請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78107
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏志平 | |
dc.contributor.author | Guan-Ying Chen | en |
dc.contributor.author | 陳冠穎 | zh_TW |
dc.date.accessioned | 2021-07-11T14:42:27Z | - |
dc.date.available | 2021-11-02 | |
dc.date.copyright | 2016-11-02 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-18 | |
dc.identifier.citation | Abbas, A., Zhang, L., & Khan, S. U. (2014). A literature review on the state-of-the-art in patent analysis. World Patent Information, 37, 3-13.
Acosta, M., & Coronado, D. (2003). Science–technology flows in Spanish regions: an analysis of scientific citations in patents. Research Policy, 32(10), 1783-1803. Aharonson, B. S., & Schilling, M. A. (2016). Mapping the technological landscape: Measuring technology distance, technological footprints, and technology evolution. Research Policy, 45(1), 81-96. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993-1022. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. Dahlin, K. B., & Behrens, D. M. (2005). When is an invention really radical?: Defining and measuring technological radicalness. Research Policy, 34(5), 717-737. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391. Gerken, J. M., & Moehrle, M. G. (2012). A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis. Scientometrics, 91(3), 645-670. Hall, B. H., Jaffe, A. B., & Trajtenberg, M. (2001). The NBER patent citation data file: Lessons, insights and methodological tools. Hasan, M. A., Spangler, W. S., Griffin, T., & Alba, A. (2009). Coa: Finding novel patents through text analysis. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Herbrich, R., Graepel, T., & Obermayer, K. (1999). Support vector learning for ordinal regression. Paper presented at the Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on (Conf. Publ. No. 470). Hofmann, T. (1999). Probabilistic latent semantic indexing. Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42(1-2), 177-196. Hu, P., Huang, M., Xu, P., Li, W., Usadi, A. K., & Zhu, X. (2012). Finding nuggets in IP portfolios: core patent mining through textual temporal analysis. Proceedings of the 21st ACM International Conference on Information and Knowledge Management. Jun, S., Sung Park, S., & Sik Jang, D. (2012). Technology forecasting using matrix map and patent clustering. Industrial Management & Data Systems, 112(5), 786-807. Kaplan, S., & Vakili, K. (2015). The double‐edged sword of recombination in breakthrough innovation. Strategic Management Journal, 36(10), 1435-1457. Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10-25. Kim, Y. G., Suh, J. H., & Park, S. C. (2008). Visualization of patent analysis for emerging technology. Expert Systems with Applications, 34(3), 1804-1812. Lee, C., Jeon, J., & Park, Y. (2011). Monitoring trends of technological changes based on the dynamic patent lattice: A modified formal concept analysis approach. Technological Forecasting and Social Change, 78(4), 690-702. Lee, C., Kang, B., & Shin, J. (2015). Novelty-focused patent mapping for technology opportunity analysis. Technological Forecasting and Social Change, 90, 355-365. Lee, S., Yoon, B., & Park, Y. (2009). An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 29(6), 481-497. Li, H. (2011). A short introduction to learning to rank. IEICE TRANSACTIONS on Information and Systems, 94(10), 1854-1862. Noh, H., Jo, Y., & Lee, S. (2015). Keyword selection and processing strategy for applying text mining to patent analysis. Expert Systems with Applications, 42(9), 4348-4360. Nonaka, H., Kobayahi, A., Sakaji, H., Suzuki, Y., Sakai, H., & Masuyama, S. (2010). Extraction of the effect and the technology terms from a patent document. Paper presented at the Computers and Industrial Engineering (CIE), 2010 40th International Conference on. Pan, G.-Y. (2013). A new approach for technological opportunity identification: patent novelty assessment by semantic and citation analysis (Master thesis). National Taiwan University. Porter, A. L., & Detampel, M. J. (1995). Technology opportunities analysis. Technological Forecasting and Social Change, 49(3), 237-255. Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613-620. Schoenmakers, W., & Duysters, G. (2010). The technological origins of radical inventions. Research Policy, 39(8), 1051-1059. Shane, S. (2001). Technological opportunities and new firm creation. Management Science, 47(2), 205-220. Shaparenko, B., Caruana, R., Gehrke, J., & Joachims, T. (2005). Identifying temporal patterns and key players in document collections. Proceedings of the IEEE ICDM Workshop on Temporal Data Mining: Algorithms, Theory and Applications (TDM-05). Son, C., Suh, Y., Jeon, J., & Park, Y. (2012). Development of a GTM-based patent map for identifying patent vacuums. Expert Systems with Applications, 39(3), 2489-2500. Trajtenberg, M., Henderson, R., & Jaffe, A. (1997). University versus corporate patents: A window on the basicness of invention. Economics of Innovation and New Technology, 5(1), 19-50. Tseng, Y.-H., Lin, C.-J., & Lin, Y.-I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247. Wang, S., Lee, W.-C., Lei, Z., Zhang, X., & Kuo, Y.-H. (2014). Exploring technological trends for patent evaluation. Paper presented at the Data Science and Advanced Analytics (DSAA), 2014 International Conference on. Wu, Z., & Palmer, M. (1994). Verbs semantics and lexical selection. Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics. Yoon, B., Park, I., & Coh, B.-y. (2014). Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining. Technological Forecasting and Social Change, 86, 287-303. Yoon, B. U., Yoon, C. B., & Park, Y. T. (2002). On the development and application of a self–organizing feature map–based patent map. R&D Management, 32(4), 291-300. Yoon, J., & Kim, K. (2011). Detecting signals of new technological opportunities using semantic patent analysis and outlier detection. Scientometrics, 90(2), 445-461. Yoon, J., Park, H., Seo, W., Lee, J.-M., Coh, B.-y., & Kim, J. (2015). Technology opportunity discovery (TOD) from existing technologies and products: A function-based TOD framework. Technological Forecasting and Social Change, 100, 153-167. Yu, H., & Kim, S. (2012). Svm tutorial—classification, regression and ranking. Handbook of natural computing (pp. 479-506): Springer. 汪島軍、馬仁宏、陳亙右、蔡斯凱、林建智 (2004)。原子力顯微鏡專利地圖及分析。財團法人國家實驗研究院科技政策研究與資訊中心。Patent analysis of atomic force microscope. Taiwan STPI (Science & Technology Policy Research and Information Center). 陳達仁、蔡定平 (2005)。超解析結構近場光碟專利地圖及分析。財團法人國家實驗研究院科技政策研究與資訊中心。Patent anlysis of super-RENS disk. Taiwan STPI (Science & Technology Policy Research and Information Center). 麥富德、黃楓台、簡國明、王永銘、陳秋燕 (2002)。碳奈米管專利地圖及分析。財團法人國家實驗研究院科技政策研究與資訊中心。Carbon nanotube. Taiwan STPI (Science & Technology Policy Research and Information Center). 簡國明、洪長春、吳典熹、王永銘、藍怡平 (2003)。奈米二氧化鈦專利地圖及分析。財團法人國家實驗研究院科技政策研究與資訊中心。Titanium dioxide. Taiwan STPI (Science & Technology Policy Research and Information Center). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78107 | - |
dc.description.abstract | 專利文件被廣泛地認為是評估技術發展趨勢和企業研發活動的一個重要來源,「科技發展」的實質意涵或許難以捕捉,但我們能將「專利文件」作為其代理資料,透過專利文件去剖析技術發展、預測科技的改變以及識別出有潛力的科技機會。基於「識別科技機會」的觀點,對於企業、學者而言,最主要的目標便是希望「識別出兼具新穎性和影響性的專利」,這些專利是特定技術領域中,相對有價值、有潛力的專利,也就是具有發展潛力的科技機會。
一旦企業識別出科技機會,便能夠掌握先機,做出具有相對競爭優勢的產品以便取得先進者優勢,並且擁有獨特的見解以制定企業研發活動的相關策略。而當企業針對自己所擁有的專利進行「識別科技機會」的相關分析時,便可以藉此捨棄排序在末端的專利,省下大筆專利維護費用。 本研究的主要目的便在於,以自動化的方式結合專利文件的書目資料和文本內容,在不需要專家介入的情況下,便能排序、評估專利的新穎性和影響性,藉此篩選出相對具有較高新穎性和影響性的專利,而這些「核心專利」便會被視為「最有可能的潛在科技機會」,以此協助科技機會的識別。研究結果也顯示我們所提出的方法之效能是優於前人的研究。 | zh_TW |
dc.description.abstract | Patent data is an important proxy of technology trends, so people can predict the technological change and identifying technological opportunities via patent data. We propose a learning-to-rank approach, ‘‘Core Patent Identification (CPI)’’ method, that combines both bibliometric and content information of patents. This approach can automatically rank the novelty and impact of patents in a specific technology field and contribute to technological opportunity identification. The patents with relatively high novelty and influence are called core patents, which represent as probable technological opportunities. Our empirical evaluation results also suggest that our proposed CPI method (using Ranking SVM as the underlying learning-to-rank method) significantly outperforms the benchmark method.
This approach is beneficial for firms in several ways. Through finding novel and influential patents, firms would have insights in identifying technological opportunity and develop strategies for patent management. Furthermore, because the patents at the top of the ranking list are likely high novel and influential, firms can utilize the ranking result to make business decisions such as mergers and acquisitions. On the other hand, if firms use this approach to analyze own patents, firms can discard the patents that are at the tail of the ranking list to save the patent maintenance fee. In short, firms find out valuable patents which are regarded as technological opportunities in a specific technological domain, so firms can well utilize these patents to create competitive advantages. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:42:27Z (GMT). No. of bitstreams: 1 ntu-105-R03725006-1.pdf: 2172873 bytes, checksum: ecbe06d46936408e48d208133e98ea7d (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv TABLE OF CONTENTS v LIST OF FIGURES viii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Background 1 1.2 Structure of a Patent Document 2 1.3 Research Motivations and Objectives 3 Chapter 2 Literature Review 5 2.1 Technological Opportunity 5 2.2 Vacancy-based Technological Opportunity Identification 6 2.3 Novelty-based Technological Opportunity Identification 8 2.4 Another Thought about Technological Opportunity Identification 10 2.5 Prior Methods of Novelty-based Technological Opportunity Identification 11 2.5.1 Citation-based Analysis 11 2.5.2 Keyword-based Analysis 12 2.5.3 SAO-based Analysis 13 2.6 Research Gap 14 Chapter 3 Design of Our Proposed Core Patent Identification (CPI) Method 15 3.1 Data Preprocessing 17 3.2 Patent Document Representation 18 3.3 Patent Novelty and Impact Measurement 18 3.4 Patent Novelty and Impact Measurement: Bibliometric Analysis 19 3.4.1 Number of Backward Citations 20 3.4.2 Originality (USPC) 20 3.4.3 Science Linkage 21 3.4.4 Novelty Based on Similarity of Backward Citation Structure 22 3.4.5 Normalized Number of Patent Claims 24 3.5 Patent Novelty and Impact Measurement: Content-based Analysis 25 3.5.1 Semantic Vector Space 26 3.5.2 Content-based Variables: Novelty-based Measures 30 3.5.3 Content-based Variables: Impact-based Measure 33 3.6 Patent Novelty and Impact Measurement: Summary 35 3.7 Patent Novelty and Impact Ranking Model Construction 36 3.7.1 Learning-to-rank 37 3.7.2 Pairwise Approach: Ranking SVM 39 Chapter 4 Evaluation Design 42 4.1 Experimental Data 42 4.2 Evaluation Metrics 50 4.2.1 MAP (Mean Average Precision) 50 4.2.2 NDCG (Normalized Discounted Cumulative Gain) 51 4.3 Experimental Procedure 53 4.4 Parameter Tuning 54 4.4.1 Dimension Selection of LSA 55 4.4.2 Semantic Topic Selection of VSM, LSA, PLSA and LDA 58 4.5 Comparative Evaluation 61 4.5.1 Benchmark 61 4.5.2 Our Proposed Core Patent Identification (CPI) Method 62 4.5.3 Comparative Evaluation 62 4.6 Additional Evaluations 64 4.6.1 Experiment 1: Effects of Variable Selection 64 4.6.2 Experiment 2: Effects of Analysis Target 70 4.6.3 Experiment 3: Effects of Issue Date and Filing Date of a Patent 75 4.6.4 Experiment 4: Effects of Training Sizes 79 Chapter 5 Conclusion and Future Work 85 5.1.1 Conclusion 85 5.1.2 Future Work 87 References 88 | |
dc.language.iso | en | |
dc.title | 尋找核心專利以協助科技機會的識別 | zh_TW |
dc.title | Finding Core Patents for Supporting Technological Opportunity Identification | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳彥良,楊錦生,吳怡瑾 | |
dc.subject.keyword | 專利分析,專利新穎性,專利影響性,科技機會,排序學習, | zh_TW |
dc.subject.keyword | Patent analysis,Patent novelty,Patent impact,Technological opportunity,Learning-to-rank, | en |
dc.relation.page | 94 | |
dc.identifier.doi | 10.6342/NTU201602646 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-18 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-R03725006-1.pdf 目前未授權公開取用 | 2.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。