Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78224
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊東漢(Tung-Han Chuang)
dc.contributor.authorYing-Chen Changen
dc.contributor.author張盈真zh_TW
dc.date.accessioned2021-07-11T14:46:42Z-
dc.date.available2021-07-04
dc.date.copyright2016-07-04
dc.date.issued2016
dc.date.submitted2016-06-27
dc.identifier.citation1. Tummala, Rao, Eugene J. Rymaszewski, and Alan G. Klopfenstein. Microelectronics packaging handbook: technology drivers. Springer Science & Business Media, 2012.
2. Lau, J. H. , Ball Grid Array Technology. 1st Edition. Electronic packaging and interconnection series. c1995:McGraw-Hill Professional.
3. Harman, G. G. Wire bonding in microelectronics. New York: McGraw-Hill. ,2010.
4. 資料來源:goldprice.org
5. Schneider-Ramelow, Martin, et al. 'Development and status of Cu ball/wedge bonding in 2012.' Journal of electronic materials 42.3, 2013, pp.558-595.
6. Chuang, Tung-Han, et al. 'Thermal stability of grain structure and material properties in an annealing-twinned Ag–8Au–3Pd alloy wire.' , Scripta Materialia , 67.6, 2012, pp.605-608.
7. Schafft, H. A., Modified from Testing and Fabrication of Wire-Bond Electrical Connections—A Comprehensive Survey, National Bureau of Standards (NIST) Tech. Note 726, Sep. 1972, pp. 1–129.
8. Short, R., “Fine Pitch Wedge Bonding for High Density Packaging,” Proc. 1994 Intl. Conf on Multichip Modules, Denver, Colorado, Apr. 13–15, 1994, pp. 50–55.
9. English, A. T., and Hokanson, J. L., “Studies of Bonding Mechanisms and Failure Modes in Thermocompression Bonds of Gold Plated Leads to Ti-Au Metallized Substrates,” 9th Annual Proc. IRPS, Las Vegas, Nevada, Mar. 31–Apr. 2, 1971, pp. 178–186.
10. Ahmed, N., and Svitak, J. J., “Characterization of Au-Au Thermocompression (TC) Bonding,” Proc. Electronic Components Conf, Washington, D.C., May 1975, pp. 52–63. Also In: Solid State Technology, Vol. 18, Nov. 1975, pp. 25–32.
11. Condra, L. W., Svitak, J. J., and Pense, A. W., “The High Temperature Deformation Properties of Gold and Thermocompression Bonding,” IEEE Trans. on Parts, Hybrids and Packaging, Vol. 11, Dec. 1975, pp. 290–296.
12. Spencer, T. H., “Thermocompression Bond Kinetics—The Four Principal Variables,” Proc. Intl. J. Hybrid Microelectronics, Vol. 5, Nov. 1982, pp. 404–408.
13. Jellison, J. L., “Kinetics of Thermocompression Bonding to Organic Contaminated Gold Surfaces,”Proc. 26th Electronic Components Conf., San Francisco, California, Apr. 26–28, 1976, pp. 92–97.
14. Antel, W. K., “Determining Thermocompression Bonding Parameters by a Friction Technique,” Trans. Met. Soc. AIME, Vol. 236, Mar. 1966, pp. 392–396.
15. Coucoulas, A., “Hot Work Ultrasonic Bonding? A Method of Facilitating Metal Flow by Restoration Process,” Proc. 20th IEEE Electronic Components Conf, Washington, D.C., May 1970, pp. 549–556.
16. J. L. Murray, H. Okamoto, T. B. Massalski, The Al−Au (Aluminum-gold) system, Al−Au Bulletin of Alloy Phase Diagrams , Volume 8, Issue 1, Feb.1987, pp 20-30
17. Gam, S. A., Kim, H. J., Cho, J. S., Park, Y. J., Moon, J. T., & Paik, K. W.. Effects of Cu and Pd addition on Au bonding wire/Al pad interfacial reactions and bond reliability. Journal of electronic materials, 35(11), 2006, pp. 2048-2055.
18. Pecht, Michael. Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines: A Focus on Reliability. New York, NY [u.a.]: Wiley, 1994.
19. Greig, William J., Integrated Circuit Packaging, Assembly and Interconnections. New York: Springer, 2007.
20. Harman, G. G., and Charles L. Wilson., 'Materials Problems Affecting Reliability and Yield of Wire Bonding in VLSI Devices.', MRS Proceedings. Vol. 154. , Cambridge University Press, 1989, pp.401
21. Harman, George G., Reliability and Yield Problems of Wire Bonding in Microelectronics: The Application of Materials and Interface Science. Reston, Va: International Society for Hybrid Microelectronics, 1989.
22. Massalski, T. B. 'The Al− Cu (Aluminum-Copper) system.' Journal of Phase Equilibria', 1.1, 1980, pp. 27-33.
23. Yu, Cheng-Fu, et al. 'Cu wire bond microstructure analysis and failure mechanism.' Microelectronics reliability 51(1), 2011, pp.119-124.
24. Appelt, B. K., Tseng, A., Chen, C. H., & Lai, Y. S. Fine pitch copper wire bonding in high volume production. Microelectronics Reliability, 51(1), 2011, pp.13-20.
25. Gan, Chong Leong, and U. Hashim., 'Evolutions of bonding wires used in semiconductor electronics: perspective over 25 years.', Journal of Materials Science: Materials in Electronics, 26(7),2015, pp.4412-4424.
26. Tan, Y. Y., Yang, Q. L., Sim, K. S., Sun, L. T., & Wu, X., Cu–Al intermetallic compound investigation using ex-situ post annealing and in-situ annealing. Microelectronics Reliability, 55(11), 2015, pp.2316-2323.
27. Long, Z., Han, L., Wu, Y., & Zhong, J. Study of temperature parameter in Au–Ag wire bonding. Electronics Packaging Manufacturing, IEEE Transactions on, 31(3), 2008, pp.221-226.
28. A. Kamijo, H. Igarashi, in: 35th Proc. IEEE Electron. Compon. Conf., Washington, D.C., 1985, pp. 91.
29. Lin, J. C., & Chuang, J. Y. Resistance to Silver Electrolytic Migration for Thick‐Film Conductors Prepared from Mixed and Alloyed Powders of Ag‐15Pd and Ag‐30Pd. Journal of the Electrochemical Society, 144(5), 1997, pp.1652-1659.
30. Tsai, H. H., Chuang, T. H., Lee, J. D., Tsai, C. H., Wang, H. C., Lin, H. J., & Chang, C. C., High performance Ag-Pd alloy wires for high frequency IC packages. In: Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013 8th International. IEEE, 2013, pp. 162-165.
31. Lu, L., Shen, Y., Chen, X., Qian, L., & Lu, K., Ultrahigh strength and high electrical conductivity in copper. Science, 304(5669), 2004, pp.422-426.
32. Chuang, T. H., Lin, H. J., Chuang, C. H., Tsai, C. H., Lee, J. D., & Tsai, H. H. Durability to Electromigration of an Annealing-Twinned Ag-4Pd Alloy Wire Under Current Stressing. Metallurgical and Materials Transactions A, 45(12), 2014, pp.5574-5583.
33. Chuang, T. H., Lin, H. J., Chuang, C. H., Tsai, C. H., Lee, J. D., & Tsai, H. H., Durability to Electromigration of an Annealing-Twinned Ag-4Pd Alloy Wire Under Current Stressing. Metallurgical and Materials Transactions A, 45(12), 2014, pp.5574-5583.
34. Cho, J. S., Yoo, K. A., Hong, S. J., Moon, J. T., Lee, Y. J., Han, W., ... & Oh, K. H., Pd effects on the reliability in the low cost Ag bonding wire. In: Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th. IEEE, 2010, pp.1541-1546.
35. McAlister, A. J., The Ag− Al (Silver-Aluminum) system. Bulletin of Alloy Phase Diagrams, 8(6), 1987, pp.526-533.
36. Karakaya, I., and W. T. Thompson., 'The Ag− Pd (silver-palladium) system.', Bulletin of alloy phase diagrams, 9(3), 1988, pp.237-243.
37. Yoo, K. A., Uhm, C., Kwon, T. J., Cho, J. S., & Moon, J. T., Reliability study of low cost alternative Ag bonding wire with various bond pad materials, In: Electronics Packaging Technology Conference, 2009. EPTC'09. 11th. IEEE, 2009, pp. 851-857.
38. Blaha, F., & Langenecker, B., Dehnung von Zink-Kristallen unter Ultraschalleinwirkung. Naturwissenschaften, 42(20), 1955, pp. 556-556.
39. B. Langenecker, 'Work hardening of zinc crystals by high-amplitude ultrasonic waves', Proc. Am. Soc. Testing Materials, vol. 62, 1962, pp. 602-609
40. E. Schmid and W. Boas, Plasticity of Crystals, 1950, pp. 353, F. A. Hughes
41. Langenecker, Bertwin. 'Effects of ultrasound on deformation characteristics of metals.' Sonics and Ultrasonics, IEEE Transactions on 13.1, 1966, pp. 1-8.
42. Weisman, Charlotte. Welding handbook. American Welding Society, vol. 3, 1976, pp.281
43. Neppiras, E. A., Ultrasonic welding of metals., Ultrasonics, 3(3), 1965, pp.128-135.
44. K.C. Joshi, The formation of ultrasonic bonds between metals, Welding Journal, Vol. 50, 1971, pp.840-848.
45. W. P. Mason, Physical Acoustics and the Properties of Solids, 1958, pp. 402, Van Nostrand
46. E. Schmid and W. Boas, Plasticity of Crystals, 1950, pp. 353, F. A. Hughes
47. R. B. Lindsay, Mechanical Radiation, McGraw-Hill, 1960, pp. 415
48. Zhou, Y., Li, X., & Noolu, N. J., A footprint study of bond initiation in gold wire crescent bonding. Components and Packaging Technologies, IEEE Transactions on, 28(4), 2005, pp.810-816.
49. Broll, M. S., Geissler, U., Höfer, J., Schmitz, S., Wittler, O., & Lang, K. D., Microstructural evolution of ultrasonic-bonded aluminum wires, Microelectronics Reliability, 55(6), 2015, pp.961-968.
50. Ji, H., Li, M., Kim, J. M., Kim, D. W., & Wang, C., Nano features of Al/Au ultrasonic bond interface observed by high resolution transmission electron microscopy, Materials Characterization, 59(10), 2008, pp.1419-1424.
51. Jeng, Y. R. and J. H. Horng 'A microcontact approach for ultrasonic wire bonding in microelectronics.' Journal of Tribology-Transactions of the Asme 123(4), 2001, pp. 725-731.
52. Lum, I., Mayer, M., & Zhou, Y., Footprint study of ultrasonic wedge-bonding with aluminum wire on copper substrate, Journal of electronic materials, 35(3), 2006, pp.433-442.
53. G. G. Harman and K. 0. Leedy, “An experimental model of the microelectronic ultrasonic wire bonding mechanism,” in 10th Annu. Proc. Reliability Physics Symp., 1972, pp. 49-56.
54. Ji, H., Li, M., Wang, C., Bang, H. S., & Bang, H. S., Comparison of interface evolution of ultrasonic aluminum and gold wire wedge bonds during thermal aging, Materials Science and Engineering: A, 447(1), 2007, pp.111-118.
55. Tian, Y., Wang, C., Lum, I., Mayer, M., Jung, J. P., & Zhou, Y., Investigation of ultrasonic copper wire wedge bonding on Au/Ni plated Cu substrates at ambient temperature, Journal of materials processing technology, 208(1), 2008, pp. 179-186.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78224-
dc.description.abstract為改善金鋁銅線在打線接合上的應用,本研究從超音波接合參數、製程與高溫時效的方向著手改善銀合金線應用上的可靠度。將線徑為25.6μm的銀合金線接合於鋁墊發現,相同參數下,銀合金線的拉線強度為鋁線的1.6~2倍左右。經時效退火後,發現Ag2Al為穩定相。經參數優化後,線徑為25.6μm的銀合金線的拉線強度近11gf、界面強度近87.67MPa。然而,優化後界面的機械式接合增加、平整度也降低。此情況可藉由短時間加熱鋁墊可改善界面強度。
在不同基板上進行超音波接合,鋁墊因硬度較低,使線徑為195μm銀合金線的參數範圍極小。鎳鋁墊因鎳銀不互溶且鎳硬度比銀大,使銀合金線接合時易破壞基板。金鎳銅墊因金銀完全互溶且金硬度略小於銀,使銀金固溶體可潤滑基板、避免破壞基板結構。
比較不同線材(線徑為200μm鋁線、195μm銀合金線、195μm 4N銅線、195μm 6N銅線)接合於金鎳銅墊發現,銀合金線有最大的拉線強度,界面強度略小於銅線。經過150℃、500小時的高溫時效後,銀合金線的拉線強度僅次於6N銅線;界面強度雖仍比4N和6N銅線小。但是,因金銀固溶體生成,使界面強度下降幅度比銅線小、機械性質相對穩定。經時效退火後,粗線徑的異質超音波接合的界面平整度低、介金屬化合物生長與水平分布不均勻,界面強度下降、可靠度降低。
zh_TW
dc.description.abstractAbstract
To improve the application of the gold aluminum copper wire bonding, this study focuses on improving the reliability of silver alloy wire in the ultrasonic wire bonding, in the aspect of bonding parameters, process and annealing. In the same parameters, the silver alloy wire (ϕ = 25.6μm) bonded to the aluminum pad. It is found that the pull strength of silver alloy wire is about 1.6 to 2 times than that of aluminum wire. After annealing, this study has found that found Ag2Al is stable phase. After optimizing the parameter, the wire pull strength of the silver alloy wire (ϕ = 25.6μm) is near 11gf, and the shear strength is near 87.67MPa. However, the optimized interface has more mechanical bonding, the flatness of the bonding interface decreases. This situation could be improved, since heating on aluminum pad for a short-time could improve the shear strength.
When ultrasonic wire bonding on different substrates, aluminum pads cause short parameter range of the silver alloy wire (ϕ = 195μm) according to its lower hardness. Because silver is nickel-immiscible and softer than nickel, the nickel substrates were easily damaged by silver alloy wire during the ultrasonic wire bonding. Gold-nickel-copper pads is a workable choice for silver alloy wire on ultrasonic wire bonding. Gold is completely miscible with silver and its hardness is slightly less than that of silver, so gold-silver solid solution can lubricate the substrate to avoid damaging the structure of the substrate.
Comparing different wire (aluminum wire with the diameter of 200μm, silver alloy wire with the diameter of 195μm, 4N copper wire with the diameter of 195μm and 6N copper with the diameter of 195μm) bonding to the gold -nickel-copper pad, the wire pull strength of the silver alloy wire is maximum, and the shear strength of the silver alloy wire is slightly smaller than the copper wire. After 500 hours of annealing at 150 ℃, the wire pull strength of the silver alloy wire is slightly less than the 6N copper wire ,and the shear strength of the silver alloy wire is less than the 4N and 6N copper wire. However, since gold and silver generate a solid solution, the decline of the shear strength is smaller than the copper wire. This means the mechanical properties of the silver alloy wire is relatively stable.
After high-temperature annealing, the flatness of the interface has positive correlation with the diameter of the bonding wire. The shear strength and reliability get worse because the uneven bonding interface result in inhomogeneous growth of the IMCs.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:46:42Z (GMT). No. of bitstreams: 1
ntu-105-R03527044-1.pdf: 13662135 bytes, checksum: f9169e2f667e5d7e5b010d74ad93abaa (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 前言 1
1.1 研究背景 1
1.2 研究動機 4
1.3 研究目的 6
第二章 文獻回顧 7
2.1 打線接合 7
2.1.1 金線 10
2.1.2 鋁線 13
2.1.3 銅線 14
2.1.5 銀線 17
2.2 聲能 20
2.3 超音波接合 22
2.3.1 超音波接合條件 22
2.3.3塑性變形 23
2.2.4接合界面微結構 24
2.4參數 27
2.4.1 輸出能量 27
2.4.2 可控參數 28
2.5 界面反應動力學 30
2.5.1擴散控制反應 31
2.5.2介金屬化合物之分布 32
第三章 實驗方法與步驟 33
3.1 實驗流程 33
3.2 打線接合 36
3.2.1 參數調整 36
3.2.2 墊材調整 36
3.2.3線材比較 36
3.3 高溫時效 41
3.4 基板加熱 41
3.5 高溫時效之可靠度測試 44
3.5.1 銲線之拉線強度與界面強度測試 44
3.5.2 接合界面之觀察分析 44
第四章 結果與討論 49
4.1 參數調整 49
4.1.1 相同參數對不同線材之影響 49
4.1.2 參數對線材強度之影響 53
4.1.3相同退火條件對不同參數之影響 57
4.2 長時效退火對界面與強度之影響 63
4.3 基板加熱對界面與強度之影響 68
4.4 不同基板之接合與破壞模式 71
4.4.1 鋁墊(4μm Al/Si) 71
4.4.2 鎳鋁墊(7μm Ni/4μm Al/Si) 72
4.4.3 金鎳銅墊(0.01μm Au/5μm Ni/150μm Cu) 73
4.5 退火前後不同線材與金鎳銅墊接合之界面與強度 80
4.5.1強度 80
4.5.2界面 85
4.5.2.1 介金屬化合物 85
4.5.2.2鋁線 87
4.5.2.3 銀合金線(Ag-4Pd) 87
4.5.2.4 4N銅線 92
4.5.2.5 6N銅線 92
4.5.3 線材比較與分析 97
第五章 結論 99
第六章 參考文獻 100
dc.language.isozh-TW
dc.titleAg-4Pd銀合金線超音波打線接合之材料特性分析zh_TW
dc.titleAnalyses of Material Characteristics for Ag-4Pd Alloy Wire after Ultrasonic Wire Bondingen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡幸樺(Shing-Hua Tsai),王尚智(Shang-Chih Wang),吳春森(Chuen-Sen Wu),李俊德(Chun-Te Li)
dc.subject.keyword超音波接合,銀合金線,參數,基板,時效退火,zh_TW
dc.subject.keywordultrasonic wire bonding,silver alloy wire,parameters,substrate,high-temperature annealing,en
dc.relation.page105
dc.identifier.doi10.6342/NTU201600477
dc.rights.note有償授權
dc.date.accepted2016-06-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-R03527044-1.pdf
  目前未授權公開取用
13.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved