請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78046完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張帆人 | |
| dc.contributor.author | Cheng-Ta Chuang | en |
| dc.contributor.author | 莊政達 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:40:36Z | - |
| dc.date.available | 2022-02-21 | |
| dc.date.copyright | 2017-02-21 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-10-21 | |
| dc.identifier.citation | [1] J. M. May, P. A. Kyriacou, and A. J. Petros, 'Development of an optoelectronic sensor for the investigation of photoplethysmographic signals from the anterior fontanel of the newborn,' 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.18-21, 2011.
[2] S. Rhee, B. H. Yang, and H. H. Asada, 'Artifact-resistant power-efficient design of finger-ring plethysmographic sensors,' IEEE Transactions on Biomedical Engineering, 48 (7), pp.795-805, 2001. [3] J. Y. Jung, and J. W. Lee, 'ZigBee device access control and reliable data transmission in ZigBee based health monitoring system,' Advanced Communication Technology, 2008. ICACT 2008. 10th International Conference on, Vol. 1, pp.795-797, 2008. [4] M. Maguire, and T. Ward, 'The design and clinical use of a reflective brachial photoplethysmograph,' In Technical Report, National University of Ireland: Maynooth, Ireland, pp. 1-13, 2002. [5] S. H. Liu, 'Motion artifact reduction in electrocardiogram using adaptive filter,' Journal of Medical and Biological Engineering, 31(1), pp.67-72, 2011. [6] A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, 'Skin photoplethysmography—a review,' Computer methods and programs in biomedicine 28(4), pp.257-269, 1989. [7] L. Xu, D. D. Zhang, and K. Wang, 'Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,' IEEE Transactions on Biomedical Engineering, 52, pp.1973-1975, 2005. [8] H. H. Asada, H. H. Jiang, and P. Gibbs, 'Active noise cancellation using MEMS accelerometers for motion-tolerant wearable bio-sensors,' Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE, Vol. 1, pp.2157-2160, 2004. [9] M. R. Ram, K. V. Madhav, E. H. Krishna, N. R. Komalla, and K. A. Reddy, 'A novel approach for motion artifact reduction in PPG signals based on AS-LMS adaptive filter,' IEEE Transactions on Instrumentation and Measurement, 61(5), pp.1445-1457, 2012. [10] D. Z. Feng, X. D. Zhang, D. X. Chang, and W. X. Zheng, 'A fast recursive total least squares algorithm for adaptive FIR filtering,' IEEE Transactions on Signal Processing, 52(10), pp.2729-2737, 2004. [11] R. Yousefi, M. Nourani, and I. Panahi, 'Adaptive cancellation of motion artifact in wearable biosensors,' 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.2004-2008, 2012. [12] R. Yousefi, M. Nourani, S. Ostadabbas, and I. Panahi, 'A motion-tolerant adaptive algorithm for wearable photoplethysmographic biosensors,' IEEE journal of biomedical and health informatics,18(2), pp.670-681, 2014. [13] B. Lee, Y. Kee, J. Han, and W. J. Yi, 'Adaptive comb filtering for motion artifact reduction from PPG with a structure of adaptive lattice IIR notch filter,' 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 7937-7940, 2011. [14] S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, 'Contour analysis of the photoplethysmographic pulse measured at the finger,' Journal of hypertension, 24(8), pp.1449-1456, 2006. [15] C. M. Lee, and Y. T. Zhang, 'Reduction of motion artifacts from photoplethysmographic recordings using a wavelet denoising approach,' Biomedical Engineering, 2003. IEEE EMBS Asian-Pacific Conference on, pp.194-195, 2003. [16] B. S. Kim, and S. K. Yoo, 'Motion artifact reduction in photoplethysmography using independent component analysis,' IEEE transactions on biomedical engineering, 53(3), pp.566-568, 2006. [17] B. Lee, J. Han, H. J. Baek, J. H. Shin, K. S. Park, and W. J. Yi, 'Improved elimination of motion artifacts from a photoplethysmographic signal using a Kalman smoother with simultaneous accelerometry,' Physiological measurement, 31(12), 1585, 2010. [18] H. T. Wu, C. H. Lee, A. B. Liu, W. S. Chung, C. J. Tang, C. K. Sun, and H. K.Yip, 'Arterial stiffness using radial arterial waveforms measured at the wrist as an indicator of diabetic control in the elderly,' IEEE Transactions on Biomedical engineering, 58(2), pp.243-252, 2011. [19] P. L. Williams, Gray's anatomy. Edinburgh: Churchill Livingstone, 1980. [20] E. N. Marieb, Essentials of anatomy and physiology, Benjamin Cummings, 2008. [21] A. Q. Action, Advances in Cardiovascular System Research and Application: 2013 Edition, ScholarlyEditions, 2013. [22] J. Allen, 'Photoplethysmography and its application in clinical physiological measurement,' Physiological measurement, 28(3), R1, 2007. [23] K. H. Shelley, 'Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate,' Anesthesia & Analgesia, 105(6), S31-S36, 2007. [24] S. Feng, F. A. Zeng, and B. Chance, 'Photon migration in the presence of a single defect: a perturbation analysis,' Applied optics, 34(19), pp.3826-3837, 1995. [25] Y. Mendelson, 'Pulse oximetry: theory and applications for noninvasive monitoring,' Clinical chemistry, 38(9), pp.1601-1607, 1992. [26] P. Shi, V. A. Peris, A. Echiadis, J. Zheng, Y. Zhu, P. Y. S. Cheang, and S. Hu, 'Non-contact reflection photoplethysmography towards effective human physiological monitoring,' Journal of Medical and Biological Engineering, 30(3), pp.161-167, 2010. [27] J. Heerlein, T. Ruegheimer. (2014, December). LED-based sensors for wearable fitness tracking products [Online]. Available: http://www.edn.com/design/led/4437996/LED-based-sensors-for-fitness-tracking-wearables [28] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, 'Wearable photoplethysmographic sensors—past and present,' Electronics, 3(2), pp.282-302, 2014. [29] M. H. Sherebrin, and R. Z. Sherebrin, 'Frequency analysis of the peripheral pulse wave detected in the finger with a photoplethysmograph,' IEEE Transactions on biomedical engineering, 37(3), pp.313-317, 1990. [30] C. B. Harris, E. P. Ippen, G. A. Mourou, A. H. Zewail(Eds.), Ultrafast Phenomena VII: Proceedings of the 7th International Conference. Springer-Verlag, May 14–17, 1990. [31] S. Rhee, B. H. Yang, and H. H. Asada, 'Artifact-resistant power-efficient design of finger-ring plethysmographic sensors,' IEEE Transactions on Biomedical Engineering, 48(7), pp.795-805, 2001. [32] J. Lee, K. Matsumura, K. I. Yamakoshi, P. Rolfe, S. Tanaka, and T. Yamakoshi, 'Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion,' 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp.1724-1727, 2013. [33] J. V. Garcia, F. Zhang, and P. C. Ford, 'Multi-photon excitation in uncaging the small molecule bioregulator nitric oxide,' Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 371(1995), 20120129, 2013. [34] J. Makhoul, 'Linear prediction: A tutorial review,' Proceedings of the IEEE, 63(4), pp.561-580, 1975. [35] J. Lim, A. Oppenheim, and L. Braida, 'Evaluation of an adaptive comb filtering method for enhancing speech degraded by white noise addition,' IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(4), pp.354-358, 1978. [36] W. Jin, X. Liu, M. S. Scordilis, and L. Han, 'Speech enhancement using harmonic emphasis and adaptive comb filtering,' IEEE transactions on audio, speech, and language processing, 18(2), 356-368, 2010. [37] A. Nehorai, and B. Porat, 'Adaptive comb filtering for harmonic signal enhancement,' IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(5), pp.1124-1138, 1986. [38] F. Peng, H. Liu, and W. Wang, 'A comb filter based signal processing method to effectively reduce motion artifacts from photoplethysmographic signals,' Physiological measurement, 36(10), 2159, 2015. [39] C. T. Chuang, T. Chang, Y. T. Chiang, and F. R. Chang, 'Heart Rate Monitoring Using a Slow-Fast Adaptive Comb Filter to Eliminate Motion Artifacts, ' Journal of Medical and Biological Engineering, 2016. (accepted) [40] D. G. Childers, D. P. Skinner, and R. C. Kemerait, 'The cepstrum: A guide to processing,' Proceedings of the IEEE, 65(10), pp.1428-1443, 1977. [41] C. T. Chuang, T. Chang, Y. T. Chiang, and F. R. Chang, 'Adaptive Filtering for Heart rate estimation Using Cepstrum Technique, ' 2016 IEEE International Conference on System Science and Engineering (ICSSE), Nantou, Taiwan, pp.1-3, 2016. [42] R. M. A. Falcão, 'Adaptive filtering algorithms for noise cancellation,' PhD dissertation, Universidade do Porto, 2012. [43] Z. Zhang, Z. Pi, and B. Liu, 'TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise,' IEEE Transactions on Biomedical Engineering, 62(2), pp.522-531, 2015. [44] J. L. Devore, and K. N. Berk, Modern mathematical statistics with applications. Cengage Learning, 2007. [45] V. O. Alan, W. S. Ronald, and R. B. John, Discrete-time signal processing. New Jersey: Printice Hall Inc, 1989. [46] Texas Heart Institute. (2016, August). Vasculature of the Arm [Online].Available: http://www.texasheart.org/HIC/Anatomy/arm_anat.cfm [47] Apple Inc. (2016, September). Your heart rate. What it means, and where on Apple Watch you’ll find it [Online].Available: https://support.apple.com/en-gb/HT204666 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78046 | - |
| dc.description.abstract | 這篇論文提出一個新穎的消除運動偽影演算法,可應用在心率監測器。我們的演算法不需要額外的硬體,例如加速儀或其它的參考信號。本文使用提出的快慢可適性梳型濾波器(SFACF)去消除光體積變化描記圖(PPG)訊號所耦合的運動偽影。週期的心跳具有諧波成份與心跳連續變化的兩個特性是本演算法的重要依據。由實驗結果可知,此方法對基頻訊號與諧波成份產生了放大的效果。心率監測器每一秒更新一次心跳頻率。我們的方法和可適性雜訊消除濾波器(ANC)與頻譜峰值尋找梳型濾波器(SPS-CF)進行了比較。當量測得到的PPG訊號品質較差的情況下,我們的快慢可適性梳型濾波器,優於其他兩種濾波器。此外本方法使用2015 IEEE Signal Processing Cup的資料庫數據,由實驗結果顯示提出的方法有好的性能,參考心跳頻率與估測心跳頻率兩者之間的R平方值為0.96。最後本方法也和消費性電子產品心跳帶比較,我們估測出的心跳頻率和商業用品有很高的相關性。但是心跳帶配戴時要掛於前胸 ; 而我們的只在手腕上。此外,我們在成本上也有優勢。多位年紀在32~58歲的男、女受測者參與我們的實驗,都得到滿意的結果。 | zh_TW |
| dc.description.abstract | In this dissertation, an algorithm for eliminating motion artifacts in heart rate monitoring by using a photoplethysmography (PPG) sensor is proposed. No additional hardware, such as accelerometers or other reference signals, is needed to apply our algorithm. The proposed slow–fast adaptive comb filter (SFACF) distinguishes motion artifacts in PPG signals based on the harmonic and continuous features of the heart rate. The effectiveness of fundamental and harmonic frequency enhancement in real time is experimentally demonstrated with the heart rate being updated every second. The performance of the SFACF, which does not require an additional reference signal, is compared with the performances of adaptive noise cancellation (ANC) and spectral peak search-comb filtering (SPS-CF). It was determined that, for a low-quality PPG signal, the SFACF performed better than ANC and SPS-CF. Experimental results on the PPG datasets used in 2015 IEEE Signal Processing Cup showed that the proposed approach had excellent performance, and the R-squared between the estimates and the ground-truth of heart rate was 0.96. Finally, measurements conducted using a commercial heart rate monitor and those using our algorithm were shown to be highly correlated. However, a commercial heart rate monitor requires the wearing of a chest strap. On the other hand, our algorithm enables the wearing of a wrist device for heart rate monitoring. In addition, the proposed method can reduce hardware costs. Male and female subjects between the ages of 32 and 58 participated in an experiment we conducted using the proposed algorithm. Based on the results, the proposed SFACF offers a satisfactory performance approach. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:40:36Z (GMT). No. of bitstreams: 1 ntu-105-D96921006-1.pdf: 2843728 bytes, checksum: 5aa111aabc0ce93d75b688b2e7865b85 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iv ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 2 1.3 Summary of Contributions 4 1.4 Dissertation Outline 5 Chapter 2 Photoplethysmography 7 2.1 Circulatory System 7 2.2 Principle of PPG 9 2.2.1 Banana Effects 10 2.2.2 PPG pulse shape analysis 12 2.3 Sensor Module 13 2.3.1 Optical Measurement 14 2.3.2 Light Wavelength 14 2.4 Effects of PPG sensing 15 Chapter 3 Slow–Fast Adaptive Comb Filter 17 3.1 System Design of Heart Rate Monitoring 17 3.2 Algorithm Assumptions of Heart Rate Monitoring 18 3.3 Pre-Processing 20 3.3.1 High Pass Filter 21 3.3.2 Normalization 21 3.3.3 SNR improvement filter 22 3.4 Motion Artifact Elimination 23 3.4.1 Comb filter 23 3.4.2 Searching Mode 28 3.4.3 Tracking Mode 31 3.4.4 Mode Change 35 Chapter 4 Experimental Evaluations 37 4.1 Description of System Parameters 37 4.2 Experimental Results 38 4.3 Comparison of SFACF with ANC and SPS-CF 44 4.4 Statistical Simulation 50 4.5 Comparison of SFACF in a Wrist Device with a Commercial Heart Rate Monitor 52 4.6 Comparison of SFACF and ANC on the PPG Datasets Used in the 2015 IEEE Signal Processing Cup 53 Chapter 5 Discussion 56 5.1 Gain Factor 56 5.2 Delay Length 58 5.3 Heart Rate Spectrum 59 Chapter 6 Conclusions 63 6.1 Conclusions 63 6.2 Future Work 63 REFERENCE 65 APPENDICES 71 A. Reducing Motion Artifact Processing Using the Cepstrum Technique 71 B. Adaptive Noise Cancellation (ANC) 75 C. Spectral Peak Search-Comb Filtering (SPS-CF) 79 | |
| dc.language.iso | en | |
| dc.subject | 快慢可適性梳型濾波器 | zh_TW |
| dc.subject | 運動偽影 | zh_TW |
| dc.subject | 光體積變化描記圖 | zh_TW |
| dc.subject | 信號增強 | zh_TW |
| dc.subject | Motion Artifact | en |
| dc.subject | Photoplethysmography | en |
| dc.subject | Slow–Fast Adaptive Comb Filter | en |
| dc.subject | Signal Enhancement | en |
| dc.title | 以快慢可適性梳型濾波器消除心率監測器之運動偽影 | zh_TW |
| dc.title | Heart Rate Monitoring Using a Slow–Fast Adaptive Comb Filter to Eliminate Motion Artifacts | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 姜義德 | |
| dc.contributor.oralexamcommittee | 王立昇,王伯群,王和盛,吳德豐,李祖聖 | |
| dc.subject.keyword | 運動偽影,光體積變化描記圖,快慢可適性梳型濾波器,信號增強, | zh_TW |
| dc.subject.keyword | Motion Artifact,Photoplethysmography,Slow–Fast Adaptive Comb Filter,Signal Enhancement, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU201603696 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-10-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-D96921006-1.pdf 未授權公開取用 | 2.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
