Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78119
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武(Tung-Wu Lu)
dc.contributor.authorChang-Yi Laien
dc.contributor.author賴長逸zh_TW
dc.date.accessioned2021-07-11T14:42:49Z-
dc.date.available2025-08-14
dc.date.copyright2020-09-14
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation1. McLeod, W.D. and T. Blackburn, Biomechanics of knee rehabilitation with cycling. The American journal of sports medicine, 1980. 8(3): p. 175-180.
2. Callaghan, M.J., Lower body problems and injury in cycling. Journal of Bodywork and Movement Therapies, 2005. 9(3): p. 226-236.
3. Holmes, J., A. Pruitt, and N. Whalen, Lower extremity overuse in bicycling. Clinics in sports medicine, 1994. 13(1): p. 187-205.
4. Apkarian, J., S. Naumann, and B. Cairns, A three-dimensional kinematic and dynamic model of the lower limb. Journal of biomechanics, 1989. 22(2): p. 143-155.
5. Davis, R.B., et al., A gait analysis data collection and reduction technique. 1991.
6. Eng, J.J. and D.A. Winter, Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model? Journal of biomechanics, 1995. 28(6): p. 753-758.
7. Fujie, H., et al., Forces and moments in six-DOF at the human knee joint: mathematical description for control. Journal of Biomechanics, 1996. 29(12): p. 1577-1585.
8. Fujie, H., et al., The use of robotics technology to study human joint kinematics: a new methodology. 1993.
9. Dalley, A.F., A.M. Agur, and K. Moore, Clinically oriented anatomy. Vol. 4. 1999: Lippincott Williams Wilkins.
10. Nordin, M. and V.H. Frankel, Basic biomechanics of the musculoskeletal system. 2001: Lippincott Williams Wilkins.
11. Wilson, D., J. Feikes, and J. O’connor, Ligaments and articular contact guide passive knee flexion. Journal of biomechanics, 1998. 31(12): p. 1127-1136.
12. Wilson, D.R., et al., The components of passive knee movement are coupled to flexion angle. Journal of Biomechanics, 2000. 33(4): p. 465-473.
13. Beynnon, B.D., et al., Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. The American Journal of Sports Medicine, 1995. 23(1): p. 24-34.
14. Ramsey, D., et al., Methodological concerns using intra-cortical pins to measure tibiofemoral kinematics. Knee Surgery, Sports Traumatology, Arthroscopy, 2003. 11(5): p. 344-349.
15. Chen, H.-L., et al., Biomechanical strategies for successful obstacle crossing with the trailing limb in older adults with medial compartment knee osteoarthritis. Journal of biomechanics, 2008. 41(4): p. 753-761.
16. Ehara, Y., et al., Comparison of the performance of 3D camera systems II. Gait Posture, 1997. 5(3): p. 251-255.
17. Kuo, M.-Y., et al., Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand. Gait posture, 2011. 33(3): p. 379-384.
18. Lafortune, M., et al., Three-dimensional kinematics of the human knee during walking. Journal of biomechanics, 1992. 25(4): p. 347-357.
19. Lu, T.-W. and J. O’connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of biomechanics, 1999. 32(2): p. 129-134.
20. Lu, T.-W., et al., In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Medical Engineering Physics, 2008. 30(8): p. 1004-1012.
21. Komistek, R.D., D.A. Dennis, and M. Mahfouz, In vivo fluoroscopic analysis of the normal human knee. Clinical Orthopaedics and Related Research (1976-2007), 2003. 410: p. 69-81.
22. Tashman, S. and W. Anderst, In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. J. Biomech. Eng., 2003. 125(2): p. 238-245.
23. Lemieux, L., et al., A patient‐to‐computed‐tomography image registration method based on digitally reconstructed radiographs. Medical physics, 1994. 21(11): p. 1749-1760.
24. Lin, C.-C., et al., Comparisons of surface vs. volumetric model-based registration methods using single-plane vs. bi-plane fluoroscopy in measuring spinal kinematics. Medical Engineering Physics, 2014. 36(2): p. 267-274.
25. Kanamori, A., et al., The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: a human cadaveric study using robotic technology. Arthroscopy: The Journal of Arthroscopic Related Surgery, 2000. 16(6): p. 633-639.
26. Markolf, K.L., et al., Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. JBJS, 1990. 72(4): p. 557-567.
27. Markolf, K.L., D.C. Wascher, and G. Finerman, Direct in vitro measurement of forces in the cruciate ligaments. Part II: The effect of section of the posterolateral structures. The Journal of bone and joint surgery. American volume, 1993. 75(3): p. 387-394.
28. Rudy, T., et al., A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. Journal of biomechanics, 1996. 29(10): p. 1357-1360.
29. Sakane, M., et al., In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. Journal of Orthopaedic Research, 1997. 15(2): p. 285-293.
30. Allen, C.R., et al., Importance of the medial meniscus in the anterior cruciate ligament‐deficient knee. Journal of Orthopaedic Research, 2000. 18(1): p. 109-115.
31. Papageorgiou, C.D., et al., The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. The American journal of sports medicine, 2001. 29(2): p. 226-231.
32. Watanabe, Y., et al., Biomechanical function of the posterior horn of the medial meniscus: a human cadaveric study. Journal of Orthopaedic Science, 2004. 9(3): p. 280-284.
33. Debski, R.E., et al., Contribution of the passive properties of the rotator cuff to glenohumeral stability during anterior-posterior loading. Journal of shoulder and elbow surgery, 1999. 8(4): p. 324-329.
34. Li, G., et al., A validated three-dimensional computational model of a human knee joint. 1999.
35. Song, Y., et al., A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. Journal of biomechanics, 2004. 37(3): p. 383-390.
36. Dill, J. and T. Carr, Bicycle commuting and facilities in major US cities: if you build them, commuters will use them. Transportation research record, 2003. 1828(1): p. 116-123.
37. Saelens, B.E., J.F. Sallis, and L.D. Frank, Environmental correlates of walking and cycling: findings from the transportation, urban design, and planning literatures. Annals of behavioral medicine, 2003. 25(2): p. 80-91.
38. Bini, R., P.A. Hume, and J.L. Croft, Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Medicine, 2011. 41(6): p. 463-476.
39. Kim, P.T., et al., Mountain biking injuries requiring trauma center admission: a 10-year regional trauma system experience. Journal of trauma and acute care surgery, 2006. 60(2): p. 312-318.
40. Dannenberg, A.L., et al., Predictors of injury among 1638 riders in a recreational long-distance bicycle tour: Cycle Across Maryland. The American journal of sports medicine, 1996. 24(6): p. 747-753.
41. Newmiller, J., M. Hull, and F. Zajac, A mechanically decoupled two force component bicycle pedal dynamometer. Journal of Biomechanics, 1988. 21(5): p. 375-386.
42. Hull, T.B.M. and D. Wootten, An improved accuracy six-load component pedal dynamometer for cycling. Journal of biomechanics, 1996. 29(8): p. 1105-1110.
43. Bini, R.R., F. Diefenthaeler, and C.B. Mota, Fatigue effects on the coordinative pattern during cycling: Kinetics and kinematics evaluation. Journal of Electromyography and Kinesiology, 2010. 20(1): p. 102-107.
44. Fleming, B.C., et al., The strain behavior of the anterior cruciate ligament during bicycling. The American journal of sports medicine, 1998. 26(1): p. 109-118.
45. Tamborindeguy, A.C. and R.R. Bini, Does saddle height affect patellofemoral and tibiofemoral forces during bicycling for rehabilitation? Journal of bodywork and movement therapies, 2011. 15(2): p. 186-191.
46. Baka, N., et al., Statistical shape model-based femur kinematics from biplane fluoroscopy. IEEE Transactions on Medical Imaging, 2012. 31(8): p. 1573-1583.
47. Hurvitz, A. and L. Joskowicz, Registration of a CT-like atlas to fluoroscopic X-ray images using intensity correspondences. International journal of computer assisted radiology and surgery, 2008. 3(6): p. 493.
48. Yao, J. Assessing accuracy factors in deformable 2D/3D medical image registration using a statistical pelvis model. in Proceedings Ninth IEEE International Conference on Computer Vision. 2003. IEEE.
49. Fleute, M. and S. Lavallée. Nonrigid 3-D/2-D registration of images using statistical models. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 1999. Springer.
50. Benameur, S., et al., 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Computerized Medical Imaging and Graphics, 2003. 27(5): p. 321-337.
51. Laporte, S., et al., A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur. Computer Methods in Biomechanics Biomedical Engineering, 2003. 6(1): p. 1-6.
52. Lamecker, H., T.H. Wenckebach, and H.-C. Hege. Atlas-based 3D-shape reconstruction from X-ray images. in 18th International Conference on Pattern Recognition (ICPR'06). 2006. IEEE.
53. Zheng, G., et al., A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images. Medical image analysis, 2009. 13(6): p. 883-899.
54. Tang, T.S. and R.E. Ellis. 2D/3D deformable registration using a hybrid atlas. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 2005. Springer.
55. Li, S.-Y., Development of A Statistical Shape Model of the Huma Knee forThree-Dimensional Fluoroscopic Imaging of the Joint Motion. Institute of Biomedical Engineering National Taiwan University, 2018.
56. Dreiseitl, S. and L. Ohno-Machado, Logistic regression and artificial neural network classification models: a methodology review. Journal of biomedical informatics, 2002. 35(5-6): p. 352-359.
57. Agatonovic-Kustrin, S. and R. Beresford, Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of pharmaceutical and biomedical analysis, 2000. 22(5): p. 717-727.
58. Alpaydin, E., Introduction to Machine Learning, 3rd Editio. ed. 2014, The MIT Press.
59. Sarle, W.S., Neural networks and statistical models. 1994.
60. Rezzoug, N. and P. Gorce, Prediction of fingers posture using artificial neural networks. Journal of biomechanics, 2008. 41(12): p. 2743-2749.
61. Liu, Y., et al., Lower extremity joint torque predicted by using artificial neural network during vertical jump. Journal of biomechanics, 2009. 42(7): p. 906-911.
62. Liu, Y.-K., Development of an AI-Based Method for Predicting Three-Dimensional Kinematics from Geometry of the Knee During Pedaling. Institute of Biomedical Engineering National Taiwan University, 2019.
63. Rusinkiewicz, S. and M. Levoy. Efficient variants of the ICP algorithm. in Proceedings Third International Conference on 3-D Digital Imaging and Modeling. 2001. IEEE.
64. Chu, T., W. Ranson, and M.A. Sutton, Applications of digital-image-correlation techniques to experimental mechanics. Experimental mechanics, 1985. 25(3): p. 232-244.
65. Peters, W. and W. Ranson, Digital imaging techniques in experimental stress analysis. Optical engineering, 1982. 21(3): p. 213427.
66. Peters, W., et al., Application of digital correlation methods to rigid body mechanics. Optical Engineering, 1983. 22(6): p. 226738.
67. Sutton, M., et al., Application of an optimized digital correlation method to planar deformation analysis. Image and Vision Computing, 1986. 4(3): p. 143-150.
68. Pan, B., et al., Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement science and technology, 2009. 20(6): p. 062001.
69. Boyce, B.L., et al., Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials, 2008. 29(28): p. 3896-3904.
70. Gao, Z. and J.P. Desai, Estimating zero-strain states of very soft tissue under gravity loading using digital image correlation. Medical image analysis, 2010. 14(2): p. 126-137.
71. Sztefek, P., et al., Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia. Journal of biomechanics, 2010. 43(4): p. 599-605.
72. Hsieh, H.-J., et al., Evaluation of three force-position hybrid control methods for a robot-based biological joint-testing system. Biomedical engineering online, 2016. 15(1): p. 62.
73. Hao, C.C., Biomechanics of articular surface in ankle joint with subtalar arthrodesis using digital image correlation and robot system. Institute of Biomedical Engineering National Taiwan University, 2013.
74. Wu, G., et al., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. Journal of biomechanics, 2002. 35(4): p. 543-548.
75. Harris, M.D., et al., A combined experimental and computational approach to subject-specific analysis of knee joint laxity. Journal of biomechanical engineering, 2016. 138(8).
76. Ching, R.P., et al., Comparison of residual stability in thoracolumbar spine fractures using neutral zone measurements. Journal of orthopaedic research, 1995. 13(4): p. 533-541.
77. Wang, H., et al., An MRI-compatible loading device to assess knee joint cartilage deformation: Effect of preloading and inter-test repeatability. Journal of biomechanics, 2015. 48(12): p. 2934-2940.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78119-
dc.description.abstract以往研究膝關節力學的方式主要分為活體研究與試體研究:活體研究雖能量測人體膝關節之運動學資訊,但卻無法得知關節內部詳細之力學表現;而透過六軸機械手臂輔助之試體研究雖能得知動作中之生物力學表現,但卻無從得知屬於試體之活體功能性運動學資訊,故無法模擬其動作並觀察其中生物力學。若能得知屬於試體、具活體意義的運動學資訊,未來便能利用試體實驗模擬自行車運動,並觀察過程中的生物力學變化,以對臨床復健及運動層面上的自行車運動給予建議。
本研究利用膝關節形狀參數所表達的骨頭模型與利用以訓練好的類神經網路輸出的自行車踩踏運動學參數,找出形狀參數對於自行車踩踏運運動六個自由度的敏感度,並結合了三維全域變形及應變量測系統與機械手臂關節測試系統,由此探討腳踏運動對於膝關節之影響。本研究進行腳踏運動模擬,並重建韌帶位置,藉由模型對位可獲完整韌帶位置和骨頭模型,與量測出骨頭運動學資訊,推算出膝關節韌帶之應變。
經由結果得出,若個別改變股骨端的第五個係數以及第六個係數或是個別改變脛骨端的第八個係數以及第十個係數,將會使得類神經網路輸出的腳踏運動六個自由度的運動學參數變化較大。反之,個別改變股骨端的第一個係數以及第九個係數或是改變脛骨端的第一個係數以及第七個係數,會使的類神經網路輸出的運動學參數相較於其他係數不會有太大的改變。可以從結果中發現自行車其行過程中在Flexion(+)/Extension(-)的動作以及Proximal(+)/Distal(-)的動作相較於其他四個字由度的動作有較大的力量、力矩變化,可以建議利用自行車運動作為復健之患者在復健期間應該適當的調整這兩個自由度的動作。
zh_TW
dc.description.abstractThe knee joint is one of the largest joints in humans and plays an important part in various functional movements in daily life, such as walking, going upstairs and downstairs, sitting and standing. Besides, cycling plays an important part in daily life, with functions such as transportation, entertainment, and sports fitness. Cycling is often taken as a rehabilitation treatment for the patients with injury of lower extremities. However, pedaling wrongly may cause injuries of knee joints. Therefore, revealing detail biomechanics of a pedaling knee is important. Biomechanics of knee had been studied mainly by in vivo and in vitro ways. With the in vivo method, kinematics of a living individual can be measured, but not the detail biomechanics. On the other hand, detail biomechanics can be measured by in vitro studies, but not in living, functional movements. Therefore, providing the living kinematics for cadavers to in vitro experiments could help figure out the biomechanics of pedaling.
This study combines a three-dimensional overall deformation and strain measurement system (VIC3D) with a robot-based joint testing system to explore the impact of pedal motion on the knee joint. In this study, pedal motion simulations were performed to reconstruct the cartilage surface. Through model alignment, a complete cartilage and bone model can be obtained, and bone kinematics can be measured to calculate knee cartilage deformation and ligament strain.
This study uses the bone model expressed by the shape coefficients of the knee joint and the bicycle pedaling kinematics parameters output by the trained neural network to find out the sensitivity of the shape coefficients to the six degrees of freedom of the bicycle pedaling movement. This study combines a three-dimensional overall deformation and strain measurement system (VIC3D) with a robot-based joint testing system to explore the impact of pedal motion on the knee joint. In this study, pedal motion simulations were performed to reconstruct the cartilage surface. Through model alignment, a complete cartilage and bone model can be obtained, and bone kinematics can be measured to calculate knee cartilage deformation and ligament strain.
According to the results, if the fifth and sixth coefficients of the femoral are changed individually, or the eighth and tenth coefficients of the tibial are changed individually, the pedal motion output by the neural network will be huge change of six degree of freedom. Conversely, individually changing the first coefficient and the ninth coefficient of the femoral or the first coefficient and the seventh coefficient of the tibial will make the kinematic parameters output by the neural network different from other coefficients.
In addition, it can be found from the results of the robot-based joint testing system experiment that the movements of Flexion (+)/Extension (-) and Proximal (+)/Distal (-) during the cycle of the bicycle are compared with the movements of the other four degree of freedom. There are large changes in strength and torque. It can be suggested that patients who use bicycle exercise as rehabilitation should adjust these two degrees of freedom during rehabilitation.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:42:49Z (GMT). No. of bitstreams: 1
U0001-1408202013570900.pdf: 6273425 bytes, checksum: f59c26bc3638fde79f1d61c0229a631c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
第一節 研究動機 1
第二節 膝關節之功能解剖構造 3
一、 骨骼及韌帶系統 3
第三節 文獻回顧 7
一、 活體研究 7
二、 試體研究 10
第四節 研究目的 18
第二章 材料與方法 19
第一節 形狀參數敏感度測試 19
第二節 膝關節試體 21
第三節 硬體 22
一、 機械手臂系統 22
二、 六軸力規 24
三、 三維全域變形及應變量測系統 25
第四節 軟體 26
一、 Visual Basic 6.0 26
二、 三維全域變形及應變量測系統 27
三、 Geomagic Studio 13 27
四、 膝關節自行車腳踏運動學資訊 28
第五節 數位影像相關法 28
第六節 控制理論與實驗流程 30
一、 座標系統定義 31
二、 機器人學理論應用:機械手臂控制 32
三、 實驗流程 34
第七節 分析方法 36
第三章 實驗分析結果 38
第一節 形狀參數敏感度 38
第二節 膝關節之勁度 68
第三節 膝關節自行車運動之力量-位移以及力矩-旋轉 72
第四章 討論 79
第一節 形狀參數敏感度 79
第二節 機械手臂關節測試系統於膝關節之收斂 80
第三節 膝關節自行車運動 81
第五章 結論 83
參考文獻 85
dc.language.isozh-TW
dc.subject機械手臂關節測試系統zh_TW
dc.subject數位影像相關法zh_TW
dc.subject前十字韌帶zh_TW
dc.subject內側副韌帶zh_TW
dc.subject外側副韌帶zh_TW
dc.subject後十字韌帶zh_TW
dc.subject自行車運動zh_TW
dc.subject膝關節zh_TW
dc.subjectPedalingen
dc.subjectKnee Jointen
dc.subjectRobotic-based Joint Testing Systemen
dc.subjectDigital Image Correlationen
dc.subjectAnterior Cruciate Ligamenten
dc.subjectPosterior Cruciate Ligamenten
dc.subjectLateral Collateral Ligamenten
dc.subjectMedial Collateral Ligamenten
dc.title利用機械手臂關節測試系統模擬腳踏運動以利量測試體膝關節合力zh_TW
dc.titleMeasuring Knee Resultant Forces In Vitro During Cycling Simulated Using a Robot-Based Joint Testing Systemen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文斌(Weng-Pin Chen),林正忠(Cheng-Chung Lin),陳祥和(Hsiang-Ho Chen)
dc.subject.keyword膝關節,機械手臂關節測試系統,數位影像相關法,前十字韌帶,後十字韌帶,外側副韌帶,內側副韌帶,自行車運動,zh_TW
dc.subject.keywordKnee Joint,Robotic-based Joint Testing System,Digital Image Correlation,Anterior Cruciate Ligament,Posterior Cruciate Ligament,Lateral Collateral Ligament,Medial Collateral Ligament,Pedaling,en
dc.relation.page90
dc.identifier.doi10.6342/NTU202003407
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
dc.date.embargo-lift2025-08-14-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1408202013570900.pdf
  未授權公開取用
6.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved