Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78148Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳靜宜 | |
| dc.contributor.author | Chia-Yu Wang | en |
| dc.contributor.author | 王家御 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:43:48Z | - |
| dc.date.available | 2019-10-14 | |
| dc.date.copyright | 2016-10-14 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-08 | |
| dc.identifier.citation | Ahima R.S. (2011) Digging deeper into obesity. J Clin Invest 121, 2076-9.
Alberti K.G., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.C., James W.P., Loria C.M., Smith S.C., Jr., International Diabetes Federation Task Force on E., Prevention, Hational Heart L., Blood I., American Heart A., World Heart F., International Atherosclerosis S. & International Association for the Study of O. (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640-5. Bahrami H., Bluemke D.A., Kronmal R., Bertoni A.G., Lloyd-Jones D.M., Shahar E., Szklo M. & Lima J.A. (2008) Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol 51, 1775-83. Bailey-Downs L.C., Tucsek Z., Toth P., Sosnowska D., Gautam T., Sonntag W.E., Csiszar A. & Ungvari Z. (2013) Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation. J Gerontol A Biol Sci Med Sci 68, 780-92. Bender S.B., Tune J.D., Borbouse L., Long X., Sturek M. & Laughlin M.H. (2009) Altered Mechanism of Adenosine-Induced Coronary Arteriolar Dilation in Early-Stage Metabolic Syndrome. Exp Biol Med 234(6), 683–692. Bokhari S., Raina A., Berman Rosenweig E., Schulze P.C., Bokhari J., Einstein A.J., Barst R.J. & Johnson L.L. (2011) PET Imaging May Provide a Novel Biomarker and Understanding of Right Ventricular Dysfunction in Patients With Idiopathic Pulmonary Arterial Hypertension. Circulation: Cardiovascular Imaging 4, 641-7. Bostick B., Habibi J., Ma L., Aroor A., Rehmer N., Hayden M.R. & Sowers J.R. (2014) Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity. Metabolism 63, 1000-11. Bret H. Goodpaster P., Krishnaswami S., Helaine Resnick P., Mph, David E. Kelley M., Catherine Haggerty P., Mph, Tamara B. Harris M., Ms, Ann V. Schwartz P., Steven Kritchevsky P., Anne B. Newman M. (2003) Association Between Regional Adipose Tissue Distribution and Both Type 2 Diabetes and Impaired Glucose Tolerance in Elderly Men and Women. Britton K.A., Massaro J.M., Murabito J.M., Kreger B.E., Hoffmann U. & Fox C.S. (2013) Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J Am Coll Cardiol 62, 921-5. Christoffersen C., Bollano E., Lindegaard M.L., Bartels E.D., Goetze J.P., Andersen C.B. & Nielsen L.B. (2003) Cardiac lipid accumulation associated with diastolic dysfunction in obese mice. Endocrinology 144, 3483-90. Cunningham-Rundles S., McNeeley D.F. & Moon A. (2005) Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol 115, 1119-28; quiz 29. Djousse´ L., Driver J.A. Gazian J.M. (2009) Relation between modifiable lifestyle factors and lifetime risk of heart failure. JAMA 302(4), 394-400. Dong W.G., Mei Q., Yu J.P., Xu J.M., Xiang L. & Xu Y. (2003) Effects of melatonin on the expression of iNOS and COX-2 in rat models of colitis. World J Gastroenterol 9,1307-1311. Forbes J.M., Cowan S.P., Andrikopoulos S., Morley A.L., Ward L.C., Walker K.Z., Cooper M.E. & Coughlan M.T. (2013) Glucose homeostasis can be differentially modulated by varying individual components of a western diet. J Nutr Biochem 24, 1251-7. Frayn K.N. (2000) Visceral fat and insulin resistance – causative or correlative. Br J Nutr 83, 1; S71–S77. Garnier A., Fortin D., Delomenie C., Momken I., Veksler V. & Ventura-Clapier R. (2003) Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol 551, 491-501. Hall J.E. (2011) Guyton and hall textbook of medical physiology. International Edition: 978-0-8089-2400-5. Harmancey R., Wilson C.R., Wright N.R. & Taegtmeyer H. (2010) Western diet changes cardiac acyl-CoA composition in obese rats: a potential role for hepatic lipogenesis. J Lipid Res 51, 1380-93. Kalinski P. (2012) Regulation of immune responses by prostaglandin E2. J Immunol 188, 21-8. Kalon K.L., Joan L., William B. & Daniel L. (1993) The Epidemiology of Heart Failure: The Framingham Study. J Am CoU Cardial 1993;2, 6A-13A Karamanlidis G., Nascimben L., Couper G.S., Shekar P.S., del Monte F. & Tian R. (2010) Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res 106, 1541-8. Kluge M.A., Fetterman J.L. & Vita J.A. (2013) Mitochondria and endothelial function. Circ Res 112, 1171-88. Lavie C.J., Alpert M.A., Arena R., Mehra M.R., Milani R.V. & Ventura H.O. (2013) Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC Heart Fail 1, 93-102. Li S.J., Liu C.H., Chang C.W., Chu H.P., Chen K.J., Mersmann H.J., Ding S.T., Chu C.H. & Chen C.Y. (2015) Development of a dietary-induced metabolic syndrome model using miniature pigs involvement of AMPK and SIRT1. Eur J Clin Invest 45, 70-80. Litten-Brown J.C., Corson A.M. & Clarke L. (2010) Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal 4, 899-920. Mahabadi A.A., Massaro J.M., Rosito G.A., Levy D., Murabito J.M., Wolf P.A., O'Donnell C.J., Fox C.S. & Hoffmann U. (2009) Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J 30, 850-6. Meyer P., Filippatos G.S., Ahmed M.I., Iskandrian A.E., Bittner V., Perry G.J., White M., Aban I.B., Mujib M., Dell'Italia L.J. & Ahmed A. (2010) Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation 121, 252-8. Neeb Z.P., Edwards J.M., Alloosh M., Long X., Mokelke E.A. & Sturek M. (2010) Metabolic Syndrome and Coronary Artery Disease in Ossabaw Compared with Yucatan Swine. JAALAS 60, 300-315. Nishimura S., Manabe I. & Nagai R. (2009) Adipose Tissue Inflammation in Obesity and Metabolic Syndrome. Discovery Medicine 8, 41; 55-60. Paolillo S., Rengo G., Pellegrino T., Formisano R., Pagano G., Gargiulo P., Savarese G., Carotenuto R., Petraglia L., Rapacciuolo A., Perrino C., Piscitelli S., Attena E., Del Guercio L., Leosco D., Trimarco B., Cuocolo A. & Perrone-Filardi P. (2015) Insulin resistance is associated with impaired cardiac sympathetic innervation in patients with heart failure. Eur Heart J Cardiovasc Imaging 16, 1148-53. Pawar A.S., Zhu X.Y., Eirin A., Tang H., Jordan K.L., Woollard J.R., Lerman A. & Lerman L.O. (2015) Adipose tissue remodeling in a novel domestic