Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78093
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范士岡
dc.contributor.authorYi-Ting Loen
dc.contributor.author羅毅庭zh_TW
dc.date.accessioned2021-07-11T14:42:01Z-
dc.date.available2021-10-26
dc.date.copyright2016-10-26
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citation[1] Verhulsel, M., Vignes, M., Descroix, S., Malaquin, L., Vignjevic, D. M., & Viovy, J. L. (2014). A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials, 35(6), 1816-1832.
[2] Bhatia, S. N., & Ingber, D. E. (2014). Microfluidic organs-on-chips. Nature Biotechnology, 201, 4.
[3] Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J., & Ingber, D. E. (2012). Microengineered physiological biomimicry: organs-on-chips. Lab on a chip, 12(12), 2156-2164.
[4] Bajaj, P., Schweller, R. M., Khademhosseini, A., West, J. L., & Bashir, R. (2014). 3D biofabrication strategies for tissue engineering and regenerative medicine. Annual review of biomedical engineering, 16, 247.
[5] Nikkhah, M., et al. (2012). Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 33(35), 9009-9018.
[6] Ho, C. T., Lin, R. Z., Chang, W. Y., Chang, H. Y., & Liu, C. H. (2006). Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab on a Chip, 6(6), 724-734.
[7] Ho, C. T., et al. (2013). Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab on a Chip, 13(18), 3578-3587.
[8] Kim, S., Lee, H., Chung, M., & Jeon, N. L. (2013). Engineering of functional, perfusable 3D microvascular networks on a chip. Lab on a Chip, 13(8), 1489-1500.
[9] Wong, K. H., Chan, J. M., Kamm, R. D., & Tien, J. (2012). Microfluidic models of vascular functions. Annual review of biomedical engineering, 14, 205-230.
[10] Nichol, J. W., Koshy, S. T., Bae, H., Hwang, C. M., Yamanlar, S., & Khademhosseini, A. (2010). Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 31(21), 5536-5544.
[11] Zaari, N., Rajagopalan, P., Kim, S. K., Engler, A. J., & Wong, J. Y. (2004). Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Advanced Materials, 16(23‐24), 2133-2137.
[12] Gunn, J. W., Turner, S. D., & Mann, B. K. (2005). Adhesive and mechanical properties of hydrogels influence neurite extension. Journal of Biomedical Materials Research Part A, 72(1), 91-97.
[13] Khetani, S. R., & Bhatia, S. N. (2008). Microscale culture of human liver cells for drug development. Nature biotechnology, 26(1), 120-126.
[14] Bhatia, S. N., Balis, U. J., Yarmush, M. L., & Toner, M. (1998). Microfabrication of Hepatocyte/Fibroblast Co‐cultures: Role of Homotypic Cell Interactions. Biotechnology progress, 14(3), 378-387.
[15] Khademhosseini, A., Suh, K. Y., Yang, J. M., Eng, G., Yeh, J., Levenberg, S., & Langer, R. (2004). Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials, 25(17), 3583-3592.
[16] Lee, P. J., Hung, P. J., & Lee, L. P. (2007). An artificial liver sinusoid with a microfluidic endothelial‐like barrier for primary hepatocyte culture. Biotechnology and bioengineering, 97(5), 1340-1346.
[17] Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature biotechnology, 32(8), 773-785.
[18] Stanton, M. M., Samitier, J., & Sánchez, S. (2015). Bioprinting of 3D hydrogels. Lab on a Chip, 15(15), 3111-3115.
[19] Pati, F., et al. (2014). Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature Communications, 5.
[20] Aubin, H., et al. (2010). Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 31(27), 6941-6951.
[21] Bajaj, P., Marchwiany, D., Duarte, C., & Bashir, R. (2013). Patterned Three‐Dimensional Encapsulation of Embryonic Stem Cells using Dielectrophoresis and Stereolithography. Advanced healthcare materials, 2(3), 450-458.
[22] Ramón-Azcón, J., et al. (2012). Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells. Lab on a Chip, 12(16), 2959-2969.
[23] Eydelnant, I. A., Li, B. B., & Wheeler, A. R. (2014). Microgels on-demand. Nature communications, 5.
[24] Barbulovic-Nad, I., Au, S. H., & Wheeler, A. R. (2010). A microfluidic platform for complete mammalian cell culture. Lab on a Chip, 10(12), 1536-1542.
[25] Au, S. H., Fobel, R., Desai, S. P., Voldman, J., & Wheeler, A. R. (2013). Cellular bias on the microscale: probing the effects of digital microfluidic actuation on mammalian cell health, fitness and phenotype. Integrative Biology, 5(8), 1014-1025.
[26] Lippmann, G. (1875). Relations entre les phénomènes électriques et capillaires (Doctoral dissertation, Gauthier-Villars).
[27] Berge, B. (1993). Electrocapillarité et mouillage de films isolants par l'eau.Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre, 317(2), 157-163.
[28] Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65-87.
[29] Colgate, E. D., & Matsumoto, H. (1990). An investigation of electrowetting‐based microactuation. Journal of Vacuum Science & Technology A, 8(4), 3625-3633.
[30] Lee, J., Moon, H., Fowler, J., Schoellhammer, T., & Kim, C. J. (2002). Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensors and Actuators A: Physical, 95(2), 259-268.
[31] Moon, H., Cho, S. K., & Garrell, R. L. (2002). Low voltage electrowetting-on-dielectric. Journal of applied physics, 92(7), 4080-4087.
[32] Quilliet, C., & Berge, B. (2001). Electrowetting: a recent outbreak. Current Opinion in Colloid & Interface Science, 6(1), 34-39.
[33] Mugele, F., & Baret, J. C. (2005). Electrowetting: from basics to applications. Journal of Physics: Condensed Matter, 17(28), R705.
[34] Vallet, M., Berge, B., & Vovelle, L. (1996). Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films. Polymer, 37(12), 2465-2470.
[35] Cho, S. K., Moon, H., & Kim, C. J. (2003). Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of microelectromechanical systems, 12(1), 70-80.
[36] Pellat, H. (1894). Force agissant á la surface de séparation de deux diélectriques. CR Seances Acad. Sci., 119, 675-678.
[37] Jones, T. B. (2001). Liquid dielectrophoresis on the microscale. Journal of Electrostatics, 51, 290-299.
[38] Quincke, G. (1883). Electrische Untersuchungen. Annalen der Physik, 255(8), 545-588.
[39] Pickard, W. F. (1965). Electrical force effects in dielectric liquids. Progress in dielectrics, 6, 1-39.
[40] Jones, T. B., Fowler, J. D., Chang, Y. S., & Kim, C. J. (2003). Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation. Langmuir, 19(18), 7646-7651.
[41] Woodson, H. H., & Melcher, J. R. (1968). Electromechanical dynamics.
[42] Fax, R. G., Hurwitz, M., & Melcher, J. R. (1969). Dielectrophoretic liquid expulsion. Journal of Spacecraft and Rockets, 6(9), 961-967.
[43] Rosenkilde, C. E. (1969). A Dielectric Fluid Drop an Electric Field. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 312, No. 1511, pp. 473-494). The Royal Society.
[44] Fan, S. K., Hsieh, T. H., & Lin, D. Y. (2009). General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting. Lab on a Chip, 9(9), 1236-1242.
[45] Beni, G., Hackwood, S., & Jackel, J. L. (1982). Continuous electrowetting effect. Applied Physics Letters, 40(10), 912-914.
[46] Beni, G., & Tenan, M. A. (1981). Dynamics of electrowetting displays. Journal of applied physics, 52(10), 6011-6015.
[47] Beni, G., & Hackwood, S. (1981). Electro‐wetting displays. Applied Physics Letters, 38(4), 207-209.
[48] Lee, J., & Kim, C. J. (1998). Liquid micromotor driven by continuous electrowetting. In Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on (pp. 538-543). IEEE.
[49] Washizu, M. (1998). Electrostatic actuation of liquid droplets for micro-reactor applications. IEEE Transactions on Industry Applications, 34(4), 732-737.
[50] Pollack, M. G., Shenderov, A. D., & Fair, R. B. (2002). Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip, 2(2), 96-101.
[51] Pollack, M. G., Fair, R. B., & Shenderov, A. D. (2000). Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics Letters, 77(11), 1725-1726.
[52] Roques-Carmes, T., Hayes, R. A., Feenstra, B. J., & Schlangen, L. J. M. (2004). Liquid behavior inside a reflective display pixel based on electrowetting. Journal of applied physics, 95(8), 4389-4396.
[53] Berge, B., & Peseux, J. (2000). Variable focal lens controlled by an external voltage: An application of electrowetting. The European Physical Journal E, 3(2), 159-163.
[54] You, H., & Steckl, A. J. (2010). Three-color electrowetting display device for electronic paper. Applied physics letters, 97(2), 023514.
[55] Kim, D. Y., & Steckl, A. J. (2010). Electrowetting on paper for electronic paper display. ACS applied materials & interfaces, 2(11), 3318-3323.
[56] Hayes, R. A., & Feenstra, B. J. (2003). Video-speed electronic paper based on electrowetting. Nature, 425(6956), 383-385.
[57] Kilaru, M. K., Cumby, B., & Heikenfeld, J. (2009). Electrowetting retroreflectors: Scalable and wide-spectrum modulation between corner cube and scattering reflection. Applied Physics Letters, 94(4), 041108.
[58] Fair, R. B., et al. (2007). Chemical and biological applications of digital-microfluidic devices. IEEE Design & Test of Computers, 24(1), 10-24.
[59] Su, F., Hwang, W., & Chakrabarty, K. (2006). Droplet routing in the synthesis of digital microfluidic biochips. In Proceedings of the Design Automation & Test in Europe Conference (Vol. 1, pp. 1-6). IEEE.
[60] Srinivasan, V., Pamula, V. K., Pollack, M. G., & Fair, R. B. (2003). Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform. In Proc. µTAS (pp. 1287-1290).
[61] Gong, J., Fan, S. K., & Kim, C. J. (2004). Portable digital microfluidics platform with active but disposable lab-on-chip. In Micro Electro Mechanical Systems, 2004. 17th IEEE International Conference on. (MEMS) (pp. 355-358). IEEE.
[62] Sista, R., et al. (2008). Development of a digital microfluidic platform for point of care testing. Lab on a Chip, 8(12), 2091-2104.
[63] Srinivasan, V., Pamula, V. K., & Fair, R. B. (2004). An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip, 4(4), 310-315.
[64] Moon, H., Wheeler, A. R., Garrell, R. L., & Loo, J. A. (2006). An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab on a Chip, 6(9), 1213-1219.
[65] Ng, A. H., Chamberlain, M. D., Situ, H., Lee, V., & Wheeler, A. R. (2015). Digital microfluidic immunocytochemistry in single cells. Nature communications, 6.
[66] Rackus, D. G., Dryden, M. D., Lamanna, J., Zaragoza, A., Lam, B., Kelley, S. O., & Wheeler, A. R. (2015). A digital microfluidic device with integrated nanostructured microelectrodes for electrochemical immunoassays. Lab on a Chip, 15(18), 3776-3784.
[67] Choi, K., et al. (2013). Automated digital microfluidic platform for magnetic-particle-based immunoassays with optimization by design of experiments. Analytical chemistry, 85(20), 9638-9646.
[68] Fair, R. B. (2007). Digital microfluidics: is a true lab-on-a-chip possible?. Microfluidics and Nanofluidics, 3(3), 245-281.
[69] Jones, T. B., Gunji, M., Washizu, M., & Feldman, M. J. (2001). Dielectrophoretic liquid actuation and nanodroplet formation. Journal of Applied Physics, 89(2), 1441-1448.
[70] Pollack, M. G., Pamula, V. K., Srinivasan, V., & Eckhardt, A. E. (2011). Applications of electrowetting-based digital microfluidics in clinical diagnostics. Expert Review of Molecular Diagnostics, 11(4), 393-407.
[71] Choi, K., Ng, A. H., Fobel, R., & Wheeler, A. R. (2012). Digital microfluidics. Annual review of analytical chemistry, 5, 413-440.
[72] Yi, C., Li, C. W., Ji, S., & Yang, M. (2006). Microfluidics technology for manipulation and analysis of biological cells. Analytica Chimica Acta, 560(1), 1-23.
[73] Fan, S. K., Huang, P. W., Wang, T. T., & Peng, Y. H. (2008). Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab on a Chip, 8(8), 1325-1331.
[74] Bioresource Collection and Research Center (BCRC). BCRCClassroom. (http://classroom.bcrc.firdi.org.tw).
[75] Hsu, Y. H., Moya, M. L., Hughes, C. C., George, S. C., & Lee, A. P. (2013). A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab on a chip, 13(15), 2990-2998.
[76] Liu, V. A., & Bhatia, S. N. (2002). Three-dimensional photopatterning of hydrogels containing living cells. Biomedical microdevices, 4(4), 257-266.
[77] Amiji, M., & Park, K. (1992). Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers. Biomaterials, 13(10), 682-692.
[78] Luk, V. N., Mo, G. C., & Wheeler, A. R. (2008). Pluronic additives: a solution to sticky problems in digital microfluidics. Langmuir, 24(12), 6382-6389.
[79] Au, S. H., Kumar, P., & Wheeler, A. R. (2011). A new angle on pluronic additives: advancing droplets and understanding in digital microfluidics. Langmuir, 27(13), 8586-8594.
[80] Yoon, J. Y., & Garrell, R. L. (2003). Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Analytical Chemistry, 75(19), 5097-5102.
[81] Jones, T. B., Wang, K. L., & Yao, D. J. (2004). Frequency-dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis. Langmuir, 20(7), 2813-2818.
[82] Jones, T. B. (2002). On the relationship of dielectrophoresis and electrowetting. Langmuir, 18(11), 4437-4443.
[83] Laplace, P. S. (1805). Traité de mécanique céleste/par PS Laplace...; tome premier [-quatrieme] (Vol. 4). de l'Imprimerie de Crapelet.
[84] Ren, H., Fair, R. B., Pollack, M. G., & Shaughnessy, E. J. (2002). Dynamics of electro-wetting droplet transport. Sensors and actuators B: chemical, 87(1), 201-206.
[85] Wang, K. L., & Jones, T. B. (2005). Electrowetting dynamics of microfluidic actuation. Langmuir, 21(9), 4211-4217.
[86] Kuo, J. S., Spicar-Mihalic, P., Rodriguez, I., & Chiu, D. T. (2003). Electrowetting-induced droplet movement in an immiscible medium. Langmuir, 19(2), 250-255.
[87] Fan, S. K., Chen, W. J., Lin, T. H., Wang, T. T., & Lin, Y. C. (2009). Reconfigurable liquid pumping in electric-field-defined virtual microchannels by dielectrophoresis. Lab on a Chip, 9(11), 1590-1595.
[88] Aubin, H., et al. (2010). Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 31(27), 6941-6951.
[89] Noris, M., et al. (1995). Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circulation research, 76(4), 536-543.
[90] Zhang, B., et al. (2016). Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature materials.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78093-
dc.description.abstract本研究利用電控微流體技術得以在微小尺度下利用電訊號同時控制多種液體移動的特性,配合使用含有不同種類細胞的水膠預聚物溶液,以及事先設計好的仿生電極圖案,將水膠預聚物溶液排列成相對應之圖形後使之交聯,產生具有固定邊界的細胞培養微結構,並進行培養,探討細胞培養微結構圖案化以及多種細胞共培養對細胞表型之影響,以證實此技術具有實現人體器官晶片並取代活體做為藥物測試樣本之潛力。現今已有許多人體器官晶片或是仿生微結構的建造技術被提出,而這些研究不約而同地著重於重現體內實際組織形態之重要性,如何製造複雜的細胞組成並進行仿生圖案化,便成為一大課題。而本研究使用電控微流體技術來建造異質且仿生之三維細胞培養微結構,便是希望提出一個可以同時排列多種含有細胞的生物材料之生物製造方法。
本研究使用之水膠材料包含poly(ethylene glycol) diacrylate (PEGDA)以及gelatin methacrylate (GelMA),皆具光交聯性質,在照射紫外光後會由液態轉為固態,此特性使得電控微流體技術得以在其為液態時運用電訊號操控之,並在曝光後產生具有固定形狀之水膠微結構。本研究將針對不同種類的水膠預聚物溶液、尺寸及操控環境探討電控微流體驅動不同液體的工作原理,並以特殊電極形狀排列含有螢光粒子及細胞之水膠預聚物溶液來展示此技術同時圖案化多種液體之能力。本研究除了以不同寬度的細胞培養微結構來驅使細胞產生方向性的生長、研究細胞生長環境之物理限制對其之影響外,也設計仿人類肝臟小葉的電極形狀,同時排列含有不同種類細胞---包含人類臍帶內皮細胞(HUVEC)、人類肺臟纖維母細胞(HFL1)、人類肝癌細胞(HepG2)---成仿生圖形之後,以建構模擬人體中真實組織形態且具有多種細胞排列的培養微環境並在培養後進行染色與表型分析。
zh_TW
dc.description.abstractElectromicrofluidics (EMF), simultaneously and flexibly controlling multiple fluids with appropreiate electrical signals, is investigated to pattern various cell-laden hydrogel pre-polymers into in-vivo-like microenvironment concurrently in a single fluid manipulation step. By using photo-crosslinkable hydrogels and pre-designed electrodes with biomimetic patterns, in-vivo-like cell-laden microstructures with defined boundaries can thus be constructed after hydrogel polymerization, which can be harnessed to analyze the influence of the patterned microenvironment and cell multi-culture towards cell phenotype. Among recent biofabrication techniques reported to develop so-called “organs-on-chips”, the trends of in vitro tissue reconstruction emphasize on its consistency towards the in-vivo anatomical microenvironment. Therefore, to establish microstructures with various cells patterned into biomimetic arrangement becomes an issue to be addressed. In this view, EMF was adopted as a powerful tool to reconstruct 3D heterogeneous and biomimetic cell culture scaffold in a relatively straightforward manner. In this thesis, two kinds of photo-crosslinkable hydrogels, poly(ethylene glycol) diacrylate (PEGDA) and gelatin methacryloyl (GelMA), were adopted as the manipulated fluids and patterned into pre-designed configurations on our EMF platform. After UV exposure, hydrogel pre-polymers were polymerized and thus formed hydrogel-based microstructures with concrete boundaries and in desired shapes. Different hydrogel pre-polymers were manipulated in altered dimensions and ambience in order to examine the working principle of hydrogel pre-polymer manipulations on the EMF platform. Fluorescent-particle-laden and cell-laden hydrogel pre-polymers were patterned on the platform into pre-designed arrangement by applying electric signals, demonstrating the ability of multiple fluids manipulation with EMF techniques. Human hepatic lobule was selected as the in-vivo model of this research, as human umbilical vein endothelial cell (HUVEC), human lung fibroblast (HFL1), and human hepatocellular carcinoma (HepG2) were added into hydrogels to perform cell multi-culture and to conduct further investigations.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:42:01Z (GMT). No. of bitstreams: 1
ntu-105-R03522304-1.pdf: 8335637 bytes, checksum: 8736ac650e6a1e01027038f6cd402e80 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 xiv
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 研究方法與目的 11
第二章 電控微流體技術簡介 13
2-1 介電濕潤理論 13
2-2 液體介電泳理論 16
2-3 電控微流體技術與應用 18
第三章 製程、儀器與實驗系統介紹 27
3-1電控微流體平臺製程 27
3-1.1 清洗玻璃基板 27
3-1.2 蒸鍍光阻貼附層 27
3-1.3 旋轉塗佈正光阻 28
3-1.4 曝光、顯影及定影 28
3-1.5 濕蝕刻 29
3-1.6 旋轉塗佈介電層 30
3-1.7 旋轉塗佈疏水層 31
3-1.8 上板表面處理 31
3-2 實驗系統 34
3-2.1 電控微流體平臺系統 34
3-2.2 細胞培養系統 34
3-2.3 水膠材料 40
3-2.4 曝光系統 43
3-2.5 電控微流體平臺 43
3-2.6 光罩圖案設計 44
3-2.7 細胞染色 46
第四章 實驗與結果討論 49
4-1 電控微流體平臺之液體驅動力分析 49
4-1.1 理論計算 49
4-1.2 操作電壓量測 57
4-2 細胞與本實驗系統之相容性測試 66
4-2.1 曝光強度與時間 66
4-2.2 水膠材料組成之微環境 68
4-3 建構含螢光粒子之三維圖案化水膠微結構 69
4-3.1 同時圖案化兩股含螢光粒子之水膠預聚物溶液 69
4-3.2 同時圖案化三股含螢光粒子之水膠預聚物溶液 71
4-4 建構不同寬度之三維細胞培養微結構 74
4-4.1 NIH-3T3 76
4-4.2 HUVEC 79
4-5 建構仿人類肝臟小葉之細胞培養微結構 83
4-5.1 於電控微流體平臺上建構人類肝臟小葉 83
4-5.2 仿生圖案化且共培養之細胞表型功能分析 87
第五章 結論與未來展望 92
5-1 結論 92
5-2 未來展望 92
參考文獻 94
附錄一 實驗儀器 103
dc.language.isozh-TW
dc.subject水膠材料zh_TW
dc.subject三微細胞培養微結構zh_TW
dc.subject人體器官晶片zh_TW
dc.subject多種液體同時排列zh_TW
dc.subject電控微流體zh_TW
dc.subjectphoto-crosslinkable hydrogelen
dc.subjectelectromicrofluidicsen
dc.subjectmultiple fluids manipulationen
dc.subject3D heterogeneous and biomimetic microstructureen
dc.subjectin vitro tissueen
dc.title以液體介電泳和介電濕潤建造異質且仿生之細胞培養微結構zh_TW
dc.titleConstruction of Heterogeneous and Biomimetic Cell Culture Microstructure Using Liquid Dielectrophoresis and Electrowetting-on-dielectricen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林頌然,許聿翔,陳林祈
dc.subject.keyword電控微流體,多種液體同時排列,三微細胞培養微結構,水膠材料,人體器官晶片,zh_TW
dc.subject.keywordelectromicrofluidics,photo-crosslinkable hydrogel,multiple fluids manipulation,3D heterogeneous and biomimetic microstructure,in vitro tissue,en
dc.relation.page104
dc.identifier.doi10.6342/NTU201603375
dc.rights.note有償授權
dc.date.accepted2016-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-R03522304-1.pdf
  未授權公開取用
8.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved