á. Kittel, K. Pálóczi, K. V. Vukman, X. Osteikoetxea, K. Szabó-Taylor, A. Németh, B. Sperlágh, T. Baranyai, Z. Giricz, Z. Wiener, L. Turiák, L. Drahos, É. Pállinger, K. Vékey, P. Ferdinandy, A. Falus, and E. I. Buzás, 'Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection,' Scientific Reports, vol. 6, no. 1, p. 24316, 2016/04/18 2016. I. Ramasamy and L. Medicine, 'Recent advances in physiological lipoprotein metabolism,' vol. 52, no. 12, pp. 1695-1727, 2014. G. M. Fless, C. A. Rolih, and A. M. J. J. o. B. C. Scanu, 'Heterogeneity of human plasma lipoprotein (a). Isolation and characterization of the lipoprotein subspecies and their apoproteins,' vol. 259, no. 18, pp. 11470-11478, 1984. G. M. Fless, M. E. ZumMallen, and A. M. J. J. o. l. r. Scanu, 'Isolation of apolipoprotein (a) from lipoprotein (a),' vol. 26, no. 10, pp. 1224-1229, 1985. G. Utermann and W. J. F. l. Weber, 'Protein composition of Lp (a) lipoprotein from human plasma,' vol. 154, no. 2, pp. 357-361, 1983. G. J. S. Utermann, 'The mysteries of lipoprotein (a),' vol. 246, no. 4932, pp. 904-910, 1989. K. B. Johnsen, J. M. Gudbergsson, T. L. Andresen, and J. B. Simonsen, 'What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood-borne biomarkers of cancer,' vol. 1871, no. 1, pp. 109-116, 2019. B. J. Tauro, D. W. Greening, R. A. Mathias, H. Ji, S. Mathivanan, A. M. Scott, and R. J. J. M. Simpson, 'Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes,' vol. 56, no. 2, pp. 293-304, 2012. D. K. Jeppesen, M. L. Hvam, B. Primdahl-Bengtson, A. T. Boysen, B. Whitehead, L. Dyrskjøt, T. F. Ørntoft, K. A. Howard, and M. S. J. J. o. e. v. Ostenfeld, 'Comparative analysis of discrete exosome fractions obtained by differential centrifugation,' vol. 3, no. 1, p. 25011, 2014. S. Keller, J. Ridinger, A.-K. Rupp, J. W. G. Janssen, and P. Altevogt, 'Body fluid derived exosomes as a novel template for clinical diagnostics,' Journal of Translational Medicine, vol. 9, no. 1, p. 86, 2011/06/08 2011. A. N. Böing, E. Van Der Pol, A. E. Grootemaat, F. A. Coumans, A. Sturk, and R. J. J. o. e. v. Nieuwland, 'Single-step isolation of extracellular vesicles by size-exclusion chromatography,' vol. 3, no. 1, p. 23430, 2014. N. Zarovni, A. Corrado, P. Guazzi, D. Zocco, E. Lari, G. Radano, J. Muhhina, C. Fondelli, J. Gavrilova, and A. J. M. Chiesi, 'Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches,' vol. 87, pp. 46-58, 2015. K. Taylor and R. Gallo, 'Glycosaminoglycans and their proteoglycans: Host-associated molecular patterns for initiation and modulation of inflammation,' FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol. 20, pp. 9-22, 02/01 2006. J. Borén, K. Olin, I. Lee, A. Chait, T. N. Wight, and T. L. Innerarity, 'Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding,' vol. 101, no. 12, pp. 2658-2664, 1998. V. Anber, J. Millar, M. McConnell, J. Shepherd, C. J. A. Packard, thrombosis,, and v. biology, 'Interaction of very-low-density, intermediate-density, and low-density lipoproteins with human arterial wall proteoglycans,' vol. 17, no. 11, pp. 2507-2514, 1997. G. Camejo, S. O. Olofsson, F. Lopez, P. Carlsson, and G. Bondjers, 'Identification of Apo B-100 segments mediating the interaction of low density lipoproteins with arterial proteoglycans,' vol. 8, no. 4, pp. 368-377, 1988. A. D. Cardin and H. J. Weintraub, 'Molecular modeling of protein-glycosaminoglycan interactions,' vol. 9, no. 1, pp. 21-32, 1989. P.-H. Iverius, 'The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans,' vol. 247, no. 8, pp. 2607-2613, 1972. K. Weisgraber and S. J. J. o. B. C. Rall, 'Human apolipoprotein B-100 heparin-binding sites,' vol. 262, no. 23, pp. 11097-11103, 1987. E. Van Der Pol, A. Hoekstra, A. Sturk, C. Otto, T. Van Leeuwen, R. J. J. o. T. Nieuwland, and Haemostasis, 'Optical and non‐optical methods for detection and characterization of microparticles and exosomes,' vol. 8, no. 12, pp. 2596-2607, 2010. N. S. Gandhi and R. L. Mancera, 'The Structure of Glycosaminoglycans and their Interactions with Proteins,' vol. 72, no. 6, pp. 455-482, 2008. A. Bång-Rudenstam, M. Cerezo-Magaña, M. J. C. Belting, and M. Reviews, 'Pro-metastatic functions of lipoproteins and extracellular vesicles in the acidic tumor microenvironment,' vol. 38, no. 1-2, pp. 79-92, 2019. E. I. Buzás, E. Á. Tóth, B. W. Sódar, and K. É. Szabó-Taylor, 'Molecular interactions at the surface of extracellular vesicles,' in Seminars in immunopathology, 2018, vol. 40, no. 5, pp. 453-464: Springer. J. R. Couchman, H. Multhaupt, and R. D. J. F. Sanderson, 'Recent insights into cell surface heparan sulphate proteoglycans and cancer,' vol. 5, 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78257 | - |
| dc.description.abstract | 液態活檢為利用偵測血液中的生物標記來反映疾病的關聯性,其中外泌體已成為液態活檢中熱門的檢測標記。外泌體(Exosome)為細胞經由內吞作用後釋出的微小囊泡,粒徑直徑約為30-150 nm,在體內扮演細胞間溝通的橋樑。由於外泌體內含豐富的組成,包括蛋白質、mRNA、miRNA等,可以調控體內微環境,甚至細胞因接收外泌體,改變細胞的狀態,近年來有愈來愈多研究成果支持外泌體與癌症的轉移有高度密切的關係。 許多研究團隊致力於開發能有效地收集血液中外泌體的生物晶片,並藉由靈敏的偵測系統獲取外泌體的訊號。然而,由於血液中含有相當複雜的成分,要從血液樣品獲取足夠代表外泌體的表現量仍是一大挑戰,其中有一很大的原因是血液中的脂蛋白,其粒子的數量遠高於外泌體,因著脂蛋白的數量會降低收集外泌體的效率,使得偵測到外泌體的表現訊號並不顯著,限制了外泌體在臨床測試上的實用性。因此,若能透過對在血液樣品的前處理,去除大部分的脂蛋白,有助於提升偵測到外泌體的表現訊號,對於外泌體應用於臨床檢測上的技術會是很大的突破。 本研究的主旨是利用與脂蛋白有極好親和性的聚合物,用在去除血液中的脂蛋白,進而收集到純度較高的外泌體,達成提升外泌體的偵測訊號。將經過細胞培養並且純化後的外泌體,混合從血液離心後所收集的脂蛋白樣品,並結合與脂蛋白有親和性的聚合物,例如軟骨素、肝素以及葡聚醣,能有效提升外泌體的偵測訊號。同時也與已經有發表去除脂蛋白的試劑與技術進行比較,評估利用親和性聚合物去除脂蛋白的方法,確實具有高效率、操作方便且經濟省時的特點,不僅達成提升外泌體偵測訊號的目的,對於未來在開發相關外泌體的生物晶片,具有非常好的優勢和發展性。 | zh_TW |
| dc.description.abstract | Exosomes are 30-150 nm nano-sized vesicles released from their parental cells into the extracellular space after endocytosis and play a role as mediators in intracellular communication. Exosomes contain proteins, mRNA and miRNA can modulate the microenvironment of the body and even change the behavior of the recipient cells. Recently, many studies have shown a high correlation between exosomes and cancer metastatic. Therefore, exosomes have become an important investigated target of liquid biopsy through blood testing. Many research teams have been devoted to developing effective biochips for capturing exosomes in the blood sample. However, there is still a big challenge to acquire a representative content of exosomes from the blood sample due to the complex components, especially the lipoproteins in the blood. It causes a non-significant signal of the detected exosomes that limits to the use of the exosomal biochip for clinical application. Hence, it is conducive to enhance the exosomal signal of detection through the pretreatment of blood samples such as removing lipoproteins. In this thesis, the goal of using a convenient approach to reduce the lipoproteins in the blood sample for enhancing the exosomal signal by lipoprotein-affinity polymer addition. We prepared the samples of the purified exosomes mixed with lipoproteins which were collected from the plasma sample by ultracentrifugation and combined with lipoprotein-affinity polymers so that can effectively enhance the detected signal of exosomes. Furthermore, to compare with the published tools and the commercial kits using for getting rid of lipoproteins, the polymer-based method is a high efficiency, easy to operate, and time-saving strategy to reduce the content of lipoproteins in the plasma sample and enhance the exosomal signal in the biochip. In conclusion, we successfully enhanced the exosomal signal from the plasma sample in the biochip with the lipoprotein-affinity polymer. A potential strategy by the polymer-based method for removing lipoproteins could be composing advantages and development for the exosomal biochips in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:48:06Z (GMT). No. of bitstreams: 1 U0001-1208202015112300.pdf: 2958301 bytes, checksum: 3ac7bbca132ab25d8f8198c0b256726f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 II 中文摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 X 第1章 緒論 1 1.1 液態活檢於臨床的應用 1 1.2 液態活檢的重要標誌-外泌體 1 1.3 脂蛋白的介紹 2 1.4 去除脂蛋白的方法 3 1.4.1 超高速離心法 3 1.4.2 密度梯度離心法 3 1.4.3 分子篩選層析 4 1.4.4 抗體法 4 1.4.5 親脂蛋白高分子聚合法 4 1.5 當前外泌體檢測的挑戰 6 第2章 材料製程與方法 7 2.1 高分子溶液、試劑以及抗體 7 2.2 外泌體與脂蛋白收集 8 2.3 生物晶片製備流程 9 2.4 使用親脂蛋白的高分子去除脂蛋白的流程 9 2.5 使用抗體磁珠法去除脂蛋白的流程 10 2.6 使用ExoQuick-LP去除脂蛋白的流程 11 2.7 使用密度梯度法去除脂蛋白的流程 12 2.8 使用生物晶片抓捕外泌體的流程 13 2.9 使用奈米粒子追蹤技術流程 14 第3章 實驗結果 15 3.1 使用醣胺聚醣提升外泌體訊號最佳化探討 15 3.1.1 使用奈米粒子追蹤分析技術觀察醣胺聚醣與脂蛋白反應結果 15 3.1.2 醣胺聚醣與抗體沾附測試之結果 17 3.1.3 不同濃度的醣胺聚醣提升外泌體訊號測試之結果 18 3.2 使用聚陰離子提升外泌體訊號最佳化探討 20 3.2.1 葡聚醣與抗體沾黏測試之結果 20 3.2.2 不同濃度的聚陰離子提升外泌體訊號測試之結果 21 3.3 親脂蛋白聚合物對於提升外泌體訊號優化及比較 22 3.3.1 不同的脂蛋白濃度對於外泌體偵測訊號的影響 22 3.3.2 利用親脂蛋白聚合物提升外泌體偵測訊號 23 3.4 其它去除脂蛋白方法提升外泌體偵測訊號 25 3.4.1 抗體磁珠法提升外泌體訊號之結果 25 3.4.2 ExoQuick-LP提升外泌體訊號之結果 26 3.4.3 密度梯度離心法提升外泌體訊號之結果 26 第4章 討論 28 4.1 不同親脂蛋白聚合物與脂蛋白的親和性 28 4.2 不同親脂蛋白聚合物與外泌體的親和性 30 4.3 不同去除脂蛋白方法提升外泌體訊號的討論 30 第5章 結論 34 第6章 參考文獻 35 | |
| dc.language.iso | zh-TW | |
| dc.subject | 外泌體 | zh_TW |
| dc.subject | 脂蛋白 | zh_TW |
| dc.subject | 醣胺聚醣 | zh_TW |
| dc.subject | 聚陰離子 | zh_TW |
| dc.subject | polyanion | en |
| dc.subject | lipoprotein | en |
| dc.subject | Exosome | en |
| dc.subject | glycosaminoglycan | en |
| dc.title | 血漿中胞外囊泡與親和性聚合物之研究 | zh_TW |
| dc.title | Study of Extracellular Vesicle in Plasma with Affinity-Based Polymer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李雨(U Lei),沈弘俊(Horn-Jiunn Sheen) | |
| dc.subject.keyword | 外泌體,脂蛋白,醣胺聚醣,聚陰離子, | zh_TW |
| dc.subject.keyword | Exosome,lipoprotein,glycosaminoglycan,polyanion, | en |
| dc.relation.page | 38 | |
| dc.identifier.doi | 10.6342/NTU202003096 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-11 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1208202015112300.pdf 未授權公開取用 | 2.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