porcine model of diet-induced obesity. Obesity (Silver Spring) 23, 399-407. Perrone-Filardi P., Paolillo S., Costanzo P., Savarese G., Trimarco B. & Bonow R.O. (2015) The role of metabolic syndrome in heart failure. Eur Heart J 36, 2630-4. Qi D. & Rodrigues B. (2007) Glucocorticoids produce whole body insulin resistance with changes in cardiac metabolism. Am J Physiol Endocrinol Metab 292, E654–E667. Rosito G.A., Massaro J.M., Hoffmann U., Ruberg F.L., Mahabadi A.A., Vasan R.S., O'Donnell C.J. & Fox C.S. (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117, 605-13. Scarpulla R.C. (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88, 611–638. Schoenhagen P., Numburi U., Halliburton S.S., Aulbach P., von Roden M., Desai M.Y., Rodriguez L.L., Kapadia S.R., Tuzcu E.M. & Lytle B.W. (2010) Three-dimensional imaging in the context of minimally invasive and transcatheter cardiovascular interventions using multi-detector computed tomography: from pre-operative planning to intra-operative guidance. Eur Heart J 31, 2727-40. Shoelson S.E., Herrero L. & Naaz A. (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132, 2169-80. Sørensen L.B., Raben A., Stender S. & Astrup A. (2005) Effect of sucrose on inflammatory markers in overweight humans. Am J Clin Nutr 82, 421–7. Suzuki Y., Yeung A.C. & Ikeno F. (2011) The representative porcine model for human cardiovascular disease. J Biomed Biotechnol 195483. Swindle M.M, Nolan T., Jacobson A., Wolf P., Dalton M.J. & Smith A.C. (2005) Vascular Access Port (VAP) Usage in Large Animal Species. JAALAS 44, 7-17. Tadros T.M., Massaro J.M., Rosito G.A., Hoffmann U., Vasan R.S., Larson M.G., Keaney J.F., Jr., Lipinska I., Meigs J.B., Kathiresan S., O'Donnell C.J., Fox C.S. & Benjamin E.J. (2010) Pericardial fat volume correlates with inflammatory markers: the Framingham Heart Study. Obesity (Silver Spring) 18, 1039-45. Talati M. & Hemnes A. (2015) Fatty acid metabolism in pulmonary arterial hypertension: role in right ventricular dysfunction and hypertrophy. Pulm Circ 5, 269-78. Trachootham D., Lu W., Ogasawara M.A., Nilsa R.D. & Huang P. (2008) Redox regulation of cell survival. Antioxid Redox Signal 10, 1343-74. Turkbey E.B., McClelland R.L., Kronmal R.A., Burke G.L., Bild D.E., Tracy R.P., Arai A.E., Lima J.A. & Bluemke D.A. (2010) The impact of obesity on the left ventricle: the Multi-Ethnic Study of Atherosclerosis (MESA). JACC Cardiovasc Imaging 3, 266-74. Uldry M., Yang W., St-Pierre J., Lin J., Seale P. & Spiegelman B.M. (2006) Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab 3, 333-41. Waki H. & Tontonoz P. (2007) Endocrine functions of adipose tissue. Annu Rev Pathol 2, 31-56. Wang T.J., Parise H., Levy D., D’Agostino R.B., Wolf P.A., Vasan R.S. & Benjamin E.J. (2004) Obesity and the Risk of New-Onset Atrial Fibrillation. JAMA 292, 2471-2477. Wong C.X., Abed H.S., Molaee P., Nelson A.J., Brooks A.G., Sharma G., Leong D.P., Lau D.H., Middeldorp M.E., Roberts-Thomson K.C., Wittert G.A., Abhayaratna W.P., Worthley S.G. & Sanders P. (2011) Pericardial fat is associated with atrial fibrillation severity and ablation outcome. J Am Coll Cardiol 57, 1745-51. Zaragoza C., Gomez-Guerrero C., Martin-Ventura J.L., Blanco-Colio L., Lavin B., Mallavia B., Tarin C., Mas S., Ortiz A. & Egido J. (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011, 497841. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78148 | - |
| dc.description.abstract | 脂肪在代謝的過程中扮演著重要的角色,而過多的脂肪堆積常導致代謝疾病的發生,目前已有相關研究指出,內臟脂肪 (Visceral fat, VF) 的多寡與第二型糖尿病、胰島素阻抗等疾病皆有顯著的正相關,心周圍脂肪 (Pericardial fat, PF) 為包覆在心臟外圍的脂肪,亦有文獻指出心周圍脂肪生成的面積大小與心臟相關疾病的發生率呈現正相關。目前常用的實驗動物大致可分為兩大類:一、齧齒類動物,二、哺乳類大型動物如豬等,但是由常用的動物模型並無法觀察到大量心周圍脂肪的堆積。因此本論文的目標是建立飼料誘導的肥胖迷你豬模型,並探討其心功能和脂肪細胞的特徵。
本試驗使用十九頭起始月齡約為四個月的李宋豬作為實驗動物,取得之豬隻隨機分為兩組,一組為餵飼西方飼糧 (Western diet, W) (四公五母),而另外一組則為餵飼一般飼糧 (Control diet, C) (五公五母),實驗為期5個月,犧牲後取其右心房以及脂肪組織進行分析實驗結果顯示,W組豬隻體重和背脂厚度皆顯著高於C組。在血液生化值部分,W組不僅有較高的葡萄糖、三酸甘油脂、和總膽固醇濃度,還出現葡萄糖不耐的情況,檢測其血液中發炎因子亦發現W組別有較高的TNF-α濃度。從心臟電生理的結果顯示,W組別有右心房震顫的問題,進一步分析右心房和右心室的特徵,結果顯示,比起C組別,不管是在右心房還是右心室,W組別皆含有較高的三酸甘油濃度、較多的活性氧物質 (ROS) 及較差的抗氧化能力。 比較兩組別心周圍脂肪之重量,結果顯示W組別的PF重量顯著高於C組別。與C組別相比,W組別的PF有較好的抗氧化能力,相反的,VF的結果則顯示W組別抗氧化能力顯著低於C組別。而ROS的部分僅有W組PF有較高的趨勢 (p = 0.064)。在脂肪組成分分析中顯示,W組別中不論是PF或是VF,其多不飽和脂肪酸皆顯著低於C組別,尤其是在n6不飽和脂肪酸的部分,W組別亦顯著低於C組。對W組別脂肪組織產生的發炎因子進行檢測,結果顯示每單位的PF比起VF有較高的TNF-α和IL-6濃度。 綜合以上結果,經長期西方飼糧誘導後,李宋豬會產生肥胖以及代謝異常的情況,右心房/室的抗氧化能力下降,且堆積大量的TG,PF會分泌較多的發炎因子,可能導致右心功能的下降。本實驗的結果顯示李宋豬飼料誘導肥胖模型具有成為生醫用實驗動物平台的潛力,在未來不管是用於對心房震顫的治療,或是對心周圍脂肪更近一步的研究,李宋豬皆是極佳的研究介質。 | zh_TW |
| dc.description.abstract | Adipose tissue plays an important role in metabolic regulation, however, surplus adipose tissues cause metabolic dysfunction. Excess visceral fat (VF) contributes to the pathogenesis of metabolic-related diseases, such as type II diabetes, fatty liver, and cardiovascular diseases (CVDs); while pericardial fat (PF) is highly associated with the progression of CVDs, thus attracting more attention recently. The objective of this study was to setup a dietary induced obese (DIO) mininpig model, the heart function and the characteristics of adipose tissues (visceral and pericardial) were analyzed to elucidate their role in metabolic regulation of DIO pigs.
Four-month-old Lee-Sung minipigs were randomly assigned to two groups: control diet (C, 5 castrated males, 5 female) and Western diet (W, 4 castrated males, 5 female), for a 5-month experimental period. Minipigs were sacrificed, the right cardiac tissue and the adipose tissues (VF and PF) were isolated for analysis in the end of experiment. W pigs gained more body weight and habited more back fat. Comparing with C group, W pigs had higher plasma levels of glucose, triglycerides (TG), total cholesterol and TNF-α. Beside, glucose intolerance were developed in the W pigs, indicating that the Western diet induced metabolic dysfunction in W pigs successfully. The incidence of atrial fibrillation is higher in W pigs. In W pigs, reactive oxygen species (ROS) and TG were higher in the right cardiac tissue than C pigs. In addition, the oxygen radical absorption capacity (ORAC) was higher in the right atrium and ventricle in C pigs. Compared with C pigs, W pigs had heavier PF weight. Higher ORAC was found in the PF of W pigs; in contrast, W pigs exhibited a lower ORAC in the VF then the C pigs. In PF, W pigs exhibited more ROS than C pigs (p = 0.064). The result of fatty acid composition shown that less polyunsaturated fatty acids, especially n6 PUFA in the PF of W pigs. A greater protein expression of TNF-α and IL-6 were observed in the PF of W pigs. In summary, western diet induced obesity and metabolic disorders in Lee-Sung pigs. Worse anti-oxidation ability and more TG were found in RV/RA of W pigs. Higher inflammation was induced in the PF of W pigs, which might contribute to the dysfunction in the right cardiac tissue. Our results implied that dietary induced obesity Lee-Sung pigs could be a potential model for studying pericardial fat and obesity-related atrial fibrillation. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:43:48Z (GMT). No. of bitstreams: 1 ntu-105-R03626016-1.pdf: 4638074 bytes, checksum: 1bb76253a247f645cf2078d9db8900d0 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目錄
中文摘要 ii 英文摘要 iv 目錄 vi 圖目錄 ix 表目錄 xi 第壹章、文獻回顧 1 一、 代謝症候群 1 二、 代謝症候群對心功能的可能影響 3 三、 西方飲食 5 四、 代謝症候群動物模型 6 五、 脂肪特性 8 六、 實驗目的 10 第貳章、 材料與方法 11 一、 試驗設計 11 二、 實驗飼糧 12 三、 背部脂肪測定與體組成 13 四、 靜脈葡萄糖耐受性測試 13 五、 樣品採集 14 六、 蛋白質濃度測定 14 七、 血液生化值 15 (一) 血糖 15 (二) 三酸甘油脂 15 (三) 總膽固醇 15 (四) 高密度脂蛋白 16 (五) 低密度脂蛋白 16 八、 發炎激素濃度之測定 17 九、 游離脂肪酸之測定 17 十、 脂肪組織染色及顆粒大小分析 17 十一、 基因表現 18 (一) 抽取脂肪組織RNA以及cDNA之合成 18 (二) Real-Time PCR ( qPCR ) 19 (三) 基因表現量分析 19 十二、 抗氧化能力檢測 21 十三、 硫代巴比妥酸反應測試 22 (一) 心臟組織的測量 22 (二) 脂肪組織的測量 22 十四、 脂肪組織組成份分析 23 (一) 樣品的製備 23 (二) 脂肪酸分析 23 十五、 統計分析 24 第參章、 試驗結果 25 一、 李宋豬飼料誘導肥胖豬隻模型的建立 25 (一) 飼料誘導對李宋豬生理的影響 25 (二) 飼料誘導對李宋豬血液生化值的影響 25 (三) 飼料誘導對李宋豬葡萄糖耐受性的影響 26 (四) 飼料誘導對李宋豬血漿中免疫因子的影響 26 二、 西方飼糧對心臟的影響 34 (一) 心臟電生理及組織三酸甘油脂測定結果 34 (二) 心臟總氧化物與抗氧化能力測定 34 三、 李宋豬脂肪特性與組成份分析 40 (一) 心周圍脂肪外觀與切片染色分析 40 (二) 內臟脂肪與心周圍脂肪總氧化物與抗氧化能力測定 40 (三) 內臟脂肪與心周圍脂肪內游離脂肪酸分析 41 (四) 內臟脂肪與心周圍脂肪脂肪酸組成分析 50 (五) 在西方飼糧組別中內臟脂肪與心周圍脂肪中發炎因子分析 53 第肆章、 問題與討論 56 一、 飼料誘導對李宋豬生理的影響 56 二、 飼料誘導肥胖豬隻與心功能 59 三、 脂肪組織的特性與心臟之關聯 60 四、 游離脂肪酸對生理之影響 61 第伍章、 結論 62 第陸章、 參考文獻 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 心周圍脂肪 | zh_TW |
| dc.subject | 李宋豬 | zh_TW |
| dc.subject | 西方飼糧 | zh_TW |
| dc.subject | 肥胖 | zh_TW |
| dc.subject | 心房震顫 | zh_TW |
| dc.subject | western diet | en |
| dc.subject | pericardial fat | en |
| dc.subject | Lee-Sung pigs | en |
| dc.subject | obesity | en |
| dc.subject | atrial fibrillation | en |
| dc.title | 利用飲食誘導肥胖迷你豬模型探討心包油之特徵及其與心房震顫之關聯 | zh_TW |
| dc.title | Characterization of pericardial adipose tissue and its relationship with atrial fibrillation via a dietary-induced obesity minipig model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳兩新,張育嘉,陳洵一 | |
| dc.subject.keyword | 李宋豬,西方飼糧,肥胖,心房震顫,心周圍脂肪, | zh_TW |
| dc.subject.keyword | Lee-Sung pigs,western diet,obesity,atrial fibrillation,pericardial fat, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU201602151 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-09 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| Appears in Collections: | 動物科學技術學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-105-R03626016-1.pdf Restricted Access | 4.53 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
