Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7802
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高文媛(Wen-Yuan Kao)
dc.contributor.authorYi-Min Wangen
dc.contributor.author王譯泯zh_TW
dc.date.accessioned2021-05-19T17:54:05Z-
dc.date.available2022-06-12
dc.date.available2021-05-19T17:54:05Z-
dc.date.copyright2017-06-12
dc.date.issued2017
dc.date.submitted2017-03-27
dc.identifier.citation李彥鋒 2000。野菰寄生構造與花部發育。國立中興大學植物學系 碩士論文。
姚榮鼐、許世忠 1996。溪頭臺灣奴草、蓮華池菱形奴草之初步生物研究。臺大實
驗林研究會報 10:157-176。
張淑賢 1981。作物需肥診斷技術。台灣省農業試驗所。
陳秋玫 2001。台灣產蛇菰屬植物之花序發生學研究。國立中興大學植物學系 碩
士論文。
黃煒珽 2006。台灣產粗穗蛇菰之族群遺傳研究。國立中興大學生命科學系 碩士
論文。
經綪 1994。穗花蛇菰的抗炎鎮痛藥理學研究。中國醫藥學院中國醫藥學系 碩士
論文。
劉聖譽 2000。台灣產奴草屬之授粉作用與族群遺傳研究。國立中興大學植物學系
碩士論文。
廖國媖 2004。台灣產菟絲子屬植物之族群生態學研究。國立中興大學生命科學系
博士論文。
廖國媖、陳明義、郭長生 2005。菟絲子屬在台灣及金馬地區的分布及寄主範圍-
特別關注於台灣菟絲子寄主喜好性。生物學報 40(1):17-24。
蔡淑華 1975。植物組織切片技術綱要。茂昌圖書有限公司。
謝昀臻 2013。穗花蛇菰與其近緣類群之親緣關係與其寄主研究。國立臺灣大學生
態學與演化生物學研究所 碩士論文。
羅立清 1999。台灣產寄生植物 (野菰、無根草) 及本土中藥材 (通草、烏心石) 之
成分研究。國立清華大學化學系 博士論文。

Association of Official Analytical Chemists. 1970. Official Methods of Analysis, 12th edition. AOAC International.
Atsatt, P. R. and D. R. Strong. 1970. The population biology of annual grassland hemiparasites. I. the host environment. Evolution 24: 278-291.
Badeck, F. W., G. Tcherkez, S. Nogues, C. Piel and J. Ghashghaie. 2005. Post‐photosynthetic fractionation of stable carbon isotopes between plant organs-a widespread phenomenon. Rapid Communications in Mass Spectrometry 19: 1381-1391.
Baird, W. V. and J. L. Riopel. 1986. The developmental anatomy of Conopholis americana (Orobancaceae) seedlings and tubercles. Canadian Journal of Botany 64: 710-717.
Bannister, P. and G. L. Strong. 2001. Carbon and nitrogen isotope ratios, nitrogen content and heterotrophy in New Zealand mistletoes. Oecologia 126: 10-20.
Barkman, T. J., J. R. McNeal, S. H. Lim, G. Coat, H. B. Croom and N. D. Young. 2007. Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evolutionary Biology 7: 248.
Barney, C. W., F. G. Hawksworth and B. W. Geils. 1998. Hosts of Viscum album. European Journal of Forest Pathology 28: 187-208.
Bell, T. L. and M. A. Adams. 2011. Attack on all fronts: functional relationships between aerial and root parasitic plants and their woody hosts and consequences for ecosystems. Tree Physiology 31: 3-15.
Bender, M. M. 1968. Mass spectrometric studies of carbon 13 variations in corn and other grasses. Radiocarbon 10: 468-472.
Birschwilks, M., S. Haupt, D. Hofius and S. Neumann. 2006. Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. Journal of Experimental Botany 57: 911-921.
Bolin, J. F., K. U. Tennakoon and E. Maass. 2010. Mineral nutrition and heterotrophy in the water conservative holoparasite Hydnora Thunb. (Hydnoraceae). Flora 205: 802-810.
Brotherson, J. D., B. T. Simmons, T. Ball and W. R. Anderson. 2005. Nutrient relationships between Orobanche fasciculata Nutt. and its host Artemisia pygmaea Gray in the Uinta Basin of Utah, USA. Western North American Naturalist 65: 242-247.
Calder, M. and P. Bernhardt. 1983. The Biology of Mistletoes. Academic Press.
Cameron, D. D., A. M. Coats and W. E. Seel. 2006. Differential resistance among host and non-host species underlies the variable success of the hemi-parasitic plant Rhinanthus minor. Annals of Botany 98: 1289-1299.
Cameron, D. D. and W. E. Seel. 2007. Functional anatomy of haustoria formed by Rhinanthus minor: linking evidence from histology and isotope tracing. New Phytologist 174: 412-419.
Cernusak, L. A., J. S. Pate and G. D. Farquhar. 2004. Oxygen and carbon isotope composition of parasitic plants and their hosts in Southwestern Australia. Oecologia 139: 199-213.
Chuang, T. I. and L. R. Heckard. 1971. Observations on root-parasitism in Cordylanthus (Scrophulariaceae). American Journal of Botany 58: 218-228.
Clayson, C., I. García-Ruiz and M. Costea. 2014. Diversity, evolution, and function of stomata bearing structures in Cuscuta (dodders, Convolvulaceae): from extrafloral nectar secretion to transpiration in arid conditions. Perspectives in Plant Ecology, Evolution and Systematics 16: 310-321.
Dörr, I. 1972. The contact of Cuscuta hyphae with the sieve tubes of its host plants. Protoplasma 75: 167-184.
Dörr, I. and R. Kollmann. 1975. Strukturelle grundlagen des parasitismus bei Orobanche II. die differenzierung der assimilat-leitungsbahn im haustorialgewebe. Protoplasma 83: 185-199.
De Vega, C., P. L. Ortiz, M. Arista and S. Talavera. 2007. The endophytic system of Mediterranean Cytinus (Cytinaceae) developing on five host Cistaceae species. Annals of Botany 100: 1209-1217.
Ehleringer, J. R., E. D. Schulze, H. Ziegler, O. L. Lange, G. D. Farquhar and I. R. Cowan. 1985. Xylem-tapping mistletoes: water or nutrient parasites. Science 227: 1479-1481.
Engler, A. 1930. Das Pflanzenreich. Regni Vegetabilis Conspectus, IV. 261. Wilhelm Engelmann, Leipzig, Germany.
Fahmy, G. M. 2013. Ecophysiology of the holoparasitic angiosperm Cistanche phelypaea (Orobancaceae) in a coastal salt marsh. Turkish Journal of Botany 37: 908-919.
Furuhashi, T., K. Furuhashi and W. Weckwerth. 2011. The parasitic mechanism of the holostemparasitic plant Cuscuta. Journal of Plant Interactions 6: 207-219.
Furuhashi, T., L. Fragner, K. Furuhashi, L. Valledor, X. Sun and W. Weckwerth. 2012. Metabolite changes with induction of Cuscuta haustorium and translocation from host plants. Journal of Plant Interactions 7: 84-93.
Gedalovich-Shedletzky, E. and J. Kuijt. 1990. An ultrastructural study of the tuber strands of Balanophora (Balanophoraceae). Canadian Journal of Botany 68: 1271-1279.
Gibson, C. C. and A. R. Watkinson. 1989. The host range and selectivity of a parasitic plant: Rhinanthus minor L. Oecologia 78: 401-406.
Gonzalez, A. M. and J. D. Mauseth. 2010. Morphogenesis is highly aberrant in the vegetative body of the holoparasite Lophophytum leandrii (Balanophoraceae): all typical vegetative organs are absent and many tissues are highly modified. International Journal of Plant Sciences 171: 499-508.
Govier, R. N., M. D. Nelson and J. S. Pate. 1967. Hemiparasitic nutrition in angiosperms. New Phytologist 66: 285-297.
Handley, L. L. and J. A. Raven. 1992. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant, Cell and Environment 15: 965-985.
Heide-Jørgensen, H. 2008. Parasitic Flowering Plants. Brill Publishers.
Hibberd, J. M., R. A. Bungard, M. C. Press, W. D. Jeschke, J. D. Scholes and W. P. Quick. 1998. Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa. Planta 205: 506-513.
Hibberd, J. M., W. P. Quick, M. C. Press, J. D. Scholes and W. D. Jeschke. 1999. Solute fluxes from tobacco to the parasitic angiosperm Orobanche cernua and the influence of infection on host carbon and nitrogen relations. Plant, Cell and Environment 22: 937-947.
Hibberd, J. M. and W. D. Jeschke. 2001. Solute flux into parasitic plants. Journal of Experimental Botany 52: 2043-2049.
Hodgson, J. F. 1973. Aspects of the Carbon Nutrition of Angiospermous Parasite. PhD thesis, University of Sheffield.
Hong, L., H. Shen, H. Chen, L. Li, X. Hu, X. Xu, W. Ye and Z. Wang. 2011. The morphology and anatomy of the haustoria of the holoparasitic angiosperm Cuscuta campestris. Pakistan Journal of Botany 43: 1853-1859.
Hsiao, S. C., J. D. Mauseth and L. D. Gomez. 1993. Growth and anatomy of the vegetative body of the parasitic angiosperm Helosis cayennensis (Balanophoraceae). Bulletin of the Torrey Botanical Club 120: 295-309.
Hsiao, S. C., J. D. Mauseth and L. D. Gomez. 1994. Growth and anatomy of the vegetative body of the parasitic angiosperm Langsdorffia hypogaea (Balanophoraceae). Bulletin of the Torrey Botanical Club 121: 24-39.
Hsiao, S. C., J. D. Mauseth and C. I. Peng. 1995. Composite bundles, the host/parasite interface in the holoparasitic angiosperms Langsdorffia and Balanophora (Balanophoraceae). American Journal of Botany 82: 81-91.
Huang, T. C. 1996. Flora of Taiwan, Vol. 2, 2nd edition. Department of Botany, National Taiwan University, Taipei, Taiwan.
Huang, T. C. 1998. Flora of Taiwan, Vol. 4, 2nd edition. Department of Botany, National Taiwan University, Taipei, Taiwan.
Irving, L. J. and D. D. Cameron. 2009. You are what you eat: interactions between root parasitic plants and their hosts. Advances in Botanical Research 50: 87-138.
Jeshke, W. D., N. Rath, P. Baumel, F. C. Czygan and P. Proksh. 1994. Modeling the flow and partitioning of carbon and nitrogen in the holoparasite Cuscuta reflexa Roxb. and its host Lupinus albus L: methods for estimating net flows. Journal of Experimental Botany 45: 791-800.
Joel, D. M. 2007. Direct infection of potato tubers by the root parasite Orobanche aegyptiaca. Weed Research 47: 276-279.
Koch, L. 1874. Untersuchungen Über die Entwicklung der Cuscuteen. Marcus.
Kraus, R., P. Trimborn and H. Ziegler. 1995. Tristerix aphyllus, a holoparasitic Loranthacea. Naturwissenschaften 82: 150-151.
Kuijt, J. 1969. The Biology of Parasitic Flowering Plants. University of California Press, Berkeley.
Kuijt, J., D. Bray and A. Olson. 1985. Anatomy and ultrastructure of the endophytic system of Pilostyles thurberi (Rafflesiaceae). Canadian Journal of Botany 63: 1231-1240.
Kuijt, J. and R. Toth. 1985. Structure of the host‐parasite interface of Boschniakia hookeri Walpers (Orobanchaceae). Acta Botanica Neerlandica 34: 257-270.
Kuoh, C. S. and S. H. Chiang-Tsai. 1989. Host plants and the haustorium of Cuscuta japonica Choisy var. formosa (Hay.) Yunker (Convolvulaceae). Taiwania 34: 11-27.
Lee, K. B. and C. D. Lee. 1989. The structure and development of the haustorium in Cuscuta australis. Canadian Journal of Botany 67: 2975-2982.
Lee, K. B. 2007. Structure and development of the upper haustorium in the parasitic flowering plant Cuscuta japonica (Convolvulaceae). American Journal of Botany 94: 737-745.
Liao, G. I., M. Y. Chen and C. S. Kuoh. 2000. Cuscuta L. (Convolvulaceae) in Taiwan. Taiwania 45: 226-234.
Liao, G. I., C. S. Kuoh and M. Y. Chen. 2005. Morphological observation on floral variations of the genus Cuscuta in Taiwan. Taiwania 50: 123-130.
MacLeod, D. G. 1962. Some anatomical and physiological observations on two species of Cuscuta. Transactions of the Botanical Society of Edinburgh 39: 302-315.
Mangenot, G. 1947. Recherches sur l'organisation d'une Balanoporaceé: Thonningia coccineae Vahl. Revue Générale de Botanique 54: 201-244, 271-294.
Marshall, J. D. and J. R. Ehleringer. 1990. Are xylem-tapping mistletoes partially heterotrophic? Oecologia 84: 244-248.
Mathiasen, R. L., D. L. Nickrent, D. C. Shaw and D. M. Watson. 2008. Mistletoes: pathology, systematics, ecology, and management. Plant Disease 92: 988-1006.
Mauseth, J. D., S. C. Hsiao and G. Montenegro. 1992. Vegetative body of the parasitic angiosperm Ombrophytum subterraneum (Balanophoraceae). Bulletin of the Torrey Botanical Club 119: 407-417.
Mengel, K. and E. A. Kirkby. 1987. Principle of Plant Nutrition, 4th edition. International Potash Institute, Bern, Switzerland.
Moore, L. B. 1940. The structure and life-history of the root parasite Dactylanthus taylori Hook. f. New Zealand Journal of Science and Technology, Section B 21: 206-224.
Musselman, L. J. and W. F. Mann. 1977. Host plants of some Rhinanthoideae (Scrophulariaceae) of eastern North America. Plant Systematics and Evolution 127: 45-53.
Nandakumar, S., D. N. Kachru and P. S. Krishnan. 1976. Threonine/serine dehydratase activity in angiospermous parasites. New Phytologist 77: 613-618.
Nickrent, D. L. and L. J. Musselman. 2004. Introduction to parasitic flowering plants. The Plant Health Instructor 13: 300-315.
Nikolov, L. A., P. B. Tomlinson, S. Manickam, P. K. Endress, E. M. Kramer and C. C. Davis. 2014. Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world's largest flowers. Annals of Botany 114: 233-242.
Norton, D. A. and M. A. Carpenter. 1998. Mistletoes as parasites: host specificity and speciation. Trends in Ecology and Evolution 13: 101-105.
Parker, C. and C. R. Riches. 1993. Parasitic Weeds of the World: Biology and Control. CAB International.
Pate, J. S., K. C. True and J. Kuo. 1991. Partitioning of dry matter and mineral nutrients during a reproductive cycle of the mistletoe Amyema linophyllum (Fenzl.) Tieghem parasitizing Casuarina obesa Miq. Journal of Experimental Botany 42: 427-439.
Pate, J. S., G. Woodall, W. D. Jeschke and G. R. Stewart. 1994. Root xylem transport of amino acids in the root hemiparasitic shrub Olax phyllanthi (Labill) R. Br. (Olacaceaea) and its multiple hosts. Plant, Cell and Environment 17: 1263-1273.
Peirce, G. J. 1893. On the structure of the haustoria of some phanerogamic parasites. Annals of Botany 3: 291-324.
Pennypacker, B. W., P. E. Nelson and S. Wilhelm. 1979. Anatomical changes resulting from the parasitism of tomato by Orobanche ramosa. Phytopathology 69: 741-748.
Piehl, M. A. 1963. Mode of attachment, haustorium structure, and hosts of Pedicularis canadensis. American Journal of Botany 50: 978-985.
Pirson, A., M. Zimmermann and J. Milburn. 1975. Encyclopedia of Plant Physiology, new series, volume 1. Transport in Plants. I. Phloem Transport. Springer-Verlag. pp. 90.
Pollock, C. J., J. F. Farrar and A. J. Gordon. 1992. Carbon Partitioning: Within and Between Organisms. Bios Scientific Publishers Limited Liability Company, Oxford, UK.
Press, M. C., N. Shah, J. M. Tuohy and G. R. Stewart. 1987. Carbon isotope ratios demonstrate carbon flux from C4 host to C3 parasite. Plant Physiology 85: 1143-1145.
Press, M. C. and J. D. Graves. 1995. Parasitic Plants. Springer Science and Business Media.
Press, M. C. and G. K. Phoenix. 2005. Impacts of parasitic plants on natural communities. New Phytologist 166: 737-751.
Rajanna, L., G. R. Shivamurthy, R. Niranjana and C. Vijay. 2005. Occurrence of phloem in the haustorium of Aeginetia pedunculata Wall.-a root holoparasite of Orobanchaceae. Taiwania 50: 109.
Raven, J. A. 1983. Phytophages of xylem and phloem: a comparison of animal and plant sap-feeders. Advances in Ecological Research 13: 135-234.
Richter, A. and M. Popp. 1992. The physiological importance of accumulation of cyclitols in Viscum album L. New Phytologist 121: 431-438.
Richter, A., M. Popp, R. Mensen, G. R. Stewart and D. J. V. Willert. 1995. Heterotrophic carbon gain of the parasitic angiosperm Tapinanthus oleifolius. Functional Plant Biology 22: 537-544.
Schulze, E. D., O. L. Lange, H. Ziegler and G. Gebauer. 1991. Carbon and nitrogen isotope ratios of mistletoes growing on nitrogen and non-nitrogen fixing hosts and on CAM plants in the Namib desert confirm partial heterotrophy. Oecologia 88: 457-462.
Shen, H., W. Ye, L. Hong, H. Huang, Z. Wang, X. Deng, Q. Yang and Z. Xu. 2006. Progress in parasitic plant biology: host selection and nutrient transfer. Plant Biology 8: 175-185.
Su, H. J., J. Murata and J. M. Hu. 2012. Morphology and phylogenetics of two holoparasitic plants, Balanophora japonica and Balanophora yakushimensis (Balanophoraceae), and their hosts in Taiwan and Japan. Journal of Plant Research 125: 317-326.
Su, H. J., J. M. Hu, F. E. Anderson, J. P. Der and D. L. Nickrent. 2015. Phylogenetic relationships of Santalales with insights into the origins of holoparasitic Balanophoraceae. Taxon 64: 491-506.
Tennakoon, K. U. and J. S. Pate. 1996a. Heterotrophic gain of carbon from hosts by the xylem-tapping root hemiparasite Olax phyllanthi (Olacaceae). Oecologia 105: 369-376.
Tennakoon, K. U. and J. S. Pate. 1996b. Effects of parasitism by a mistletoe on the structure and functioning of branches of its host. Plant, Cell and Environment 19: 517-528.
Tennakoon, K. U., J. S. Pate and G. R. Stewart. 1997. Haustorium-related uptake and metabolism of host xylem solutes by the root hemiparasitic shrub Santalum acuminatum (R. Br.) A. DC. (Santalaceae). Annals of Botany 80: 257-264.
Tennakoon, K. U., W. H. Chak and J. F. Bolin. 2011. Nutritional and isotopic relationships of selected Bornean tropical mistletoe-host associations in Brunei Darussalam. Functional Plant Biology 38: 505-513.
Těšitel, J., L. Plavcová and D. D. Cameron. 2010. Interactions between hemiparasitic plants and their hosts: the importance of organic carbon transfer. Plant Signaling and Behavior 5: 1072-1076.
Těšitel, J. 2016. Functional biology of parasitic plants: a review. Plant Ecology and Evolution 149: 5-20.
Thalouarn, P., S. Canevet and S. Renaudin. 1990. Carbon and nitrogen metabolism in a holoparasitic plant, Lathraea clandestina L., with respect to the main phenologic stages. Journal of Plant Physiology 136: 193-197.
Thomson, J. 1926. Studies in irregular nutrition. No. I. the parasitism of Cuscuta reflexa (Roxb.). Transactions of the Royal Society of Edinburgh 54: 343-356.
Thorogood, C. J., F. J. Rumsey and S. J. Hiscock. 2009. Host-specific races in the holoparasitic angiosperm Orobanche minor: implications for speciation in parasitic plants. Annals of Botany 103: 1005-1014.
Thorogood, C. J. and S. J. Hiscock. 2010. Compatibility interactions at the cellular level provide the basis for host specificity in the parasitic plant Orobanche. New Phytologist 186: 571-575.
Wang, J. C. and C. T. Lu. 2012. Flora of Taiwan, Supplement, 2nd edition. National Taiwan Normal University, Taipei, Taiwan.
Yang, Y. Q., X. F. Yi, M. Peng and Y. B. Zhou. 2012. Stable carbon and nitrogen isotope signatures of root-holoparasitic Cynomorium songaricum and its hosts at the Tibetan plateau and the surrounding Gobi desert in China. Isotopes in Environmental and Health Studies 48: 483-493.
Ziegler, H. 1994. Deuterium content in organic material of hosts and their parasites. In: Schulze, E. D. and M. M. Calder (eds.), Ecophysiology of Photosynthesis. Springer-Verlag. pp. 393-408.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7802-
dc.description.abstract全寄生植物缺乏葉綠素,生長所需養分皆來自寄主。臺灣的全寄生被子植物獲取養分的機制以及與寄主間的營養關係尚未被報導過。本研究分析五種全寄生植物 (野菰、穗花蛇菰、菱形奴草、臺灣奴草、平原菟絲子) 與其寄主間的養分關係。已知這些寄生植物在選擇寄主的專一性程度、寄生部位 (根或莖/葉) 和寄生形式 (內寄生或外寄生) 有所不同。
首先製作植物切片以確認這些全寄生植物與寄主植物的連接構造,接著分析寄生植物與寄主的碳、氮、磷、鈣、鎂、鉀、鈉元素含量以及碳 (δ13C)、氮 (δ15N) 穩定性同位素比值,目的為:一、探討全寄生植物與寄主植物被寄生部位的營養元素含量是否不同,並比較單一寄主型與廣寄主型寄生植物的營養元素含量是否不同;二、檢視全寄生植物和其寄主是否有相同的碳、氮穩定性同位素比值,據以評估利用穩定性同位素比值追蹤根寄生性全寄生植物之寄主植物的可行性。
在野菰及平原菟絲子的吸器切片可觀察到寄生植物的薄壁細胞入侵寄主組織,且寄生植物及寄主植物的木質部相連接。穗花蛇菰的塊莖切片中有複合維管束,複合維管束包含寄生植物及寄主組織且中央有傳遞細胞。兩種奴草則是在寄主根的皮層及韌皮部中形成大細胞團,屬內寄生。
相較於寄主植物,全寄生植物有較高的碳、磷、鉀含量、較低的鈣含量,以及顯著較高的鉀/鈣比值,因此推測全寄生植物可能藉由累積鉀含量以降低滲透勢和水勢能,藉此機制可從寄主獲取水分和溶質,且這些寄生植物主要由寄主韌皮部獲得養分。兩種奴草比其他三種寄生植物有顯著較高的碳含量及較低的鉀含量,可能和其寄主專一性程度較高且為內寄生有關。
相較於寄主植物被寄生的部位,大部分的全寄生植物都有顯著較高的δ13C及δ15N值,且寄生植物和寄主植物的δ13C及δ15N值呈現正相關性,因此碳及氮穩定性同位素比值應該可以用於追蹤根寄生性全寄生植物的寄主植物。
zh_TW
dc.description.abstractHoloparasitic plants lack chlorophylls and gain all the nutrients only from host plants. The absorption mechanism and nutrient status of the holoparasitic plants in Taiwan have not been studied. This research investigated the nutrient relationship between five holoparasites (Aeginetia indica, Balanophora laxiflora, Mitrastemon kanehirai, Mitrastemon kawasasakii, Cuscuta campestris) and their hosts. These studied parasitic plants differ in degree of host-specificity, parasitic location on host (root or stem/leaf) and parasitic forms (endoparasite or ectoparasite).
Tissue sections were made and investigated to confirm whether there are connecting tissues between holoparasites and their hosts. Subsequently, carbon (C), nitrogen (N), phosphorus (P), calcium (Ca), magnesium (Mg), potassium (K), sodium (Na) contents and carbon (δ13C), nitrogen (δ15N) stable isotopes of the parasitic plants and their hosts were analyzed. The following objectives were studied: 1) to investigate the nutrient contents of holoparasites, and to compare whether the holoparasites of different degree of host-specificity are different in nutrient contents; 2) to investigate whether the holoparasites and their hosts have identical δ13C and δ15N values, and to evaluate the possibility of using the stable isotope ratio for tracing the hosts of holoparasites.
The structures of haustoria of A. indica and C. campestris revealed that these two parasitic plants invaded hosts by the parenchyma cells and had xylem connection with their hosts. In the tuber of B. laxiflora, there were composite bundle consisting both the holoparasite and the host tissues and the transfer cells were found in the center. The two Mitrastemon spp., belonging to endoparasite, formed large masses between cortex and phloem of host roots.
The results showed that the studied holoparasites had significantly higher C, P, K, lower Ca contents and higher K/Ca ratio than their hosts. Accordingly, by accumulation of K for lowering the osmatic and water potential, the holoparasites might gain water and solute from their hosts. Besides, the high K/Ca ratio indicated that these holoparasites obtained nutrient mainly from host phloem. The two Mitrastemon spp. had significantly higher C but lower K contents than other three holoparasites which might be related to their high degree of host-specificity and being endoparasitic.
The holoparasites had significantly higher δ13C and δ15N values than their hosts. In addition, there were positive correlations in δ13C and δ15N values between holoparasites and their hosts. Thus, it is possible to use the ratio of carbon and nitrogen stable isotopes ratio as an indicator for tracing the hosts of the holoparasites.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:54:05Z (GMT). No. of bitstreams: 1
ntu-106-R02b44012-1.pdf: 4035355 bytes, checksum: dcf630e0aa2e94c0350826910da37c08 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 IX
一、前言 1
二、材料與方法 7
(一) 實驗材料及來源 7
1. 實驗材料 7
2. 材料來源 8
(二) 全寄生植物與寄主植物連接構造的觀察 12
1. 野菰、穗花蛇菰及平原菟絲子的觀察 12
2. 菱形奴草及臺灣奴草的觀察 12
(三) 磷、鈣、鎂、鉀、鈉元素分析 13
1. 樣品前處理 13
2. 樣品分解 13
3. 樣品磷含量的測定 13
4. 鈣、鎂、鉀及鈉含量的測定 14
(四) 全寄生植物與寄主植物的碳、氮含量及穩定性同位素分析 16
(五) 統計分析方法 16
三、結果 17
(一) 寄生構造觀察 17
1. 野菰吸器與寄主根的連接 17
2. 穗花蛇菰與寄主根莖的連接 17
3. 菱形奴草與寄主根的連接 17
4. 臺灣奴草與寄主根的連接 18
5. 平原菟絲子吸器與寄主莖及葉的連接 18
(二) 全寄生植物與寄主植物的營養元素含量 24
1. 野菰與寄主芒草的營養元素含量 24
2. 穗花蛇菰與寄主冷清草的營養元素含量 24
3. 菱形奴草與寄主鋸葉長尾栲的營養元素含量 25
4. 臺灣奴草與寄主大葉石櫟的營養元素含量 31
5. 平原菟絲子與寄主變葉木的營養元素含量 31
6. 比較五種全寄生植物花部與寄主連接部位的營養元素比值 32
7. 比較五種全寄生植物花部的營養元素含量 32
(三) 全寄生植物與寄主植物的碳、氮穩定性同位素比值 38
1. 野菰與寄主芒草的碳、氮穩定性同位素比值 38
2. 穗花蛇菰與寄主的碳、氮穩定性同位素比值 41
3. 菱形奴草與寄主鋸葉長尾栲的碳、氮穩定性同位素比值 45
4. 臺灣奴草與寄主大葉石櫟的碳、氮穩定性同位素比值 45
5. 平原菟絲子與寄主變葉木的碳、氮穩定性同位素比值 48
6. 五種全寄生植物與寄主植物連接部位的碳、氮穩定性同位素比值 48
四、討論 52
(一) 全寄生植物的養分吸收構造 52
1. 野菰 52
2. 穗花蛇菰 53
3. 菱形奴草及臺灣奴草 54
4. 平原菟絲子 54
5. 綜合討論 55
(二) 營養元素含量 56
1. 寄生植物與寄主植物的差異 56
2. 全寄生植物物種間的差異 57
3. 綜合討論 59
(三) 碳、氮穩定性同位素 62
1. 寄生植物與寄主植物的差異 62
2. 穩定性同位素是否可用於追蹤根寄生性全寄生植物的寄主植物 64
五、結論 66
六、參考文獻 67
dc.language.isozh-TW
dc.title臺灣五種全寄生植物與寄主植物的養分關係探討zh_TW
dc.titleA study on nutrient relationships between five holoparasitic plants and their hosts in Taiwanen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃玲瓏(Ling-Long Kuo-Huang),何傳愷(Chuan-Kai Ho),蕭淑娟(Shu-Chuan Hsiao)
dc.subject.keyword全寄生植物,野菰,穗花蛇菰,奴草,平原菟絲子,營養元素含量,穩定性同位素,zh_TW
dc.subject.keywordholoparasitic plant,Aeginetia indica,Balanophora laxiflora,Mitrastemon,Cuscuta campestris,nutrient content,stable isotope,en
dc.relation.page78
dc.identifier.doi10.6342/NTU201700717
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-03-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf3.94 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved