Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78193
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻-
dc.contributor.authorYun-Yu Chenen
dc.contributor.author陳允友zh_TW
dc.date.accessioned2021-07-11T14:45:26Z-
dc.date.available2026-07-22-
dc.date.copyright2016-10-14-
dc.date.issued2016-
dc.date.submitted2016-07-27-
dc.identifier.citation1. Mehdizadeh, M. and J. Yang, Design strategies and applications of tissue bioadhesives. Macromolecular bioscience, 2013. 13(3): p. 271-288.
2. Annabi, N., et al., Elastic sealants for surgical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2015. 95: p. 27-39.
3. Duarte, A., et al., Surgical adhesives: systematic review of the main types and development forecast. Progress in Polymer Science, 2012. 37(8): p. 1031-1050.
4. Annabi, N., et al., Surgical materials: current challenges and nano-enabled solutions. Nano today, 2014. 9(5): p. 574-589.
5. Vakalopoulos, K.A., et al., Tissue adhesives in gastrointestinal anastomosis: a systematic review. Journal of Surgical Research, 2013. 180(2): p. 290-300.
6. Bouten, P.J., et al., The chemistry of tissue adhesive materials. Progress in Polymer Science, 2014. 39(7): p. 1375-1405.
7. Fischer, M.J., Amine coupling through EDC/NHS: a practical approach. Surface plasmon resonance: methods and protocols, 2010: p. 55-73.
8. Pasanphan, W. and S. Chirachanchai, Conjugation of gallic acid onto chitosan: An approach for green and water-based antioxidant. Carbohydrate Polymers, 2008. 72(1): p. 169-177.
9. Wang, C., et al., Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir, 2011. 27(19): p. 12058-12068.
10. Kim, T.H., et al., Efficient gene delivery by urocanic acid-modified chitosan. Journal of Controlled Release, 2003. 93(3): p. 389-402.
11. Sehgal, D. and I.K. Vijay, A method for the high efficiency of water-soluble carbodiimide-mediated amidation. Analytical biochemistry, 1994. 218(1): p. 87-91.
12. Quinn, J.V., Tissue adhesives in clinical medicine. Vol. 1. 2005: PMPH-USA.
13. Wheat, J.C. and J.S. Wolf, Advances in bioadhesives, tissue sealants, and hemostatic agents. Urologic Clinics of North America, 2009. 36(2): p. 265-275.
14. Spotnitz, W.D., Fibrin sealant: past, present, and future: a brief review. World journal of surgery, 2010. 34(4): p. 632-634.
15. Au, V. and S.A. Madison, Effects of singlet oxygen on the extracellular matrix protein collagen: oxidation of the collagen crosslink histidinohydroxylysinonorleucine and histidine. Archives of biochemistry and biophysics, 2000. 384(1): p. 133-142.
16. Shrestha, A., M.R. Hamblin, and A. Kishen, Photoactivated rose bengal functionalized chitosan nanoparticles produce antibacterial/biofilm activity and stabilize dentin-collagen. Nanomedicine: Nanotechnology, Biology and Medicine, 2014. 10(3): p. 491-501.
17. Nichol, J.W., et al., Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010. 31(21): p. 5536-5544.
18. García-Astrain, C., et al., Diels–Alder “click” chemistry for the cross-linking of furfuryl-gelatin-polyetheramine hydrogels. RSC Advances, 2014. 4(67): p. 35578-35587.
19. García-Astrain, C., et al., Green chemistry for the cross-linking of photo-sensitive furan modified gelatin. Materials Letters, 2015. 160: p. 142-145.
20. Elvin, C.M., et al., A highly elastic tissue sealant based on photopolymerised gelatin. Biomaterials, 2010. 31(32): p. 8323-8331.
21. Nakayama, Y. and T. Matsuda, Newly designed hemostatic technology based on photocurable gelatin. ASAIO Journal, 1995. 41(3): p. M374-M378.
22. Li, C., et al., Novel visible‐light‐induced photocurable tissue adhesive composed of multiply styrene‐derivatized gelatin and poly (ethylene glycol) diacrylate. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2003. 66(1): p. 439-446.
23. Nakayama, Y. and T. Matsuda, Photocurable surgical tissue adhesive glues composed of photoreactive gelatin and poly (ethylene glycol) diacrylate. Journal of biomedical materials research, 1999. 48(4): p. 511-521.
24. Van Den Bulcke, A.I., et al., Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000. 1(1): p. 31-38.
25. Suo, H., K. Xu, and X. Zheng, Using glucosamine to improve the properties of photocrosslinked gelatin scaffolds. Journal of biomaterials applications, 2014: p. 0885328214551009.
26. Son, T.I., et al., Visible light-induced crosslinkable gelatin. Acta biomaterialia, 2010. 6(10): p. 4005-4010.
27. Ryu, J.H., et al., Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules, 2011. 12(7): p. 2653-2659.
28. Flores-Ramírez, N., et al., Characterization and degradation of functionalized chitosan with glycidyl methacrylate. Journal of Biomaterials Science, Polymer Edition, 2005. 16(4): p. 473-488.
29. Francesko, A. and T. Tzanov, Chitin, chitosan and derivatives for wound healing and tissue engineering, in Biofunctionalization of Polymers and their Applications. 2010, Springer. p. 1-27.
30. Phuong, N.T., et al., Enzyme-mediated fabrication of an oxidized chitosan hydrogel as a tissue sealant. Journal of Bioactive and Compatible Polymers: Biomedical Applications, 2015: p. 0883911515578760.
31. Lauto, A., et al., Fabrication and application of rose bengal-chitosan films in laser tissue repair. Journal of visualized experiments: JoVE, 2012(68).
32. Lauto, A., Integration of extracellular matrix with chitosan adhesive film for sutureless tissue fixation. Lasers in surgery and medicine, 2009. 41(5): p. 366-371.
33. Lauto, A., et al., Photochemical tissue bonding with chitosan adhesive films. Biomed Eng Online, 2010. 9: p. 47.
34. Valmikinathan, C.M., et al., Photocrosslinkable chitosan based hydrogels for neural tissue engineering. Soft Matter, 2012. 8(6): p. 1964-1976.
35. Na, H.-N., et al., Photocurable O-carboxymethyl chitosan derivatives for biomedical applications: synthesis, in vitro biocompatibility, and their wound healing effects. Macromolecular Research, 2012. 20(11): p. 1144-1149.
36. Ferreira, A.M., et al., Surface modification of poly (dimethylsiloxane) by two-step plasma treatment for further grafting with chitosan–Rose Bengal photosensitizer. Surface and Coatings Technology, 2013. 223: p. 92-97.
37. Kim, K.-I., et al., Synthesis of visible light-induced cross-linkable chitosan as an anti-adhesive agent. Macromolecular Research, 2011. 19(3): p. 216-220.
38. Barton, M.J., et al., Tissue repair strength using chitosan adhesives with different physical‐chemical characteristics. Journal of biophotonics, 2014. 7(11‐12): p. 948-955.
39. Jeon, O., et al., The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomaterials, 2012. 33(13): p. 3503-3514.
40. Na, S.Y., et al., Hyaluronic acid/mildly crosslinked alginate hydrogel as an injectable tissue adhesion barrier. Journal of Materials Science: Materials in Medicine, 2012. 23(9): p. 2303-2313.
41. Heo, Y., et al., Regeneration effect of visible light‐curing furfuryl alginate compound by release of epidermal growth factor for wound healing application. Journal of Applied Polymer Science, 2014. 131(14).
42. Jeon, O., J.E. Samorezov, and E. Alsberg, Single and dual crosslinked oxidized methacrylated alginate/PEG hydrogels for bioadhesive applications. Acta biomaterialia, 2014. 10(1): p. 47-55.
43. Kono, H., Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethylene glycol. Carbohydrate polymers, 2014. 106: p. 84-93.
44. Fu, L., J. Zhang, and G. Yang, Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydrate polymers, 2013. 92(2): p. 1432-1442.
45. Rodrigues, F.H., et al., Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin. Journal of Applied Polymer Science, 2014. 131(2).
46. Nishida, J., M. Kobayashi, and A. Takahara, Light-triggered adhesion of water-soluble polymers with a caged catechol group. ACS Macro Letters, 2013. 2(2): p. 112-115.
47. Wang, D.-A., et al., Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nature materials, 2007. 6(5): p. 385-392.
48. Li, C., et al., Photocrosslinkable bioadhesive based on dextran and PEG derivatives. Materials Science and Engineering: C, 2014. 35: p. 300-306.
49. Peng, C.-L., et al., Self-assembled star-shaped chlorin-core poly (?-caprolactone)–poly (ethylene glycol) diblock copolymer micelles for dual chemo-photodynamic therapies. Biomaterials, 2008. 29(26): p. 3599-3608.
50. Jeon, E.Y., et al., Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking. Biomaterials, 2015. 67: p. 11-19.
51. Calvert, J.G. and J.N. Pitts, Photochemistry. 1966.
52. Zhang, J., et al., Photochemical tissue bonding using monomeric 4-amino-1, 8-naphthalimides. Journal of biomedical optics, 2004. 9(5): p. 1089-1092.
53. Bahney, C., et al., Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur Cell Mater, 2011. 22: p. 43-55.
54. Fancy, D.A. and T. Kodadek, Chemistry for the analysis of protein–protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proceedings of the National Academy of Sciences, 1999. 96(11): p. 6020-6024.
55. Montagnon, T., et al., Furans and singlet oxygen–why there is more to come from this powerful partnership. Chemical Communications, 2014. 50(98): p. 15480-15498.
56. Liu, M., et al., Discovery and characterization of a photo-oxidative histidine-histidine cross-link in IgG1 antibody utilizing 18O-labeling and mass spectrometry. Analytical chemistry, 2014. 86(10): p. 4940-4948.
57. Jensen, R.L., et al., Singlet oxygen’s response to protein dynamics. Journal of the American Chemical Society, 2011. 133(18): p. 7166-7173.
58. Wahlen, J., et al., Solid materials as sources for synthetically useful singlet oxygen. Advanced synthesis & catalysis, 2004. 346(2‐3): p. 152-164.
59. Greer, A., Christopher Foote's discovery of the role of singlet oxygen [1O2 (1Δg)] in photosensitized oxidation reactions. Accounts of chemical research, 2006. 39(11): p. 797-804.
60. Verter, E.E., et al., Light-initiated bonding of amniotic membrane to cornea. Investigative ophthalmology & visual science, 2011. 52(13): p. 9470-9477.
61. Johnson, T.S., et al., Photochemical tissue bonding: a promising technique for peripheral nerve repair. Journal of Surgical Research, 2007. 143(2): p. 224-229.
62. Op de Beeck, M. and A. Madder, Sequence specific DNA cross-linking triggered by visible light. Journal of the American Chemical Society, 2012. 134(26): p. 10737-10740.
63. Weiner, L., E. Roth, and I. Silman, Targeted oxidation of Torpedo californica acetylcholinesterase by singlet oxygen. Photochemistry and photobiology, 2011. 87(2): p. 308-316.
64. Méndez‐Hurtado, J., et al., Theoretical study of the oxidation of histidine by singlet oxygen. Chemistry–A European Journal, 2012. 18(27): p. 8437-8447.
65. Munger, K.A., et al., A novel photochemical cross‐linking technology to improve luminal gain, vessel compliance, and buckling post‐angioplasty in porcine arteries. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016. 104(2): p. 375-384.
66. Tardivo, J.P., et al., Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagnosis and Photodynamic Therapy, 2005. 2(3): p. 175-191.
67. Wainwright, M. and R.M. Giddens, Phenothiazinium photosensitisers: choices in synthesis and application. Dyes and pigments, 2003. 57(3): p. 245-257.
68. Misran, M., et al., Photochemical electron transfer between methylene blue and quinones. Australian Journal of Chemistry, 1994. 47(2): p. 209-216.
69. Cruz, D.M.G., et al., Blending Polysaccharides With Biodegradable Polymers. II. Structure and Biological Response of Chitosan/Polycaprolactone Blends. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2008. 87B(2): p. 544-554.
70. Socrates, G., Infrared and Raman characteristic group frequencies: tables and charts. 2004: John Wiley & Sons.
71. Kim, H.J., et al., Mussel adhesion-employed water-immiscible fluid bioadhesive for urinary fistula sealing. Biomaterials, 2015. 72: p. 104-111.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78193-
dc.description.abstract現今技術在手術後重新連接、封合組織的方法多是用機械性固定的方法,如:手術縫線、手術釘、醫用鋼絲,而這種方式有諸多的缺點,首先都是侵入性的療法,破壞傷口周遭組織,使患者承受較大痛感,而且操作較為困難、耗時,且無法讓傷口達到完全密封,有細菌感染以及體液與空氣滲漏的問題。因此組織黏合材料,開始成為手術縫線、手術釘替代品。
而本研究希望可以做出控制固化時間的組織黏合材料:以幾丁聚醣為基底,使用EDC/NHS側練上引入呋喃、咪唑官能基,選擇甲烯藍為光敏劑,使用658nm的紅光二極體照射並起始幾丁聚醣的光交聯反應。改質後的幾丁聚醣利用核磁共振儀(NMR)、衰減式全反射傅立葉轉換紅外線光譜圖(ATR-IR)、紫外-可見光光譜(UV-VIS)進行結構分析,再以拉力測試、膨潤實驗測試其機械性質,最後檢測材料的細胞毒性。
實驗結果顯示,引入咪唑、呋喃官能基,確實讓幾丁聚醣有光交聯能力,可以利用光照控制起始交聯時間,且交聯後材料穩定性足夠,並在細胞毒性測試中是屬於生物可接受範圍,但是其強度稍弱,不適用於組織黏合材料,未來可以改用較低分子量與較高去乙醯度的的幾丁聚醣來改善此問題或可往其他應用,如再生醫學、傷口修復上使用,這種光起始的幾丁聚醣有其未來發展潛能。
zh_TW
dc.description.abstractCurrent technologies for reconnecting and sealing tissues after surgical procedures are most mechanical type fixed, such as sutures, wires, and staples. Those methods have several disadvantages. First, they are invasive procedures, create secondary damage surrounding tissue of wound, and let patients suffer more pain. More complicated processes make the use of those ways for wound closure is time consuming. It cannot seal wound absolutely, having the problem of infection, and do not stop body fluid and air leakages. Consequently, the novel tissue adhesion glue, surgical adhesive biomaterials, instead sutures, wires, and staples.
We hope to make tissue adhesive agent that can control curing time, select chitosan as basic substrate, and utilize EDC/NHS reaction to introduce furan/imidazole functional groups, which are sensitive to radiation energy. Choose Methylene blue as photosensitizer, and use red laser diode (658nm, 100mW). The modified-chitosan is radiated by red laser and initiate photo-curable reaction.
The modified-chitosan was analyzed by Nuclear Magnetic Resonance Spectroscopy (NMR), Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and UV-vis absorbance Spectrum to confirm chemical structure, found its physical strength and stability by tension test and repeatable swelling test. Finally, We examined cytotoxicity of the modified-chitosan by MTT assay.
The result showed that introducing furan/imidazole functional groups into chitosan actually made chitosan become photo-crosslinkable. We can exploit photo radiation to control the initial time of crosslink and acquire a stable linkage. Through the MTT assay, the result proved that the modified-chitosan is bio-acceptable. While, the tension test showed it has weak strength, which was not suitable for tissue adherence, it may be improved by using chitosan with lower molecular weights or higher degree of deacetylation ratio in the future or we can apply this material into different field, such as wound healing, tissue engineering. In conclusion, this photo-curable chitosan still has its potential for future development.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:45:26Z (GMT). No. of bitstreams: 1
ntu-105-R03549016-1.pdf: 2235505 bytes, checksum: 38560efb3f5c4ed69579fa401d1e7943 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目錄
口試委員會審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 ix
Chapter 1 緒論 1
Chapter 2 文獻回顧 3
2.1 組織黏合材料(Tissue Adhesive Biomaterials) 3
2.1.1 非化學合成組織黏合材 3
2.1.2 化學合成組織黏合材料 7
2.2 光化學反應 10
2.2.1 單重氧(singlet oxygen: 1O2) 11
2.3 甲烯藍(Methylene Blue) 13
2.4 幾丁聚醣簡介 13
Chapter 3 實驗材料與方法 15
3.1 實驗理論與架構 15
3.2 實驗材料 17
3.3 儀器 18
3.4 試劑、藥品配製 22
3.5 實驗方法 23
3.5.1 合成光交聯幾丁聚醣(Photo-crosslinking Chitosan ) 23
3.5.2 光聚合幾丁聚醣之成膠測試 25
3.5.3 超導核磁共振圖譜(Nuclear Magnetic Resonance Spectroscopy, NMR) 25
3.5.4 衰減式全反射傅立葉轉換紅外線光譜儀(Attenuated Total Reflection Fourier Transform Infrared Spectroscopy, ATR-FTIR) 26
3.5.5 紫外光─可見光光譜(UV-VIS Spectrum) 26
3.5.6 光聚合幾丁聚醣之機械強度測試 27
3.5.7 膨潤度(Swelling Ratio)與長期穩定度(Long Tern Stability) 28
3.5.8 細胞培養與毒性測試 28
Chapter 4 結果與討論 30
4.1 合成光聚合幾丁聚醣 30
4.2 光聚合幾丁聚醣之成膠測試 30
4.3 核磁共振圖譜分析 31
4.3.1 糠酸-幾丁聚醣( Furoic acid-chitosan: FAC)核磁共振圖譜分析 31
4.3.2 尿刊酸-幾丁聚醣(Urocanic acid-chitosan: UAC)核磁共振圖譜分析 32
4.4 衰減式全反射傅立葉轉換紅外線光譜儀分析 33
4.4.1 糠酸-幾丁聚醣( Furoic acid-chitosan: FAC)紅外線光譜分析 34
4.4.2 尿刊酸-幾丁聚醣(Urocanic acid-chitosan: UAC)紅外線光譜分析 35
4.5 紫外光─可見光光譜分析 36
4.6 光聚合幾丁聚醣之機械強度測量分析 36
4.6.1 正向強度測試(Strength Test) 36
4.6.2 剪力測試(Shear force Test) 37
4.7 膨潤度與長期穩定度分析 37
4.8 細胞培養與毒性測試 38
Chapter 5 結論 39
Chapter 6 參考文獻 40
附錄 圖表 47
-
dc.language.isozh-TW-
dc.title以呋喃、咪唑官能基改質幾丁聚醣應用於光固化黏合劑zh_TW
dc.titleChemical Modification of Chitosan with Furan and Imidazole Functional Groups for the Application of Photo-Curable Adhesive Agentsen
dc.typeThesis-
dc.date.schoolyear104-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee邱文英,劉澤英-
dc.subject.keyword幾丁聚醣,甲烯藍,光化學聚合,咪唑,?喃,658nm紅光,黏合劑,zh_TW
dc.subject.keywordChitosan,Methylene blue,Photo-crosslink,Imidazole,Furan,658nm Red Laser,Adhesion,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU201601112-
dc.rights.note有償授權-
dc.date.accepted2016-07-27-
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
dc.date.embargo-lift2026-07-22-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-R03549016-1.pdf
  目前未授權公開取用
2.18 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved