請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78165
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 牟中原(Chung-Yuan Mou) | |
dc.contributor.author | Nai-Yuan Kuo | en |
dc.contributor.author | 郭乃元 | zh_TW |
dc.date.accessioned | 2021-07-11T14:44:24Z | - |
dc.date.available | 2021-10-14 | |
dc.date.copyright | 2016-10-14 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-04 | |
dc.identifier.citation | (1) Li, Y.; Shi, J. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv Mater 2014, 26, 3176-3205.
(2) Song, J. C.; Xue, F. F.; Lu, Z. Y.; Sun, Z. Y. Controllable synthesis of hollow mesoporous silica particles by a facile one-pot sol-gel method. Chem Commun (Camb) 2015, 51, 10517-10520. (3) Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 2012, 24, 1504-1534. (4) Bao, Y.; Shi, C.; Wang, T.; Li, X.; Ma, J. Recent progress in hollow silica: Template synthesis, morphologies and applications. Microporous and Mesoporous Materials 2016, 227, 121-136. (5) Lai, X.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604-5618. (6) Lu, Y.; McLellan, J.; Xia, Y. Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells. Langmuir 2004, 20, 3464-3470. (7) Qi, G.; Wang, Y.; Estevez, L.; Switzer, A. K.; Duan, X.; Yang, X.; Giannelis, E. P. Facile and Scalable Synthesis of Monodispersed Spherical Capsules with a Mesoporous Shell. Chemistry of Materials 2010, 22, 2693-2695. (8) Zhao, Y.; Lin, L. N.; Lu, Y.; Chen, S. F.; Dong, L.; Yu, S. H. Templating synthesis of preloaded Doxorubicin in hollow mesoporous silica nanospheres for biomedical applications. Adv Mater 2010, 22, 5255-5259. (9) Tsou, C.-J.; Hung, Y.; Mou, C.-Y. Hollow mesoporous silica nanoparticles with tunable shell thickness and pore size distribution for application as broad-ranging pH nanosensor. Microporous and Mesoporous Materials 2014, 190, 181-188. (10) Kao, K. C.; Tsou, C. J.; Mou, C. Y. Collapsed (kippah) hollow silica nanoparticles. Chem Commun (Camb) 2012, 48, 3454-3456. (11) Liu, J.; Hartono, S. B.; Jin, Y. G.; Li, Z.; Lu, G. Q.; Qiao, S. Z. A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. Journal of Materials Chemistry 2010, 20, 4595. (12) Sun, B.; Guo, C.; Yao, Y.; Huang, Z.; Che, S. Controllable synthesis of silica hollow spheres by vesicle templating of silicone surfactants. Journal of Materials Science 2012, 48, 1890-1898. (13) Liu, J.; Yang, Q.; Zhang, L.; Yang, H.; Gao, J.; Li, C. Organic−Inorganic Hybrid Hollow Nanospheres with Microwindows on the Shell. Chemistry of Materials 2008, 20. (14) Chen, J.; Wu, X.; Hou, X.; Su, X.; Chu, Q.; Fahruddin, N.; Zhao, J. X. Shape-tunable hollow silica nanomaterials based on a soft-templating method and their application as a drug carrier. ACS Appl Mater Interfaces 2014, 6, 21921-21930. (15) Ma, N.; Deng, Y.; Liu, W.; Li, S.; Xu, J.; Qu, Y.; Gan, K.; Sun, X.; Yang, J. A one-step synthesis of hollow periodic mesoporous organosilica spheres with radially oriented mesochannels. Chem Commun (Camb) 2016, 52, 3544-3547. (16) Park, S.-J.; Kim, Y.-J.; Park, S.-J. Size-Dependent Shape Evolution of Silica Nanoparticles into Hollow Structures. Langmuir 2008, 24, 12134-12137. (17) Wong, Y. J.; Zhu, L.; Teo, W. S.; Tan, Y. W.; Yang, Y.; Wang, C.; Chen, H. Revisiting the Stober method: inhomogeneity in silica shells. J Am Chem Soc 2011, 133, 11422-11425. (18) Teng, Z.; Su, X.; Zheng, Y.; Zhang, J.; Liu, Y.; Wang, S.; Wu, J.; Chen, G.; Wang, J.; Zhao, D.; Lu, G. A Facile Multi-interface Transformation Approach to Monodisperse Multiple-Shelled Periodic Mesoporous Organosilica Hollow Spheres. J Am Chem Soc 2015, 137, 7935-7944. (19) Chen, Y.; Chen, H.; Guo, L.; He, Q.; Chen, F.; Zhou, J.; Feng, J.; Shi, J. Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy. ACS Nano 2010, 4, 529-539. (20) Lin, Y. S.; Wu, S. H.; Tseng, C. T.; Hung, Y.; Chang, C.; Mou, C. Y. Synthesis of hollow silica nanospheres with a microemulsion as the template. Chem Commun (Camb) 2009, 3542-3544. (21) Lin, C. H.; Chang, J. H.; Yeh, Y. Q.; Wu, S. H.; Liu, Y. H.; Mou, C. Y. Formation of hollow silica nanospheres by reverse microemulsion. Nanoscale 2015, 7, 9614-9626. (22) Chang, F. P.; Hung, Y.; Chang, J. H.; Lin, C. H.; Mou, C. Y. Enzyme encapsulated hollow silica nanospheres for intracellular biocatalysis. ACS Appl Mater Interfaces 2014, 6, 6883-6890. (23) Chang, F. P.; Chen, Y. P.; Mou, C. Y. Intracellular implantation of enzymes in hollow silica nanospheres for protein therapy: cascade system of superoxide dismutase and catalase. Small 2014, 10, 4785-4795. (24) Wu, S.-H.; Tseng, C.-T.; Lin, Y.-S.; Lin, C.-H.; Hung, Y.; Mou, C.-Y. Catalytic nano-rattle of Au@hollow silica: towards a poison-resistant nanocatalyst. J. Mater. Chem. 2011, 21, 789-794. (25) He, Q.; Shi, J. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv Mater 2014, 26, 391-411. (26) Barenholz, Y. Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release 2012, 160, 117-134. (27) Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S.; Wolchok, J.; Larson, S. M.; Wiesner, U.; Bradbury, M. S. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. Journal of Clinical Investigation 2011, 121, 2768-2780. (28) Wu, M.; Meng, Q.; Chen, Y.; Zhang, L.; Li, M.; Cai, X.; Li, Y.; Yu, P.; Zhang, L.; Shi, J. Large Pore-Sized Hollow Mesoporous Organosilica for Redox-Responsive Gene Delivery and Synergistic Cancer Chemotherapy. Adv Mater 2016, 28, 1963-1969. (29) Slowing, II; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 2008, 60, 1278-1288. (30) Yang, S.; Chen, D.; Li, N.; Xu, Q.; Li, H.; Gu, F.; Xie, J.; Lu, J. Hollow Mesoporous Silica Nanocarriers with Multifunctional Capping Agents for In Vivo Cancer Imaging and Therapy. Small 2016, 12, 360-370. (31) Townson, J. L.; Lin, Y. S.; Agola, J. O.; Carnes, E. C.; Leong, H. S.; Lewis, J. D.; Haynes, C. L.; Brinker, C. J. Re-examining the size/charge paradigm: differing in vivo characteristics of size- and charge-matched mesoporous silica nanoparticles. J Am Chem Soc 2013, 135, 16030-16033. (32) Poste, G.; Bucana, C.; Raz, A.; Bugelski, P.; Kirsh, R.; Fidler, I. J. Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery. Cancer research 1982, 42, 1412-1422. (33) Garbuzenko, O.; Barenholz, Y.; Priev, A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem Phys Lipids 2005, 135, 117-129. (34) Gabizon, A.; Catane, R.; Uziely, B.; Kaufman, B.; Safra, T.; Cohen, R.; Martin, F.; Huang, A.; Barenholz, Y. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer research 1994, 54, 987-992. (35) Fritze, A.; Hens, F.; Kimpfler, A.; Schubert, R.; Peschka-Suss, R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta 2006, 1758, 1633-1640. (36) Haran, G.; Cohen, R.; Bar, L. K.; Barenholz, Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochimica et Biophysica Acta (BBA) - Biomembranes 1993, 1151, 201-215. (37) Bolotin, E. M.; Cohen, R.; Bar, L. K.; Emanuel, N.; Ninio, S.; Barenholz, Y.; Lasic, D. D. Ammonium Sulfate Gradients for Efficient and Stable Remote Loading of Amphipathic Weak Bases into Liposomes and Ligandoliposomes. Journal of Liposome Research 2008, 4, 455-479. (38) Huster, D.; Jin, A. J.; Arnold, K.; Gawrisch, K. Water permeability of polyunsaturated lipid membranes measured by 17O NMR. Biophysical journal 1997, 73, 855-864. (39) Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet 2003, 42, 419-436. (40) Lu, F.; Wu, S. H.; Hung, Y.; Mou, C. Y. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009, 5, 1408-1413. (41) Wu, S. H.; Mou, C. Y.; Lin, H. P. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 2013, 42, 3862-3875. (42) Graf, C.; Gao, Q.; Schutz, I.; Noufele, C. N.; Ruan, W.; Posselt, U.; Korotianskiy, E.; Nordmeyer, D.; Rancan, F.; Hadam, S.; Vogt, A.; Lademann, J.; Haucke, V.; Ruhl, E. Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir 2012, 28, 7598-7613. (43) Yang, Y.; Liu, X.; Li, X.; Zhao, J.; Bai, S.; Liu, J.; Yang, Q. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions. Angew Chem Int Ed Engl 2012, 51, 9164-9168. (44) Huang, C. C.; Huang, W.; Yeh, C. S. Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. Biomaterials 2011, 32, 556-564. (45) Natarajan, S. K.; Selvaraj, S. Mesoporous silica nanoparticles: importance of surface modifications and its role in drug delivery. RSC Advances 2014, 4, 14328. (46) Bagwe, R. P.; Hilliard, L. R.; Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22, 4357-4362. (47) Shahabi, S.; Doscher, S.; Bollhorst, T.; Treccani, L.; Maas, M.; Dringen, R.; Rezwan, K. Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous Silica Nanoparticles via Surface Functionalization: Effects of Serum. ACS Appl Mater Interfaces 2015, 7, 26880-26891. (48) Ono, K.; Han, J. The p38 signal transduction pathway Activation and function. Cellular Signalling 2000, 12, 1-13. (49) Poizat, C.; Puri, P. L.; Bai, Y.; Kedes, L. Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells. Mol Cell Biol 2005, 25, 2673-2687. (50) Liu, R.-Y.; Zhang, Y.; Coughlin, B. L.; Cleary, L. J.; Byrne, J. H. Doxorubicin Attenuates Serotonin-Induced Long-Term Synaptic Facilitation by Phosphorylation of p38 Mitogen-Activated Protein Kinase. The Journal of Neuroscience 2014, 34, 13289-13300. (51) Yang, F.; Chen, H.; Liu, Y.; Yin, K.; Wang, Y.; Li, X.; Wang, G.; Wang, S.; Tan, X.; Xu, C.; Lu, Y.; Cai, B. Doxorubicin caused apoptosis of mesenchymal stem cells via p38, JNK and p53 pathway. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2013, 32, 1072-1082. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78165 | - |
dc.description.abstract | 二氧化矽奈米空心球近年來在生物醫學及工業應用的潛力漸漸受到重視,主要是因為中空的內部空間可以容納較多及較大的功能性物質,以提高它在應用上的成效。本實驗室過去的研究中,成功地利用油包水的微乳液系統將無機金屬奈米粒子、或是有機的生物酵素在空心球合成的過程中同時包覆在球內部,這是很難得的研究。但是,利用油包水微乳液系統合成的空心球往往因為產率很低並且嚴重的聚集現象,使得應用上常常受到限制,因此這些問題需要被重視並且改善。
在本研究的第一部分,藉由分步添加矽源及一步表面修飾的方法,我們優化了空心球的合成條件,成功地合成出具有高產率、懸浮性佳、且大小均勻的50 nm空心球,由於表面修飾長鏈的親水官能基 (PEG),空心球在水中、細胞培養液及磷酸鹽緩衝溶液中都能展現良好的懸浮性,大大的提升了空心球在生物醫學的應用潛力。若進一步將空心球的合成概念延伸,我們能夠產生由內而外具有連續性結構差異的實心球,並藉由溫水一步侵蝕的方式,合成出多殼層的空心球,並且可以控制球大小在 100 nm以下,這是文獻上很少見的結果。 本研究的第二部分中,我們希望將50 nm的空心球設計成一個抗癌藥物之奈米載體。我們發展了一個兩相系統能夠高效率地將抗癌藥物阿黴素 (doxorubicin)裝載在空心球內部,此系統主要是將空心球內部先裝填硫酸銨的鹽類水溶液,並利用有機溶劑氯仿維持球內部的鹽類梯度,由於此鹽度梯度會驅使藥物有效地進到空心球內部,而達到高附載量(約8.0 ~ 9.9 wt %) 及高包覆效率(>70 %)。在過去文獻中,很少研究能夠在孔洞二氧化矽奈米粒子上利用這種主動性的裝載藥物方法並且達到如此高的效率。裝載完藥物後,經由後續適當的處理,可以將藥物轉換形式堵住球殼的孔洞,防止藥物在後續的過程中有滲漏的現象。進一步我們也將裝載阿黴素的空心球送到培養的癌細胞及小鼠內,評估其藥物輸送的特性。在細胞的研究中,裝載藥物的空心球可以有效的抑制癌細胞增生,藥物的效果並沒有因為裝載的過程而降低;空心球可以帶著藥物進到細胞內進行釋放,達到一個較具時效性的治療;我們也將空心球(PEG HSNs)送到小鼠體內,分析其循環時間及分布情況,可以發現其在老鼠體內具有良好的循環時間,且不會對老鼠造成毒性;另外在腫瘤鼠中,空心球能夠藉由增強滲透和滯留(enhanced permeability and retention, EPR)效應優先聚集在腫瘤部位,大大提升了空心球作為抗癌藥物運輸載體的可能性。 整體而言,我們從材料的觀點出發建立了一個穩定的微乳液系統,能夠合成出具有良好性質的二氧化矽奈米空心球,這些性質讓我們成功的發展出高效率的藥物裝載方法,並且在細胞及老鼠體內證實其作為抗癌藥物輸送載體的潛力。 | zh_TW |
dc.description.abstract | Hollow silica nanospheres (HSNs) with large interior space have recently gained increasing interests due to their tremendous potential for biomedical and industrial applications. In previous study, the inorganic metal nanoparticles and organic functional groups, as well as enzymes, have been successfully encapsulated in HSNs by a water-in-oil microemulsion method. However, the applications of HSNs from microemulsion are usually limited due to the problems of low yield and easy aggregation.
In the first part of this work, we optimized the synthetic conditions to fabricate a high-yield, size-uniform and well-dispersed PEG HSNs (50 nm) by time-separated addition of silica source and one-step surface modification. The yield of PEG HSNs with uniform size (50 nm) was effectively elevated over 5 times, and PEG HSNs displayed excellent dispersity in water, DMEM (10% FBS), and PBS. By extending the synthetic concept of HSNs, multi-shelled structure can be achieved through layer-by-layer condensation and one-step warm water etching, the morphology of double-shelled HSNs can be controlled below 100 nm which was rare in literatures. In the second part, optimized PEG HSNs (50 nm) displayed increasingly potentials as a nanocarrier for anti-cancer drug. For effective and efficient drug delivery, we developed an active loading method to load doxorubicin (Dox). Inspired by DoxilR, a two-phase system (H2O/CHCl3) was used to establish the (NH4)2SO4 gradient on PEG-HSNs to introduce the amphipathic Dox into the particles with high loading capacity (8.0-9.9 wt %) and entrapment efficiency (>70%). Under proper treatments, Dox could be a capping agent to block the pores on the shell preventing the leakage of drugs. We successfully made good use of the unique structure of PEG HSNs and properties of Dox to accomplish the active loading. Furthermore, in vitro and in vivo studies of Dox loaded HSNs were investigated. Dox loaded HSNs displayed pH-sensitively controlled release character. The cellular uptake, cytotoxicity, and intracellular drug release of Dox@PEG-TA HSNs were evaluated in MDA-MB-231 cells. For in vivo studies, PEG HSNs and PEG-TA HSNs were intravenously injected into animal model. PEG HSNs displayed a better circulation time than PEG-TA HSNs by evaluation of circulation and bio-distribution. Moreover, the passive targeting ability (EPR effect, Enhanced Permeability Retention) were also demonstrated on PEG HSNs in tumor-bearing mice. Overall, we have developed a well-controlled microemulsion system to synthesize the HSNs with desired properties that contribute to the successful development of an active drug loading method and a potential drug delivery system. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:44:24Z (GMT). No. of bitstreams: 1 ntu-105-R03223205-1.pdf: 6862836 bytes, checksum: d5337ec64eccd7eb9e7e80041f830bb9 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 謝誌…………………… I
摘要…………. II Abstract……… IV Table of Contents i List of Figures v List of Tables viii Chapter 1 Introduction 1 1.1 General introduction of hollow silica nanospheres 1 1.1.1 Hard-templating method 1 1.1.2 Soft-templating method 3 1.1.3 Structural-difference selectively etching method 6 1.2 HSNs from microemulsion method 8 1.2.1 Mechanism of HSNs from microemulsion method 8 1.2.2 Advantages and challenges in bio-applications 12 1.3 Hollow silica nanospheres in anti-cancer therapy 13 1.3.1 General introduction 13 1.3.2 Hollow silica nanoparticles as drug delivery systems (DDSs) 14 1.3.3 Lesson to learn: The first FDA-approved nano-drug 15 1.3.3.1 Liposome design 16 1.3.3.2 Remote loading of doxorubicin 18 1.4 Motivation and objectives 20 Chapter 2 Experimental section 22 2.1 Materials and methods 22 2.1.1 Materials 22 2.1.2 Characterization 22 2.2 Synthetic procedure 23 2.2.1 Synthesis and engineering of hollow silica nanospheres(HSNs) 23 2.2.1.1 Preparation of various synthetic microemulsion systems 23 2.2.1.2 Synthesis of hollow silica nanospheres (HSNs) by microemulsion method 24 2.2.1.3 Synthesis of surface-modified HSNs 25 2.2.1.4 Synthesis of HSNs under open system (M2S5) 25 2.2.1.5 Synthesis of multi-shelled HSNs 26 2.2.2 Bio-applications of hollow silica nanospheres 28 2.2.2.1 Synthesis of PEG-FITC HSNs and RITC-HSNs 28 2.2.2.2 Loading doxorubicin (Dox) 29 2.2.2.3 Loading capacity and entrapment efficiency 30 2.2.2.4 Doxorubicin release study 31 2.2.2.5 Cellular uptake 32 2.2.2.6 Cytotoxicity assay 32 2.2.2.7 Confocal microscopic examination of intracellular drug release 33 2.2.2.8 Cell cycle analysis 33 2.2.2.9 Western blotting analysis 34 2.2.2.10 In vivo experiments 34 2.2.2.10a Circulation 35 2.2.2.10b Bio-distribution 35 Chapter 3 Results and Discussion 36 3.1 Synthesis and engineering of hollow silica nanospheres 36 3.1.1 Yield improvement and size control of HSNs 36 3.1.1.1 Effects of the amount of silica source on HSNs (M1S1, M1S5) 36 3.1.1.2 Effects of the composition of microemulsion systems on HSNs 38 3.1.1.3 Effects of the time-separated addition of silica source on HSNs 40 3.1.1.4 Size control of HSNs by additional ethanol 43 3.1.2 Investigation on the colloidal stability of HSNs 45 3.1.2.1 Bare HSNs 45 3.1.2.2 Bare HSNs synthesized under open system 46 3.1.2.3 Bare HSNs with one-step surface modification 48 3.1.3 Extending the structure of HSNs to double-shelled HSNs 50 3.1.3.1 Synthesis of multi-shelled HSNs through layer-by-layer and one-step etching approach 50 3.1.3.2 Tunable structure of double-shelled HSNs 53 3.2 Bio-application of HSNs as a drug delivery system 56 3.2.1 Two-phase doxorubicin loading system on PEG-HSNs 56 3.2.2 Process for doxorubicin gelation and blocking the drug leakage 59 3.2.3 Study on the loading condition 62 3.2.3.1 Temperature 62 3.2.3.1 pH value of (NH4)2SO4 (aq) (500 mM) 63 3.2.3.1 The amount of doxorubicin used and the concentration of (NH4)2SO4 (aq) 64 3.2.4 Post-surface modification on Dox@ PEG- HSNs 66 3.2.5 Release profiles of Dox@PEG-HSNs and Dox@PEG-TA HSNs 68 3.2.6 In vitro study 70 3.2.6.1 Cellular uptake 70 3.2.6.2 Cytotoxicity 71 3.2.6.3 Intracellular drug release 73 3.2.6.4 Cell cycle analysis 74 3.2.6.5 Doxorubicin-induced apoptosis 75 3.2.7 In vivo study 76 3.2.7.1 Circulation 76 3.2.7.2 Bio-distribution 77 3.2.7.2a Nude mice (ICR) 77 3.2.7.2b Tumor bearing mice 78 Chapter 4 Conclusion 80 Reference……. 82 | |
dc.language.iso | en | |
dc.title | 二氧化矽奈米空心球之調控及其生物應用 | zh_TW |
dc.title | Engineering and Bio-applications of Hollow silica nanospheres | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 童國倫(Kuo-Lun Tung),陳培菱(Pei-lin Chen) | |
dc.subject.keyword | 二氧化矽奈米空心球,奈米藥物,阿黴素, | zh_TW |
dc.subject.keyword | Hollow silica nanoparticles,nanodrug,doxorubicin, | en |
dc.relation.page | 86 | |
dc.identifier.doi | 10.6342/NTU201600989 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-04 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-R03223205-1.pdf 目前未授權公開取用 | 6.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。