請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78242完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊任(Chun-Jen Chen) | |
| dc.contributor.author | Nai-Yu Chen | en |
| dc.contributor.author | 陳乃瑜 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:47:28Z | - |
| dc.date.available | 2025-08-20 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-16 | |
| dc.identifier.citation | 1. Ashley, N.T., Z.M. Weil, and R.J. Nelson, Inflammation: Mechanisms, Costs, and Natural Variation. Annual Review of Ecology, Evolution, and Systematics, 2012. 43(1): p. 385-406. 2. Medzhitov, R., Origin and physiological roles of inflammation. Nature, 2008. 454(7203): p. 428-35. 3. Jin, F.-y., et al., Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell, 1997. 88(3): p. 417-426. 4. Hamidzadeh, K., et al., Macrophages and the Recovery from Acute and Chronic Inflammation. Annual Review of Physiology, 2017. 79(1): p. 567-592. 5. Nathan, C., Points of control in inflammation. Nature, 2002. 420(6917): p. 846-852. 6. Chen, L., et al., Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017. 9(6): p. 7204-7218. 7. Medzhitov, R., Inflammation 2010: new adventures of an old flame. Cell, 2010. 140(6): p. 771-6. 8. Bosmann, M. and P.A. Ward, The inflammatory response in sepsis. Trends in immunology, 2013. 34(3): p. 129-136. 9. Sugimoto, M.A., et al., Resolution of Inflammation: What Controls Its Onset? Front Immunol, 2016. 7: p. 160. 10. Heppner, F.L., R.M. Ransohoff, and B. Becher, Immune attack: the role of inflammation in Alzheimer disease. Nature Reviews Neuroscience, 2015. 16(6): p. 358-372. 11. Viola, J. and O. Soehnlein. Atherosclerosis–a matter of unresolved inflammation. in Seminars in immunology. 2015. Elsevier. 12. Helgadottir, A., et al., The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nature genetics, 2004. 36(3): p. 233-239. 13. Erlinger, T.P., et al., C-reactive protein and the risk of incident colorectal cancer. Jama, 2004. 291(5): p. 585-590. 14. Ryan, G.B. and G. Majno, Acute inflammation. A review. The American journal of pathology, 1977. 86(1): p. 183-276. 15. Barton, G.M., A calculated response: control of inflammation by the innate immune system. The Journal of clinical investigation, 2008. 118(2): p. 413-420. 16. Prame Kumar, K., A.J. Nicholls, and C.H.Y. Wong, Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res, 2018. 371(3): p. 551-565. 17. Varela, M.L., et al., Acute Inflammation and Metabolism. Inflammation, 2018. 41(4): p. 1115-1127. 18. Gando, S., Microvascular thrombosis and multiple organ dysfunction syndrome. Critical care medicine, 2010. 38: p. S35-S42. 19. Shah, K.K., B.S. Pritt, and M.P. Alexander, Histopathologic review of granulomatous inflammation. Journal of clinical tuberculosis and other Mycobacterial Diseases, 2017. 7: p. 1-12. 20. Ginhoux, F. and M. Guilliams, Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity, 2016. 44(3): p. 439-449. 21. Watanabe, S., et al., The role of macrophages in the resolution of inflammation. The Journal of Clinical Investigation, 2019. 129(7): p. 2619-2628. 22. Kratofil, R.M., P. Kubes, and J.F. Deniset, Monocyte Conversion During Inflammation and Injury. Arterioscler Thromb Vasc Biol, 2017. 37(1): p. 35-42. 23. Geissmann, F., et al., Development of monocytes, macrophages, and dendritic cells. Science, 2010. 327(5966): p. 656-661. 24. Shi, C. and E.G. Pamer, Monocyte recruitment during infection and inflammation. Nature reviews. Immunology, 2011. 11(11): p. 762-774. 25. Sadasivan, K.K., et al., Neutrophil mediated microvascular injury in acute, experimental compartment syndrome. Clin Orthop Relat Res, 1997(339): p. 206-15. 26. Ley, K., et al., Neutrophils: New insights and open questions. Sci Immunol, 2018. 3(30). 27. Rosales, C., Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Frontiers in physiology, 2018. 9: p. 113-113. 28. Hidalgo, A., et al., The Neutrophil Life Cycle. Trends Immunol, 2019. 40(7): p. 584-597. 29. Juss, J.K., et al., Acute respiratory distress syndrome neutrophils have a distinct phenotype and are resistant to phosphoinositide 3-kinase inhibition. American journal of respiratory and critical care medicine, 2016. 194(8): p. 961-973. 30. Leliefeld, P.H., et al., The role of neutrophils in immune dysfunction during severe inflammation. Critical Care, 2016. 20(1): p. 1-9. 31. Varfolomeev, E.E. and A. Ashkenazi, Tumor Necrosis Factor: An Apoptosis JuNKie? Cell, 2004. 116(4): p. 491-497. 32. Tanaka, T., M. Narazaki, and T. Kishimoto, IL-6 in inflammation, immunity, and disease. Cold Spring Harbor perspectives in biology, 2014. 6(10): p. a016295-a016295. 33. Lopez-Castejon, G. and D. Brough, Understanding the mechanism of IL-1β secretion. Cytokine growth factor reviews, 2011. 22(4): p. 189-195. 34. Zhang, X.W., et al., CXC chemokines, MIP-2 and KC, induce P-selectin-dependent neutrophil rolling and extravascular migration in vivo. British journal of pharmacology, 2001. 133(3): p. 413-421. 35. Deshmane, S.L., et al., Monocyte chemoattractant protein-1 (MCP-1): an overview. Journal of interferon cytokine research : the official journal of the International Society for Interferon and Cytokine Research, 2009. 29(6): p. 313-326. 36. Shen, H., D. Kreisel, and D.R. Goldstein, Processes of sterile inflammation. Journal of immunology (Baltimore, Md. : 1950), 2013. 191(6): p. 2857-2863. 37. Chen, G.Y. and G. Nuñez, Sterile inflammation: sensing and reacting to damage. Nature reviews. Immunology, 2010. 10(12): p. 826-837. 38. Chen, C.J., et al., Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med, 2007. 13(7): p. 851-6. 39. Eigenbrod, T., et al., Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. Journal of immunology (Baltimore, Md. : 1950), 2008. 181(12): p. 8194-8198. 40. Ward, P.A. and A.B. Lentsch, The Acute Inflammatory Response and Its Regulation. Archives of Surgery, 1999. 134(6): p. 666-669. 41. Ware, L.B. and M.A. Matthay, The acute respiratory distress syndrome. N Engl J Med, 2000. 342(18): p. 1334-49. 42. Bastarache, J.A., L.B. Ware, and G.R. Bernard. The role of the coagulation cascade in the continuum of sepsis and acute lung injury and acute respiratory distress syndrome. in Seminars in Respiratory and Critical Care Medicine. 2006. Copyright© 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New …. 43. Johnson, E.R. and M.A. Matthay, Acute lung injury: epidemiology, pathogenesis, and treatment. Journal of aerosol medicine and pulmonary drug delivery, 2010. 23(4): p. 243-252. 44. Cheng, O.Z. and N. Palaniyar, NET balancing: a problem in inflammatory lung diseases. Front Immunol, 2013. 4: p. 1. 45. Castanheira, F.V. and P. Kubes, Neutrophils and NETs in modulating acute and chronic inflammation. Blood, 2019. 133(20): p. 2178-2185. 46. Liu, S., et al., Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Sci Rep, 2016. 6: p. 37252. 47. Matthay, M.A., et al., Acute respiratory distress syndrome. Nat Rev Dis Primers, 2019. 5(1): p. 18. 48. Matute-Bello, G., C.W. Frevert, and T.R. Martin, Animal models of acute lung injury. American journal of physiology. Lung cellular and molecular physiology, 2008. 295(3): p. L379-L399. 49. D'Alessio, F.R., Mouse Models of Acute Lung Injury and ARDS. Methods Mol Biol, 2018. 1809: p. 341-350. 50. Knapp, S., LPS and bacterial lung inflammation models. Drug Discovery Today: Disease Models, 2009. 6(4): p. 113-118. 51. Domscheit, H., et al., Molecular Dynamics of Lipopolysaccharide-Induced Lung Injury in Rodents. Frontiers in Physiology, 2020. 11(36). 52. Reinert, T., et al., Bleomycin-Induced Lung Injury. Journal of Cancer Research, 2013. 2013: p. 480608. 53. Della Latta, V., et al., Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions. Pharmacol Res, 2015. 97: p. 122-30. 54. Didiasova, M., L. Schaefer, and M. Wygrecka, When Place Matters: Shuttling of Enolase-1 Across Cellular Compartments. Frontiers in cell and developmental biology, 2019. 7: p. 61-61. 55. Diaz-Ramos, A., et al., alpha-Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol, 2012. 2012: p. 156795. 56. Díaz-Ramos, À., et al., <i>α</i>-Enolase, a Multifunctional Protein: Its Role on Pathophysiological Situations. Journal of Biomedicine and Biotechnology, 2012. 2012: p. 156795. 57. Keller, A., et al., Interactions of enolase isoforms with tubulin and microtubules during myogenesis. Biochim Biophys Acta, 2007. 1770(6): p. 919-26. 58. Mizukami, Y., et al., ERK1/2 regulates intracellular ATP levels through alpha-enolase expression in cardiomyocytes exposed to ischemic hypoxia and reoxygenation. J Biol Chem, 2004. 279(48): p. 50120-31. 59. Henderson, M.C. and D.O. Azorsa, The genomic and proteomic content of cancer cell-derived exosomes. Frontiers in oncology, 2012. 2: p. 38. 60. Guillou, C., et al., Soluble alpha-enolase activates monocytes by CD14-dependent TLR4 signalling pathway and exhibits a dual function. Sci Rep, 2016. 6: p. 23796. 61. Li, M., et al., Serum level of anti-α-enolase antibody in untreated systemic lupus erythematosus patients correlates with 24-hour urine protein and D-dimer. Lupus, 2018. 27(1): p. 139-142. 62. Hawro, T., et al., Serum neuron specific enolase–a novel indicator for neuropsychiatric systemic lupus erythematosus? Lupus, 2015. 24(14): p. 1492-1497. 63. Mehra, S., et al., Autoantibodies in systemic sclerosis. Autoimmunity reviews, 2013. 12(3): p. 340-354. 64. Owen, J.B., et al., Proteomics-determined differences in the concanavalin-A-fractionated proteome of hippocampus and inferior parietal lobule in subjects with Alzheimer’s disease and mild cognitive impairment: implications for progression of AD. Journal of proteome research, 2009. 8(2): p. 471-482. 65. Derbise, A., et al., Role of the C-terminal lysine residues of streptococcal surface enolase in Glu-and Lys-plasminogen-binding activities of group A streptococci. Infection and immunity, 2004. 72(1): p. 94-105. 66. Chhatwal, G.S., Anchorless adhesins and invasins of Gram-positive bacteria: a new class of virulence factors. Trends in microbiology, 2002. 10(5): p. 205-208. 67. Bergmann, S., et al., α‐Enolase of Streptococcus pneumoniae is a plasmin (ogen)‐binding protein displayed on the bacterial cell surface. Molecular microbiology, 2001. 40(6): p. 1273-1287. 68. Redlitz, A., et al., The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem, 1995. 227(1-2): p. 407-15. 69. Miles, L.A., et al., Role of cell-surface lysines in plasminogen binding to cells: identification of .alpha.-enolase as a candidate plasminogen receptor. Biochemistry, 1991. 30(6): p. 1682-1691. 70. Das, R., T. Burke, and E.F. Plow, Histone H2B as a functionally important plasminogen receptor on macrophages. Blood, The Journal of the American Society of Hematology, 2007. 110(10): p. 3763-3772. 71. Ji, H., et al., Progress in the biological function of alpha-enolase. Animal Nutrition, 2016. 2(1): p. 12-17. 72. Godier, A. and B.J. Hunt, Plasminogen receptors and their role in the pathogenesis of inflammatory, autoimmune and malignant disease. J Thromb Haemost, 2013. 11(1): p. 26-34. 73. Fu, Q.F., et al., Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway. J Hematol Oncol, 2015. 8: p. 22. 74. Schofield, L., L.F. Lincz, and K.A. Skelding, Unlikely role of glycolytic enzyme α-enolase in cancer metastasis and its potential as a prognostic biomarker. Journal of Cancer Metastasis and Treatment, 2020. 6: p. 10. 75. Chang, G.-C., et al., Identification of α-Enolase as an Autoantigen in Lung Cancer: Its Overexpression Is Associated with Clinical Outcomes. Clinical Cancer Research, 2006. 12(19): p. 5746-5754. 76. Principe, M., et al., Targeting of surface alpha-enolase inhibits the invasiveness of pancreatic cancer cells. Oncotarget, 2015. 6(13): p. 11098-11113. 77. Gao, J., et al., Role of enolase-1 in response to hypoxia in breast cancer: Exploring the mechanisms of action. Oncol Rep, 2013. 29(4): p. 1322-1332. 78. Hsiao, K.-C., et al., Surface α-enolase promotes extracellular matrix degradation and tumor metastasis and represents a new therapeutic target. PloS one, 2013. 8(7): p. e69354-e69354. 79. Wygrecka, M., et al., Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood, 2009. 113(22): p. 5588-98. 80. Zakrzewicz, D., et al., The interaction of enolase-1 with caveolae-associated proteins regulates its subcellular localization. Biochem J, 2014. 460(2): p. 295-307. 81. Zakrzewicz, D., et al., Protein arginine methyltransferase 5 mediates enolase-1 cell surface trafficking in human lung adenocarcinoma cells. Biochim Biophys Acta Mol Basis Dis, 2018. 1864(5 Pt A): p. 1816-1827. 82. Bae, S., et al., alpha-Enolase expressed on the surfaces of monocytes and macrophages induces robust synovial inflammation in rheumatoid arthritis. J Immunol, 2012. 189(1): p. 365-72. 83. Tsai, J.M., et al., Neutrophil and monocyte kinetics play critical roles in mouse peritoneal adhesion formation. Blood advances, 2019. 3(18): p. 2713-2721. 84. Cassado, A.D.A., M.R. D'Império Lima, and K.R. Bortoluci, Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Frontiers in immunology, 2015. 6: p. 225-225. 85. Ghosn, E.E., et al., Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Acad Sci U S A, 2010. 107(6): p. 2568-73. 86. Hoeffel, G., et al., C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity, 2015. 42(4): p. 665-78. 87. Ragaller, M. and T. Richter, Acute lung injury and acute respiratory distress syndrome. Journal of emergencies, trauma, and shock, 2010. 3(1): p. 43-51. 88. Lacher, S.E., et al., Murine pulmonary inflammation model: a comparative study of anesthesia and instillation methods. Inhalation toxicology, 2010. 22(1): p. 77-83. 89. Leonard, A.K., et al., Methods for the visualization and analysis of extracellular matrix protein structure and degradation. Methods in cell biology, 2018. 143: p. 79-95. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78242 | - |
| dc.description.abstract | 先天性免疫反應中會觸發急炎症來對抗組織損傷和微生物侵襲,其特徵是嗜中性白血球和單核球浸潤至發炎組織中。在此過程,胞外的基質蛋白水解對於吞噬細胞遷移到發炎部位扮演重要的作用。在癌細胞和活化的單核細胞中,烯醇化酶 (enolase-1, ENO-1) 可以從細胞質轉移到表面,並作為受體與纖溶酶原 (plasminogen, PLG) 結合增強局部纖溶酶 (plasmin, PLA)的產生,促進細胞外基質降解進而使細胞遷移。因此在這項研究中,本實驗探討阻斷ENO-1是否可以改善急性炎症模型小鼠中嗜中性白血球和單核球的浸潤。首先,從結果可得知以刺激物極化成M1型態後的骨髓衍生巨噬細胞 (bone marrow-derived macrophage, BMDM)中,ENO-1在細胞表面的表達量增加。在動物模型中,由壞死所誘發腹膜炎模型,ENO-1之阻斷可改善單核球和嗜中性白血球的浸潤數量及比例。給予anti-ENO-1抗體治療可以減輕由博萊黴素 (bloemycin, Blm) 和脂多醣 (lipopolysaccharides, LPS) 所引發的急性肺部損傷及發炎中,皆能減少嗜中性白血球和單核球的進入以及降低支氣管肺泡灌洗液 (bronchoalveolar lavage fluid, BALF)中monocyte chemoattractant protein 1 (MCP-1)、interleukin (IL) -1β、tumor necrosis factor (TNF-α)、IL -6和keratinocyte chemoattractant (KC) 的含量。另外在LPS誘導的急性肺部損傷中,有效降低BALF中的細胞激素和蛋白質、DNA (deoxyribonucleic acid) 的累積,減緩了嗜中性白血球胞外陷阱 (neutrophil extracellular traps, NETs) 產生的可能性。總結,這些結果證實使用抗ENO-1抗體阻止ENO-1之功能可作為肺部急性損傷/急性呼吸窘迫綜合徵候群的潛在治療方法。 | zh_TW |
| dc.description.abstract | The immune system responds to tissue injury and microbial invasion by triggering an acute inflammatory response, inducing the infiltration neutrophils and monocytes to the inflamed tissue. During this process, cell surface–associated proteolysis plays a crucial role for the recruitment of leukocyte to sites of inflammation. It is known that in cancer cells and activated monocytes, the glycolytic enzyme enolase-1 (ENO-1) can translocate from cytosol to the cell surface, where it binds plasminogen and enhances plasmin production. The plasminogen activation system is a key regulator in extracellular matrix degradation and improved cell emigration. In this study, we investigated whether blocking ENO1 could ameliorate the infiltration of neutrophils and monocytes in several models of acute inflammation in mice. First, we found that cell surface expression of ENO-1 was increased on M1-polarized bone marrow derived macrophage. In necrotic cell-induced peritonitis model, ENO-1 blockade could ameliorate the migration of monocytes and neutrophils. Moreover, treatment with anti-ENO-1 antibody could attenuate bleomycin (BLM) and lipopolysaccharide (LPS)-induced acute lung injury (ALI) and inflammation, with a reduced pulmonary influx of neutrophils and monocytes, as well as lower levels of MCP-1, IL-1β, TNFα, IL-6 and KC in the bronchoalveolar lavage fluid (BALF). In LPS-induced ALI, anti-ENO-1 antibody treatment also reduced the accumulation of protein and DNA (indicator of neutrophil extracellular traps) in BALF. Taken together, these data indicate that targeting ENO-1 using anti-ENO-1 antibodies may serve as a potential treatment for ALI/acute respiratory distress syndrome (ARDS). | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:47:28Z (GMT). No. of bitstreams: 1 U0001-1308202011244100.pdf: 3050956 bytes, checksum: 21596ee5b6b00a019d51cc8f5a3595f9 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會鑑定書 I 誌謝 I 中文摘要 II Abstract III 縮寫 V 目錄 VII 圖表目錄 X 第一章 緒論 1 1. 發炎反應 1 1.1 急性發炎 2 1.2 慢性發炎 2 2. 參與發炎反應細胞 3 2.1 巨噬細胞 3 2.2 單核細胞 3 2.3 嗜中性粒細胞 3 3. 參與發炎反應的促發炎因子 4 3.1 腫瘤壞死因子 (Tumor necrosis factor , TNF-α) 4 3.2 細胞白介素第六因子 (Interleukin-6, IL-6) 4 3.3 細胞白介素第一因子 (Interleukin-1β, IL-1β) 4 3.4 角質形成細胞趨化因子 (Keratinocyte chemoattractant, KC) 5 3.5 單核細胞趨化蛋白 (Monocyte chemoattractant protein 1, MCP-1) 5 4. 無菌性發炎反應 5 5. 急性肺部損傷 6 6. 烯醇化酶 7 7. 烯醇化酶與發炎反應 8 8. 實驗目標 9 第二章 材料與方法 10 1 實驗動物與細胞株 10 1.1 實驗動物 10 1.2 細胞株 10 2 anti-mouse ENO-1抗體 10 3 小鼠骨髓衍生化巨噬細胞之分離與分析 10 3.1 分離與分化小鼠骨髓衍生化巨噬細胞 10 3.2 小鼠骨髓衍生化巨噬細胞刺激 11 4 細胞表面 ENO-1 之分析 11 5 以壞死細胞引起腹膜發炎反應 12 5.1 anti-ENO1 mab注射方式與劑量 12 5.2 製備 EL4壞死細胞 12 5.3 壞死細胞引起腹膜發炎反應 12 5.4 腹腔滲出細胞分析 12 6 肺部急性損傷反應模型 13 6.1 anti ENO-1 mab 注射方式與劑量 13 6.2 製備阿佛丁 13 6.3 製備博來黴素及脂多醣 13 6.4 氣管注射 14 6.5 肺部灌洗流程 14 6.6 肺部支氣管灌洗液細胞分析 14 6.7 肺部支氣管灌洗液蛋白質與DNA分析 15 7 細胞激素測定 15 8 統計分析 16 第三章 研究結果 17 1. M1型BMDM細胞表面ENO-1之分析 17 2. Anti ENO-1 mAb對壞死EL4細胞誘導之C57BL/6小鼠腹膜炎的影響 17 3. Anti ENO-1 mAb對C57BL/6小鼠肺部急性損傷的影響 18 3.1 Anti ENO-1 mAb對博來黴素誘導之C57BL/6小鼠肺部急性損傷的影響 18 3.2 Anti ENO-1 mAb對脂多醣誘導之C57BL/6小鼠肺部急性損傷的影響 19 3.2.1 Anti ENO-1 mAb對脂多醣誘導24小時之C57BL/6小鼠肺部急性損傷的影響 19 3.2.2 Anti ENO-1 mAb對脂多醣誘導72及120小時之C57BL/6小鼠肺部急性損傷的影響 20 第四章 討論 22 第五章 圖表 28 參考資料 43 | |
| dc.language.iso | zh-TW | |
| dc.subject | 急性發炎 | zh_TW |
| dc.subject | 肺部急性損傷 | zh_TW |
| dc.subject | 單核球 | zh_TW |
| dc.subject | 嗜中性白血球 | zh_TW |
| dc.subject | 烯醇化酶 | zh_TW |
| dc.subject | Acute lung injury | en |
| dc.subject | Neutrophil | en |
| dc.subject | Monocyte | en |
| dc.subject | Enolase-1 | en |
| dc.subject | Acute inflammation | en |
| dc.title | 烯醇化酶在急性發炎過程中對吞噬型白血球浸潤中扮演之角色 | zh_TW |
| dc.title | The role of Enolase-1 in the infiltration of phagocytic leukocytes during acute inflammation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江皓森(Hao-Sen Chiang),張惠雯(Hui-Wen Chang) | |
| dc.subject.keyword | 烯醇化酶,嗜中性白血球,單核球,肺部急性損傷,急性發炎, | zh_TW |
| dc.subject.keyword | Enolase-1,Neutrophil,Monocyte,Acute lung injury,Acute inflammation, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU202003211 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202011244100.pdf 未授權公開取用 | 2.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
