請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78124
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳達仁(Dar-Zen Chen) | |
dc.contributor.author | Yue Sun | en |
dc.contributor.author | 孫悅 | zh_TW |
dc.date.accessioned | 2021-07-11T14:42:59Z | - |
dc.date.available | 2021-11-02 | |
dc.date.copyright | 2016-11-02 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-12 | |
dc.identifier.citation | [1]L. Bruzzone and G. Bozzini, 'A statically balanced SCARA-like industrial manipulator with high energetic efficiency,' Meccanica, vol. 46, pp. 771-784, 2011.
[2]J. L. Herder, 'Design of spring force compensation systems,' Mechanism and Machine Theory, vol. 33, pp. 151-161, Jan-Feb 1998. [3]B. C., A. V., B. S., and G. S., 'Design and prototyping of a new balancing mechanism for spatial parallel manipulators,' ASME, Journal of Mechanical Design, vol. 130, pp. 072305-072317, 2008. [4]T. Laliberte, C. M. Gosselin, and M. Jean, 'Static balancing of 3-DOF planar parallel mechanisms,' Ieee-Asme Transactions on Mechatronics, vol. 4, pp. 363-377, Dec 1999. [5]A. Russo, R. Sinatra, and F. F. Xi, 'Static balancing of parallel robots,' Mechanism and Machine Theory, vol. 40, pp. 191-202, Feb 2005. [6]J. G. Wang and C. M. Gosselin, 'Static balancing of spatial three-degree-of-freedom parallel mechanisms,' Mechanism and Machine Theory, vol. 34, pp. 437-452, Apr 1999. [7]J. G. Wang and C. M. Gosselin, 'Static balancing of spatial four-degree-of-freedom parallel mechanisms,' Mechanism and Machine Theory, vol. 35, pp. 563-592, Apr 2000. [8]G. Cheng, M. H. He, J. N. Huang, Y. T. Chen, C. C. Yen, and T. S. Jan, 'Table lamp and rotary joint thereof,' US 8511861 B2, 2013. [9]L. Hedlund, 'Lockable friction joint ' US 20120086200 A1, 2012. [10]A. Kantor and J. W. Kleinschmidt, 'Friction control for articulating arm joint,' US 6837468 B1, 2005. [11]T. Rahman, R. Ramanathan, R. Seliktar, and W. Harwin, 'A simple technique to passively gravity-balance articulated mechanisms,' Journal of Mechanical Design, vol. 117, pp. 655-658, Dec 1995. [12]S. K. Agrawal, S. K. Banala, A. Fattah, V. Sangwan, V. Krishnamoorthy, J. P. Scholz, et al., 'Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton,' IEEE Trans Neural Syst Rehabil Eng, vol. 15, pp. 410-20, Sep 2007. [13]S. K. Agrawal and A. Fattah, 'Gravity-balancing of spatial robotic manipulators,' Mechanism and Machine Theory, vol. 39, pp. 1331-1344, Dec 2004. [14]S. K. Agrawal and A. Fattah, 'Design of an Orthotic Device for Full or Partial Gravity-Balancing of a Human Upper Arm During Motion,' presented at the Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, 2003. [15]S. K. Banala, S. K. Agrawal, A. Fattah, V. Krishnamoorthy, W. L. Hsu, J. Scholz, et al., 'Gravity-balancing leg orthosis and its performance evaluation,' Ieee Transactions on Robotics, vol. 22, pp. 1228-1239, Dec 2006. [16]A. Fattah and S. K. Agrawal, 'Gravity Balancing of a Human Leg using an External Orthosis,' presented at the Robotics and Automation, 2007 IEEE International Conference on, 2007. [17]P. Y. Lin, W. B. Shieh, and D. Z. Chen, 'Design of Perfectly Statically Balanced One-DOF Planar Linkages With Revolute Joints Only,' Journal of Mechanical Design, vol. 131, pp. 051004-051012, May 2009. [18]P. Y. Lin, W. B. Shieh, and D. Z. Chen, 'Design of Statically Balanced Planar Articulated Manipulators With Spring Suspension,' Ieee Transactions on Robotics, vol. 28, pp. 12-21, Feb 2012. [19]P. Y. Lin, W. B. Shieh, and D. Z. Chen, 'A stiffness matrix approach for the design of statically balanced planar articulated manipulators,' Mechanism and Machine Theory, vol. 45, pp. 1877-1891, Dec 2010. [20]P.-Y. Lin, W.-B. Shieh, and D.-Z. Chen, 'Design of statically balanced planar articulated manipulators with spring suspension,' IEEE transactions on robotics, vol. 28, pp. 12-21, 2012. [21]P.-Y. Lin, W.-B. Shieh, and D.-Z. Chen, 'A stiffness matrix approach for the design of statically balanced planar articulated manipulators,' Mechanism and Machine Theory, vol. 45, pp. 1877-1891, 2010. [22]P.-Y. Lin, W.-B. Shieh, and D.-Z. Chen, 'Design of a gravity-balanced general spatial serial-type manipulator,' Journal of Mechanisms and Robotics, vol. 2, p. 031003, 2010. [23]P.-Y. Lin, W.-B. Shieh, and D.-Z. Chen, 'Design of perfectly statically balanced one-DOF planar linkages with revolute joints only,' Journal of Mechanical Design, vol. 131, p. 051004, 2009. [24]Y.-Y. Lee and D.-Z. Chen, 'Determination of spring installation configuration on statically balanced planar articulated manipulators,' Mechanism and Machine Theory, vol. 74, pp. 319-336, 2014. [25]C. A. Oatis, 'The mechanics and pathomechanics of human movement,' 2003. [26]J. Perry and J. M. Burnfield, 'Gait analysis: normal and pathological function,' 1992. [27]S. Krut, M. Benoit, E. Dombre, and F. Pierrot, 'Moonwalker, a lower limb exoskeleton able to sustain bodyweight using a passive force balancer,' in Robotics and Automation (ICRA), 2010 IEEE International Conference on, 2010, pp. 2215-2220. [28]C. E. Clauser, J. T. McConville, and J. W. Young, 'Weight, volume, and center of mass of segments of the human body,' DTIC Document1969. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78124 | - |
dc.description.abstract | 本論文提出了分支型態與匯流型態之鉸接式靜平衡平面機構之設計。靜平衡機構是可以在任何姿態下平衡自身重力之機構。藉由安裝彈簧於機構之桿件上指定位置上,使其彈力位能隨著桿件運動增減,進而使系統重力位能及彈力位能總合為固定值,從而保持機構之靜平衡。本文首先定義分支型態與匯流型態鉸接式靜平衡平面機構。對於分支形態機構,選擇與地桿相連最多的開環連續桿件為主幹部分(Main Part),較少的為分支部分(Branch Part),兩者間重疊桿件之靜平衡由主幹部分和分支部分共同承擔。同理,將匯流形態機構分為擁有重疊桿件的主幹部分(Main Part)和匯流部分(Confluence Part)。重疊桿件之重力位能被分支部分或匯流部分彈簧所平衡之比率定義為分擔系數(Partition Coefficient)。分擔系數利用重疊桿件向量恒定相同,將主幹部分重力位能剛性矩陣之元素按照比率分給分支部分或匯流部分。主幹部分重力位能改變量與分支部分或匯流部分重力位能改變量之和為零,分別平衡兩部分,從而保持機構之靜平衡狀態。由於改變分擔係數會影響各部分重力位能剛性矩陣,主幹部分、分支部分或匯流部分平衡所需彈簧勁度係數與配置將做相應調整。基於此概念,通過調整分擔係數改變各部分彈簧所承擔之載荷, 按照需求設定優化函數,以尋求符合設計需求的最佳分擔係數及設計參數。本文通過例舉一個分支形態機構和一個匯流型態機構證實分擔係數對設計參數的優化效果。本文在最後將該理論應用於下肢復健輔具之設計,下肢復健輔具需外接在人體下肢並保持步態過程中的靜平衡。步態過程中,髖關節會產生相對人體主幹的位移,本設計克服多數外骨骼下肢輔具的缺點,考慮髖關節的位置相對於軀幹在行走時的改變。將髖關節視為平面對,將膝關節視為旋轉對,以致於患者穿戴時,下肢輔具和人體下肢在運動時的運動干涉降至最低,減少運動干涉所產生的不適感。根據下肢運動的需求進行分支形態下肢復健輔具的拓撲合成,並引入分擔係數的進行最佳化設計以尋求最佳的彈簧配置。 | zh_TW |
dc.description.abstract | The design of branch and confluence type articulated statically balanced planar mechanism is addressed in this thesis. Statically balanced mechanism is capable of self-sustaining the change of gravitational potential energy of the system at any configuration. By installing springs at appointed places of linkages, total potential energy of system remains constant, keeping the system statically balanced. The definition of branch and confluence type mechanism is addressed in this paper. For branch type mechanism, choose the most number of open-loop serial linkages as main part and the other one as branch part. The overlapped linkages of main part and branch part are balanced by main part and branch part together. For confluence type mechanism, the mechanism is divided into main part and confluence part with overlapped linkages in the same way. To definite the ratio of overlapped linkages balanced by springs of branch part or confluence part as partition coefficient. Because the vectors of overlapped linkages are always same, partition the elements of gravitational stiffness block matrix from main part to branch part or confluence part. The summation of variation for main part and variation for branch or confluence part is zero. To keep the system statically balanced, every part is balanced by springs apart. The spring constant of main part, branch part or confluence parts should be adjusted because of the change of gravitational stiffness block matrix. Adjust the springs of every part by changing partition coefficient to set optimize the partition coefficient and design parameters. For proving the impact of partition coefficient, examples of a branch type mechanism and a confluence type mechanism are presented. Finally, this theory is applying to parameter design of lower limb assistive device which is connected with human lower limb and keeps statically balance during gait. Since the hip joint has relation movement to human trunk, unlike most exoskeleton type of lower limb orthosis, considers the hip joint as a plane pair and knee joint as a revolute joint. As a result, the kinematic interference between the orthosis and the human lower limb can be minimized and discomfort can be eliminated. Topological synthesis of the branch type lower limb assistive device according to the kinematic behavior of the human lower limb is first accomplished. And the partition coefficient is applying on optimizing design for spring parameters. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:42:59Z (GMT). No. of bitstreams: 1 ntu-105-R03522637-1.pdf: 2333692 bytes, checksum: bab182f33f154a9992dfb0439ab41fde (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Chapter 1 Introduction(1)
1.1 Statically balanced mechanism(1) 1.2 Spring-balancing method(2) 1.3 Motivation(7) Chapter 2 Branch and Confluence Type Planar Mechanism(9) 2.1 Presentation of branch type planar mechanism(10) 2.1.1 Coordinate system of branch type planar mechanism(11) 2.1.2 Partition coefficient Ev(13) 2.1.3 Admissible configurations of branch type(14) 2.2 Presentation of confluence type planar mechanism(15) 2.2.1 Coordinate system of confluence type planar mechanism(17) 2.2.2 Partition coefficient Ev(17) 2.2.3 Admissible configurations of confluence type(18) Chapter 3 Gravitational Potential Energy of Branch and Confluence Type Planar Mechanism(21) 3.1Presentation of gravitational potential energy(21) 3.2 Partition coefficient of gravitational potential energy Ev(22) Chapter 4 Elastic Potential Energy of Branch and Confluence Type Planar Mechanism(25) 4.1Admissible spring configuration of branch and confluence type planar mechanism(25) 4.2Presentation of elastic potential energy(28) Chapter 5 Gravity Balance of Branch and Confluence Type Planar Mechanism(31) 5.1 The principle of gravity balance(31) 5.2 Influence of partition coefficient Ev(32) Chapter 6 Design Examples(37) 6.1 Branch type surgical lamp(37) 6.1.1 Statically balanced design without partition coefficient Ev(37) 6.1.2 Statically balanced design with partition coefficient Ev(43) 6.2 Confluence type solar panel adjusting device(47) 6.2.1 Statically balanced design without partition coefficient Ev(47) 6.2.2 Statically balanced design with partition coefficient Ev(53) Chapter 7 Application on lower limb assistive device(57) 7.1 The coordinate system of human lower limb(57) 7.2 Movement of hip joint during gait(58) 7.3 Design of branch type lower limb assistive device(60) 7.3.1 Topological synthesis of the branch type lower limb assistive device(61) 7.3.2 Optimization for spring parameters(64) Chapter 8 Conclusions(69) References(71) | |
dc.language.iso | en | |
dc.title | 分支型態與匯流型態鉸接式靜平衡平面機構之分擔系數概念及應用 | zh_TW |
dc.title | Conception and Application of Partition Coefficient For Branch and Confluence Type Articulated Statically Balanced Planar Mechanism | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃忠明,吳宗明 | |
dc.subject.keyword | 靜平衡,分支型態,匯流型態,分擔系數,下肢復健輔具, | zh_TW |
dc.subject.keyword | statically balanced,branch type,confluence type,partition coefficient,lower limb assistive device, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU201602522 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-R03522637-1.pdf 目前未授權公開取用 | 2.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。