Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7823
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林水龍(Shuei-Liong Lin)
dc.contributor.authorPei-Zhen Tsaien
dc.contributor.author蔡佩蓁zh_TW
dc.date.accessioned2021-05-19T17:54:54Z-
dc.date.available2022-02-24
dc.date.available2021-05-19T17:54:54Z-
dc.date.copyright2017-02-24
dc.date.issued2017
dc.date.submitted2017-01-19
dc.identifier.citation1. Palmer, L.G. and J. Schnermann, Integrated control of Na transport along the nephron. Clin J Am Soc Nephrol, 2015. 10(4): p. 676-87.
2. Titze, J., et al., Osmotically inactive skin Na+ storage in rats. Am J Physiol Renal Physiol, 2003. 285(6): p. F1108-17.
3. Titze, J., et al., Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol, 2004. 287(1): p. H203-8.
4. Titze, J., Sodium balance is not just a renal affair. Curr Opin Nephrol Hypertens, 2014. 23(2): p. 101-5.
5. Reinhardt, H.W. and D.W. Behrenbeck, [Studies in awake dogs on the regulation of the sodium balance. I. The significance of the extracellular space for the regulation of the daily sodium balance]. Pflugers Arch Gesamte Physiol Menschen Tiere, 1967. 295(3): p. 266-79.
6. Titze, J., et al., Spooky sodium balance. Kidney Int, 2014. 85(4): p. 759-67.
7. He, F.J. and G.A. MacGregor, Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst Rev, 2004(3): p. Cd004937.
8. Tseng, L.N., et al., Prevalence of hypertension and dyslipidemia and their associations with micro- and macrovascular diseases in patients with diabetes in Taiwan: an analysis of nationwide data for 2000-2009. J Formos Med Assoc, 2012. 111(11): p. 625-36.
9. Slagman, M.C., et al., Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial. Bmj, 2011. 343: p. d4366.
10. McMahon, E.J., et al., A randomized trial of dietary sodium restriction in CKD. J Am Soc Nephrol, 2013. 24(12): p. 2096-103.
11. Frisoli, T.M., et al., Salt and hypertension: is salt dietary reduction worth the effort? Am J Med, 2012. 125(5): p. 433-9.
12. WHO, Sodium intake for adults and children: Guideline. Geneva, Switzerland: World Health Organization, 2012.
13. Bakris, G.L. and A. Smith, Effects of sodium intake on albumin excretion in patients with diabetic nephropathy treated with long-acting calcium antagonists. Ann Intern Med, 1996. 125(3): p. 201-4.
14. Imanishi, M., et al., Sodium sensitivity related to albuminuria appearing before hypertension in type 2 diabetic patients. Diabetes Care, 2001. 24(1): p. 111-6.
15. Jones-Burton, C., et al., An in-depth review of the evidence linking dietary salt intake and progression of chronic kidney disease. Am J Nephrol, 2006. 26(3): p. 268-75.
16. Cianciaruso, B., et al., Renal adaptation to dietary sodium restriction in moderate renal failure resulting from chronic glomerular disease. J Am Soc Nephrol, 1996. 7(2): p. 306-13.
17. Mazouz, H., et al., Risk factors of renal failure progression two years prior to dialysis. Clin Nephrol, 1999. 51(6): p. 355-66.
18. Habibi, J., et al., Salt Loading Promotes Kidney Injury via Fibrosis in Young Female Ren2 Rats. Cardiorenal Med, 2014. 4(1): p. 43-52.
19. Weir, M.R. and J.C. Fink, Salt intake and progression of chronic kidney disease: an overlooked modifiable exposure? A commentary. Am J Kidney Dis, 2005. 45(1): p. 176-88.
20. Barton, M., et al., Dysfunctional renal nitric oxide synthase as a determinant of salt-sensitive hypertension: mechanisms of renal artery endothelial dysfunction and role of endothelin for vascular hypertrophy and Glomerulosclerosis. J Am Soc Nephrol, 2000. 11(5): p. 835-45.
21. Frisbee, J.C. and J.H. Lombard, Chronic elevations in salt intake and reduced renal mass hypertension compromise mechanisms of arteriolar dilation. Microvasc Res, 1998. 56(3): p. 218-27.
22. Kitiyakara, C., et al., Salt intake, oxidative stress, and renal expression of NADPH oxidase and superoxide dismutase. J Am Soc Nephrol, 2003. 14(11): p. 2775-82.
23. Humalda, J.K. and G. Navis, Dietary sodium restriction: a neglected therapeutic opportunity in chronic kidney disease. Curr Opin Nephrol Hypertens, 2014. 23(6): p. 533-40.
24. Wynn, T.A. and T.R. Ramalingam, Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med, 2012. 18(7): p. 1028-40.
25. Lin SL, D.J., Macrophages in kidney injury and repair. Acta Nephrol., 2012. 26(2): p. 45-57.
26. Chang, F.C., et al., Novel insights into pericyte-myofibroblast transition and therapeutic targets in renal fibrosis. J Formos Med Assoc, 2012. 111(11): p. 589-98.
27. Lin, S.L., et al., Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci U S A, 2010. 107(9): p. 4194-9.
28. Lin, S.L., et al., Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol, 2009. 183(10): p. 6733-43.
29. Ricardo, S.D., H. van Goor, and A.A. Eddy, Macrophage diversity in renal injury and repair. J Clin Invest, 2008. 118(11): p. 3522-30.
30. Lichtnekert, J., et al., Changes in macrophage phenotype as the immune response evolves. Curr Opin Pharmacol, 2013. 13(4): p. 555-64.
31. Van Dyken, S.J. and R.M. Locksley, Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol, 2013. 31: p. 317-43.
32. Lee, S., et al., Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol, 2011. 22(2): p. 317-26.
33. Hemdan, N.Y., et al., Interleukin-17-producing T helper cells in autoimmunity. Autoimmun Rev, 2010. 9(11): p. 785-92.
34. Jager, A. and V.K. Kuchroo, Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand J Immunol, 2010. 72(3): p. 173-84.
35. Oestreich, K.J. and A.S. Weinmann, Transcriptional mechanisms that regulate T helper 1 cell differentiation. Curr Opin Immunol, 2012. 24(2): p. 191-5.
36. Zheng, W. and R.A. Flavell, The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell, 1997. 89(4): p. 587-96.
37. Kaplan, M.H., et al., Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity, 1996. 4(3): p. 313-9.
38. Maddur, M.S., et al., Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol, 2012. 181(1): p. 8-18.
39. Gaffen, S.L., et al., The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol, 2014. 14(9): p. 585-600.
40. Ysebaert, D.K., et al., T cells as mediators in renal ischemia/reperfusion injury. Kidney Int, 2004. 66(2): p. 491-6.
41. Tipping, P.G. and S.R. Holdsworth, T cells in crescentic glomerulonephritis. J Am Soc Nephrol, 2006. 17(5): p. 1253-63.
42. Summers, S.A., et al., Th1 and Th17 cells induce proliferative glomerulonephritis. J Am Soc Nephrol, 2009. 20(12): p. 2518-24.
43. Tapmeier, T.T., et al., Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney Int, 2010. 78(4): p. 351-62.
44. Chen, D.Y., et al., The potential role of Th17 cells and Th17-related cytokines in the pathogenesis of lupus nephritis. Lupus, 2012. 21(13): p. 1385-96.
45. Amarilyo, G., et al., IL-17 promotes murine lupus. J Immunol, 2014. 193(2): p. 540-3.
46. Paust, H.J., et al., The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis. J Am Soc Nephrol, 2009. 20(5): p. 969-79.
47. Turner, J.E., et al., IL-17A production by renal gammadelta T cells promotes kidney injury in crescentic GN. J Am Soc Nephrol, 2012. 23(9): p. 1486-95.
48. Zhang, R., et al., Regulation of pathogenic Th17 cell differentiation by IL-10 in the development of glomerulonephritis. Am J Pathol, 2013. 183(2): p. 402-12.
49. Ramani, K., et al., An essential role of interleukin-17 receptor signaling in the development of autoimmune glomerulonephritis. J Leukoc Biol, 2014. 96(3): p. 463-72.
50. Pindjakova, J., et al., Interleukin-1 accounts for intrarenal Th17 cell activation during ureteral obstruction. Kidney Int, 2012. 81(4): p. 379-90.
51. Bige, N., et al., Thrombospondin-1 plays a profibrotic and pro-inflammatory role during ureteric obstruction. Kidney Int, 2012. 81(12): p. 1226-38.
52. Krebs, C.F., et al., MicroRNA-155 drives TH17 immune response and tissue injury in experimental crescentic GN. J Am Soc Nephrol, 2013. 24(12): p. 1955-65.
53. Vignali, D.A., L.W. Collison, and C.J. Workman, How regulatory T cells work. Nat Rev Immunol, 2008. 8(7): p. 523-32.
54. Noble, C.L., et al., Characterization of intestinal gene expression profiles in Crohn's disease by genome-wide microarray analysis. Inflamm Bowel Dis, 2010. 16(10): p. 1717-28.
55. Kochi, Y., et al., A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nat Genet, 2010. 42(6): p. 515-9.
56. Nair, R.P., et al., Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet, 2009. 41(2): p. 199-204.
57. Ye, C.J., et al., Intersection of population variation and autoimmunity genetics in human T cell activation. Science, 2014. 345(6202): p. 1254665.
58. Zhao, J., C.M. Lloyd, and A. Noble, Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling. Mucosal Immunol, 2013. 6(2): p. 335-46.
59. Prause, O., et al., Increased matrix metalloproteinase-9 concentration and activity after stimulation with interleukin-17 in mouse airways. Thorax, 2004. 59(4): p. 313-7.
60. Titze, J., et al., Reduced osmotically inactive Na storage capacity and hypertension in the Dahl model. Am J Physiol Renal Physiol, 2002. 283(1): p. F134-41.
61. Machnik, A., et al., Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med, 2009. 15(5): p. 545-52.
62. Machnik, A., et al., Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension, 2010. 55(3): p. 755-61.
63. Schafflhuber, M., et al., Mobilization of osmotically inactive Na+ by growth and by dietary salt restriction in rats. Am J Physiol Renal Physiol, 2007. 292(5): p. F1490-500.
64. Jantsch, J., et al., Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab, 2015. 21(3): p. 493-501.
65. Binger, K.J., et al., High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J Clin Invest, 2015. 125(11): p. 4223-38.
66. Wu, C., et al., Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature, 2013. 496(7446): p. 513-17.
67. Kleinewietfeld, M., et al., Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature, 2013. 496(7446): p. 518-22.
68. Amador, C.A., et al., Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension, 2014. 63(4): p. 797-803.
69. Mehrotra, P., et al., Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism. Kidney Int, 2015. 88(4): p. 776-84.
70. Nakanishi, T., et al., Determinants of relative amounts of medullary organic osmolytes: effects of NaCl and urea differ. Am J Physiol, 1993. 264(3 Pt 2): p. F472-9.
71. Hao, S., L. Bellner, and N.R. Ferreri, NKCC2A and NFAT5 regulate renal TNF production induced by hypertonic NaCl intake. Am J Physiol Renal Physiol, 2013. 304(5): p. F533-42.
72. Sheen, M.R., et al., Interstitial tonicity controls TonEBP expression in the renal medulla. Kidney Int, 2009. 75(5): p. 518-25.
73. Wu, S.Y., et al., Galectin-3 negatively regulates dendritic cell production of IL-23/IL-17-axis cytokines in infection by Histoplasma capsulatum. J Immunol, 2013. 190(7): p. 3427-37.
74. Zuberi, R.I., et al., Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol, 2004. 165(6): p. 2045-53.
75. Saegusa, J., et al., Galectin-3 is critical for the development of the allergic inflammatory response in a mouse model of atopic dermatitis. Am J Pathol, 2009. 174(3): p. 922-31.
76. MacKinnon, A.C., et al., Regulation of alternative macrophage activation by galectin-3. J Immunol, 2008. 180(4): p. 2650-8.
77. Fermin Lee, A., et al., Galectin-3 modulates Th17 responses by regulating dendritic cell cytokines. Am J Pathol, 2013. 183(4): p. 1209-22.
78. Bichara, M., et al., Exploring the role of galectin 3 in kidney function: a genetic approach. Glycobiology, 2006. 16(1): p. 36-45.
79. Henderson, N.C., et al., Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol, 2008. 172(2): p. 288-98.
80. O'Seaghdha, C.M., et al., Elevated galectin-3 precedes the development of CKD. J Am Soc Nephrol, 2013. 24(9): p. 1470-7.
81. Harrell, M.I., B.M. Iritani, and A. Ruddell, Lymph node mapping in the mouse. J Immunol Methods, 2008. 332(1-2): p. 170-4.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7823-
dc.description.abstract鹽對地球多數生物來說是不可或缺的,適當濃度的鹽能維持細胞與器官正常的生理功能。但最近越來越多研究顯示高鹽飲食有可能是高血壓、慢性發炎以及自體免疫疾病發展的重要因子,而現代人鹽攝取量也逐年增加,因此,研究高鹽飲食與免疫疾病之間的關係是十分重要的。
過去的研究指出未分化的CD4+ T細胞會受到外加10-40 mM的鹽往輔助型T細胞17(T helper 17 cells;Th17 cells)分化,而高鹽所誘導的分化在體外及體內的實驗都證實受到血清糖皮質激酶1(serum glucocorticoid kinase 1;SGK1)及介白素-23受體(IL-23R)的表現所調控,高鹽也會影響巨噬細胞的功能及極化。然而一般生理狀況下,在身體內具有如此高的鹽濃度只可能在腎臟發現,因此我們想知道腎臟是否為發生Th17 cells活化的重要場所,以及如果Th17 cells的活化真的發生在腎臟,半乳糖凝集素3(galectin-3;Gal3)是否會抑制Th17 cells的活化。
我們給予8~12週大的C57BL/6公鼠餵食高鹽飼料(8% NaCl )當作實驗組,控制組則給予一般飼料(0.4% NaCl ),兩組皆可自由飲水,藉此來觀察餵食高鹽飼料組別與控制組是否有差異性。
實驗結果顯示餵食高鹽飼料的組別尿液裡的鈉離子、氯離子濃度明顯高於控制組,但血壓及血漿內鈉離子、氯離子濃度並無明顯差別。腎臟萃取的RNA在檢測Th17 cells相關基因表現上兩組並沒有差別,但galetin-3的表現則在高鹽組升高。因此,我們從腎臟分離出CD45+細胞看高鹽是否會影響Th17 cells的活化,結果顯示餵食高鹽組別相對於控制組在和Th17 cells活化相關基因表現量有明顯上升的趨勢,代表餵食高鹽飼料後Th17 cells的活化可能會發生在腎臟。但進一步從腎臟分離出的CD11b+巨噬細胞及CD4+ Th cells並沒有Th17 cells活化的情形。另外,培養的巨噬細胞在高鹽環境下似乎也有促進Th17 cells活化的情形,但galectin-3的表現反而下降。巨噬細胞實驗與我們發現餵食高鹽飼料後整個腎臟與CD45+細胞的galectin-3表現量會上升剛好相反,這之間的關係及作用機制仍需更多的實驗來完成。
總結來說,餵食高鹽飼料可能會導致在腎臟有Th17 cells活化的情形,細胞實驗也能互相驗證,但我們目前還未找出Th17 cells活化的情形發生在腎臟哪些細胞上,以及腎臟中的變化是否會影響身體其他部分的免疫反應仍需更多實驗來釐清。
zh_TW
dc.description.abstractLike the majority of other lives on earth, humans cannot survive without salt. An ideal concentration of salt, or sodium chloride (NaCl), is required for proper functioning of cells and organ systems. A high intake of dietary salt has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. And modern people increase salt intake year by year. Therefore, it is important to study the relationship between high-salt diet and immune diseases.
Recent evidence has shown that Th17 cells can be preferentially induced by treating CD4+ T cells in cell culture medium with an additional 10-40 mM NaCl. High-salt treatment enhances the differentiation of Th17 cells by upregulation of serum glucocorticoid kinase 1 (SGK1) and IL-23 receptor (IL-23R) both in vitro and in vivo. High-salt treatment also affects the function and polarization of macrophages. However, a high level of sodium or hyperosmolality can only be found in the kidneys in normal physiology. We would like to know whether the hypertonic renal medulla is the exact niche for Th17 cells activation. If the hypertonic renal medulla is the exact niche for Th17 cells activation, we would like to know whether galectin-3 inhibit the activation of Th17 cells in renal medulla.
We fed 8% NaCl diets to 8~12-week-old C57BL/6 male mice as a high salt diet (HSD) group, and control mice were fed with 0.4% NaCl diets. Both groups had free access to tap water.
Experimental results show that urine Na+, Cl- concentrations were higher in HSD group, but blood pressure and plasma Na+, Cl- concentration did not have the significant changes. RNA extracted from kidney did not differ in the detection of Th17 cells-associated gene expression, except for increased galectin-3 expression in HSD group. We then isolated CD45+ cell from control and HSD kidneys to analyze gene expression associated with Th17 cells, and the data showed higher expression levels of Il23/Il23r/Il17 in HSD group than control group. Then we isolated CD11b+ macrophages and CD4+ Th cells from control and HSD kidneys to repeat the same analyses, but there’s no difference between groups. In addition, cultured macrophages seemed to promote Th17 cells activation in high salt environment. Although we found that galectin-3 expression increased in the kidneys and CD45+ cells after high-salt diet, the galectin-3 expression in high salt-treated macrophages in vitro was in contrast. The role of galectin-3 in regulating high salt-induced Th17 activation still needs more experiments to verify.
In conclusion, mice fed high-salt diets may result in the activation of Th17 cells in the kidney, and cell culture experiments can be used to verify each other. But we have not yet identified which cells in the kidney are responsible for activation of Th17 cells and whether the activation of Th17 cells in kidney will affect the other body parts after high salt intake. We need more experiments to clarify.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:54:54Z (GMT). No. of bitstreams: 1
ntu-106-R03441002-1.pdf: 2363548 bytes, checksum: 55603f29927d01358f098bc7c1849d29 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………i
謝辭……………………………………………………………………………………...ii
摘要……………………………………………………………………………………..iii
Abstract…………………………………………………………………………………..v
目錄…………………………………………………………………………...…….....viii
圖目錄…………………………………………………………………………………..xi
表目錄……………………………………………………………………………….....xii
第一章 緒論 1
1.1 鹽(Salt) 1
1.2 鹽與免疫反應 2
1.2.1腎臟免疫反應 2
1.2.2巨噬細胞(macrophage) 3
1.2.3輔助型T細胞17(T helper 17 cells;Th17 cells) 4
1.2.4 鹽和巨噬細胞 5
1.2.5 鹽和Th17 cells 7
1.2.6半乳糖凝集素-3(galectin-3)和Th17 cells 8
1.3 實驗目的 10
第二章 材料與方法 11
2.1 材料 11
2.1.1 實驗動物 11
2.1.2 實驗動物飼料 11
2.1.3 藥品與試劑 11
2.1.4 溶液 15
2.1.5 抗體 17
2.2 方法 19
2.2.1 小鼠基因型鑑定 19
2.2.1.1 DNA萃取 19
2.2.1.2 聚合酶連鎖反應(polymerase chain reaction;PCR) 19
2.2.2 骨髓巨噬細胞培養 19
2.2.3 檢體採集 20
2.2.3.1 血漿的採集與檢測 20
2.2.3.2 腎臟組織的採集 20
2.2.3.3 尿液的採集與檢測 21
2.2.3.4 腎臟CD45+、CD4+、CD11b+細胞的分離 21
2.2.3.5 淋巴結(lymph node)的採集 21
2.2.4 血壓測量 22
2.2.5 RNA萃取 22
2.2.6 反轉錄(reverse transcription)及即時聚合酶連鎖反應(real-time polymerase chain reaction;real-time PCR) 23
2.2.7 流式細胞技術(Flow cytometry) 23
2.2.8 統計分析 24
第三章 實驗結果 25
3.1 餵食高鹽飼料對生理數值的影響 25
3.2 餵食高鹽飼料後腎臟Th17 cells相關基因表現之情形 26
3.3 餵食高鹽飼料後淋巴結Th cells變化之情形 29
3.4 高鹽對巨噬細胞Th17 cells相關基因表現的影響 29
第四章 討論 31
4.1 餵食高鹽飼料對生理數值的影響 31
4.2 餵食高鹽飼料後腎臟Th17 cells相關基因表現之情形 32
4.3 餵食高鹽飼料後淋巴結Th cells變化之情形 32
4.4 高鹽對巨噬細胞Th17 cells相關基因表現的影響 33
4.5 未來可進行的相關實驗 34
第五章 結論與未來展望 35
圖表 36
第六章 參考文獻 64
dc.language.isozh-TW
dc.title高鹽飲食對腎臟免疫的影響zh_TW
dc.titleThe impact of high-salt intake in kidney immunityen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳永銘(Yung-Ming Chen),邱彥霖(Yen-Ling Chiu)
dc.subject.keyword高鹽飲食,巨噬細胞,輔助型T細胞17,半乳糖凝集素3,介白素-17,zh_TW
dc.subject.keywordhigh salt diet,macrophage,Th17 cells,Galectin-3,IL17,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201700148
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-01-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf2.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved