Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78027
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭超隆(Chiaolong Hsiao)
dc.contributor.authorLu-Hao Wangen
dc.contributor.author王麓豪zh_TW
dc.date.accessioned2021-07-11T14:40:03Z-
dc.date.available2022-02-21
dc.date.copyright2017-02-21
dc.date.issued2017
dc.date.submitted2017-01-20
dc.identifier.citation1.Trovato, M. and P. De Berardinis, Novel antigen delivery systems. World J Virol, 2015. 4(3): p. 156-68.
2. Sercombe, L., et al., Advances and Challenges of Liposome Assisted Drug Delivery. Front Pharmacol, 2015. 6: p. 286.
3. Monteiro, N., et al., Liposomes in tissue engineering and regenerative medicine. Journal of The Royal Society Interface, 2014. 11(101): p. 20140459-20140459.
4. Akbarzadeh, A., et al., Liposome: classification, preparation, and applications. Nanoscale Research Letters, 2013. 8(1): p. 102.
5. Day, P.W., et al., A monoclonal antibody for G protein-coupled receptor crystallography. Nat Meth, 2007. 4(11): p. 927-929.
6. Timmerman, P., W.C. Puijk, and R.H. Meloen, Functional reconstruction and synthetic mimicry of a conformational epitope using CLIPS technology. J Mol Recognit, 2007. 20(5): p. 283-99.
7. Willis, S., et al., Virus-like particles as quantitative probes of membrane protein interactions. Biochemistry, 2008. 47(27): p. 6988-90.
8. Zhou, Y., et al., Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0[thinsp][angst] resolution. Nature, 2001. 414(6859): p. 43-48.
9. Zeltins, A., Construction and Characterization of Virus-Like Particles: A Review. Molecular Biotechnology, 2013. 53(1): p. 92-107.
10. Kushnir, N., S.J. Streatfield, and V. Yusibov, Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine, 2012. 31(1): p. 58-83.
11. Bajaj, S. and M. Banerjee, Engineering Virus Capsids Into Biomedical Delivery Vehicles: Structural Engineering Problems in Nanoscale. Journal of Biomedical Nanotechnology, 2015. 11(1): p. 53-69.
12. Vasiljeva, I., et al., Mosaic Qβ coats as a new presentation model. FEBS Letters, 1998. 431(1): p. 7-11.
13. Kozlovska, T.M., et al., RNA Phage Qβ Coat Protein as a Carrier for Foreign Epitopes. Intervirology, 1996. 39(1-2): p. 9-15.
14. Golmohammadi, R., et al., The crystal structure of bacteriophage Qβ at 3.5 å resolution. Structure, 1996. 4(5): p. 543-554.
15. Brown, S.D., J.D. Fiedler, and M.G. Finn, Assembly of hybrid bacteriophage Qbeta virus-like particles. Biochemistry, 2009. 48(47): p. 11155-7.
16. Valegård, K., et al., The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions1. Journal of Molecular Biology, 1997. 270(5): p. 724-738.
17. Machida, K. and H. Imataka, Production methods for viral particles. Biotechnol Lett, 2015. 37(4): p. 753-60.
18. Strable, E. and M.G. Finn, Chemical Modification of Viruses and Virus-Like Particles, in Viruses and Nanotechnology, M. Manchester and N.F. Steinmetz, Editors. 2009, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1-21.
19. Kaltgrad, E., et al., Anti-Carbohydrate Antibodies Elicited by Polyvalent Display on a Viral Scaffold. ChemBioChem, 2007. 8(12): p. 1455-1462.
20. Cornuz, J., et al., A vaccine against nicotine for smoking cessation: a randomized controlled trial. PLoS One, 2008. 3(6): p. e2547.
21. Witherell, G.W. and O.C. Uhlenbeck, Specific RNA binding by Q.beta. coat protein. Biochemistry, 1989. 28(1): p. 71-76.
22. Ashcroft, A.E., et al., Engineering Thermal Stability in RNA Phage Capsids via Disulphide Bonds. Journal of Nanoscience and Nanotechnology, 2005. 5(12): p. 2034-2041.
23. Weber, H., The binding site for coat protein on bacteriophage Qβ RNA. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 1976. 418(2): p. 175-183.
24. Fiedler, J.D., et al., RNA-directed packaging of enzymes within virus-like particles. Angew Chem Int Ed Engl, 2010. 49(50): p. 9648-51.
25. Lau, J.L., et al., Evolution and Protein Packaging of Small-Molecule RNA Aptamers. ACS Nano, 2011. 5(10): p. 7722-7729.
26. Ashley, C.E., et al., Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-like Particles. ACS Nano, 2011. 5(7): p. 5729-5745.
27. Borodavka, A., R. Tuma, and P.G. Stockley, Evidence that viral RNAs have evolved for efficient, two-stage packaging. Proc Natl Acad Sci U S A, 2012. 109(39): p. 15769-74.
28. Manzenrieder, F., et al., Stabilization of virus-like particles with poly(2-oxazoline)s. Angew Chem Int Ed Engl, 2011. 50(11): p. 2601-5.
29. Overby, L.R., et al., Comparison of Two Serologically Distinct Ribonucleic Acid Bacteriophages I. Properties of the Viral Particles. Journal of Bacteriology, 1966. 91(1): p. 442-448.
30. Nass, M.M.K. and S. Nass, INTRAMITOCHONDRIAL FIBERS WITH DNA CHARACTERISTICS. The Journal of Cell Biology, 1963. 19(3): p. 593.
31. Nass, S. and M.M.K. Nass, INTRAMITOCHONDRIAL FIBERS WITH DNA CHARACTERISTICS. The Journal of Cell Biology, 1963. 19(3): p. 613.
32. Hashimoto, Y., et al., A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Aβ. Proceedings of the National Academy of Sciences, 2001. 98(11): p. 6336-6341.
33. Lee, C., et al., The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab, 2015. 21(3): p. 443-54.
34. Cobb, L.J., et al., Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging (Albany NY), 2016. 8(4): p. 796-808.
35. Saghatelian, A. and J.P. Couso, Discovery and characterization of smORF-encoded bioactive polypeptides. Nat Chem Biol, 2015. 11(12): p. 909-16.
36. Ma, J., et al., Improved Identification and Analysis of Small Open Reading Frame Encoded Polypeptides. Analytical Chemistry, 2016. 88(7): p. 3967-3975.
37. da Cunha, F.M., N.Q. Torelli, and A.J. Kowaltowski, Mitochondrial Retrograde Signaling: Triggers, Pathways, and Outcomes. Oxid Med Cell Longev, 2015. 2015: p. 482582.
38. Quiros, P.M., A. Mottis, and J. Auwerx, Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol, 2016. 17(4): p. 213-26.
39. Zarse, K. and M. Ristow, A mitochondrially encoded hormone ameliorates obesity and insulin resistance. Cell Metab, 2015. 21(3): p. 355-6.
40. Alis, R., et al., The role of mitochondrial derived peptides (MDPs) in metabolism. J Cell Physiol, 2015. 230(12): p. 2903-4.
41. Fuku, N., et al., The mitochondrial‐derived peptide MOTS‐c: a player in exceptional longevity? Aging Cell, 2015. 14(6): p. 921-923.
42. Hansson, M.D., et al., PCR-mediated deletion of plasmid DNA. Anal Biochem, 2008. 375(2): p. 373-5.
43. Harlow, E. and D. Lane, A laboratory manual. New York: Cold Spring Harbor Laboratory, 1988. 579.
44. National Diagnostics, I. SequaGel UreaGel System. Available from: https://www.nationaldiagnostics.com/sites/default/files/ec833_protocol_0.pdf.
45. Fang, P.Y., et al., Functional RNAs: combined assembly and packaging in VLPs. Nucleic Acids Res, 2016.
46. Durieux, J., S. Wolff, and A. Dillin, The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell, 2011. 144(1): p. 79-91.
47. Woo, D.K. and G.S. Shadel, Mitochondrial stress signals revise an old aging theory. Cell, 2011. 144(1): p. 11-2.
48. Grgacic, E.V. and D.A. Anderson, Virus-like particles: passport to immune recognition. Methods, 2006. 40(1): p. 60-5.
49. Hovlid, M.L., et al., Encapsidated Atom-Transfer Radical Polymerization in Qβ Virus-like Nanoparticles. ACS Nano, 2014. 8(8): p. 8003-8014.
50. Yin, Z., et al., Boosting immunity to small tumor-associated carbohydrates with bacteriophage qbeta capsids. ACS Chem Biol, 2013. 8(6): p. 1253-62.
51. Pokorski, J.K., M.L. Hovlid, and M.G. Finn, Cell targeting with hybrid Qbeta virus-like particles displaying epidermal growth factor. Chembiochem, 2011. 12(16): p. 2441-7.
52. Schagger, H., Tricine-SDS-PAGE. Nat Protoc, 2006. 1(1): p. 16-22.
53. Tomisawa, S., et al., A new approach to detect small peptides clearly and sensitively by Western blotting using a vacuum-assisted detection method. Biophysics (Nagoya-shi), 2013. 9: p. 79-83.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78027-
dc.description.abstract從粒線體12S核糖體核糖核酸之編碼中發現一段粒線體衍生性多肽:MOTS-c (一段位於粒線體12S核糖體核糖核酸之開放讀序框架)。在細胞層級中,MOTS-c同時被發現可調節胰島素敏感性及代謝恆定性。有賴生物科技與醫學的發展,對於以奈米尺度在生物體內運輸小分子之快捷運輸平臺研究日趨重要。我們實驗室業已發展一套以類病毒顆粒為轉染媒介的核糖核酸運輸系統。類病毒顆粒是一種可將蛋白質或核糖核酸包裹在內的生物性腔室。在本研究中,我使用一種從Qβ核糖核酸噬菌體衍生而來的重組型20面體奈米微粒:Qβ類病毒顆粒直接包裹MOTS-c之信使核糖核酸(QβMOTS-c 類病毒顆粒)。接著以QβMOTS-c 類病毒顆粒處理HeLa細胞使其產生MOTS-c多肽。我們發展數種生化分析方法以鑑定產物,像是西方墨點法以及競爭型酶聯免疫分析法。我們的目標是生產在生物體層級中能有效調節代謝恆定性的MOTS-c多肽。zh_TW
dc.description.abstractMOTS-c (mitochondrial open reading frame of the 12S rRNA-c) is a mitochondrial-derived peptide that is found to be encoded within the mitochondrial 12S rRNA. The MOTS-c is also found to regulate insulin sensitivity and metabolic homeostasis at the cellular level. Convenient platforms for delivering small molecules in vivo in nanoscale of interest are becoming more desirable as the development of biotechnology and medicine. An RNA-delivery system utilizes VLPs (virus-like particles) as a transfection agent is developed prior in our lab. The VLP is a biological compartment that allows one to pack with proteins or RNAs. Here I use the Qβ VLP, a recombinant icosahedral nanoparticle derived from the RNA bacteriophage Qβ, to directed pack the MOTS-c mRNA (QβMOTS-c VLP). The QβMOTS-c VLP is then used to produce the MOTS-c peptide in vivo in the HeLa cells. Several biochemistry assays such as western blot and the competitive enzyme-linked immunosorbent assay (ELISA) are developed to identify the product. Our goal is to produce an effective MOTS-c peptide to functionally regulate metabolic homeostasis at the organismal level.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:40:03Z (GMT). No. of bitstreams: 1
ntu-106-R03b46003-1.pdf: 1981480 bytes, checksum: aa16d4a7508c6391394f623132fe6c4c (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 V
圖目錄 IX
表目錄 X
Chapter 1: Introduction 1
1.1 Qβ virus-like particles (Qβ VLPs) 1
1.2 Mitochondrial open reading frame of the 12S rRNA-c 2
1.3 Motivation and objective 3
Chapter 2: Materials and Methods 4
2.1 Materials 4
2.2 Methods 12
2.2.1 Cloning 12
2.2.2 Digestion of pUC57-Simple and pT7CFE1-NHA 13
2.2.3 The hairpin RNA gene construction 14
2.2.4 DNA agarose gel electrophoresis 14
2.2.5 DNA purification 15
2.2.6 Further DNA purification and concentration 16
2.2.7 DNA ligation 16
2.2.8 Engineer the ΔHA-pT7CFE1-NHA vector 17
2.2.9 Heat-shock transformation 18
2.2.10 Colony polymerase chain reaction 19
2.2.11 Streaking and isolating bacteria on an LB agar plate 20
2.2.12 Liquid bacteria culture and storage 20
2.2.13 Plasmid DNA extraction 21
2.2.14 Competent cells production 21
2.2.15 Electroporation transformation 22
2.2.16 Virus-like particles (VLPs) production and purification 24
2.2.17 SDS-PAGE electrophoresis 26
2.2.18 Coomassie blue staining 28
2.2.19 RNA extraction from virus-like particles (VLPs) 28
2.2.20 In vitro transcription 29
2.2.21 RNA urea gel electrophoresis 30
2.2.22 SYBR green staining 31
2.2.23 Cell culture 32
2.2.24 Native PAGE electrophoresis 32
2.2.25 Competitive enzyme linked immunosorbent assays (ELISA) 33
2.2.26 MOTS-c purification by ammonium sulfate precipitation 34
2.2.27 MOTS-c purification by C18 column 35
2.2.28 Cell lysate extraction 37
2.2.29 Western blot 38
2.2.30 Direct enzyme linked immunosorbent assays (ELISA) 39
Chapter 3: Results 41
3.1 Construction of the [MOTS-c plus Qβ hairpin] plasmid 41
3.2 Production of the MOTS-c mRNA in vivo and in vitro 41
3.3 Development of the MOTS-c competition ELISA assay 43
3.3.1 rAb (anti-MOTS-c) titer between BSA and BSA-MOTS-c 44
3.4 Identification of the ex vivo production of the MOTS-c from the HeLa cells 44
Chapter 4: Discussions 47
4.1 Combination of the process for QβMOTS-c VLP 47
4.2 Detection of the cell produced MOTS-c peptides 48
Chapter 5: References 51
Chapter 6: Appendix 58
6.1 MOTS-c sequence (51 bp) 58
6.2 MOTS-c amino acid sequence (16 AA) 58
6.3 Sequence of MOTS-c with BamHI and SacI (63 bp) 58
6.4 Qβ hairpin 59
6.4.1 Qβ hairpin: Forward primer (43 bp) 59
6.4.2 Qβ hairpin: Reverse primer (43 bp) 59
6.5 pT7CFE1-(MOTS-c)-(Qβ hairpin) plasmid sequence 59
6.6 T7 sequences for PCR 63
6.6.1 T7 promoter: Forward primer (20 bp) 63
6.6.2 T7 terminator: Reverse primer (19 bp) 63
dc.language.isoen
dc.subject轉譯作用zh_TW
dc.subject類病毒顆粒zh_TW
dc.subject轉錄作用zh_TW
dc.subjectMOTS-czh_TW
dc.subject信使核糖核酸zh_TW
dc.subjectvirus-like particleen
dc.subjectMOTS-cen
dc.subjecttranslationen
dc.subjectmRNAen
dc.subjectVLPen
dc.subjecttranscriptionen
dc.title在哺乳類細胞中藉由Qβ類病毒顆粒快捷運輸平臺過度表現粒線體衍生性多肽(MOTS-c)zh_TW
dc.titleQβ Virus-Like Particles: An Accessible Delivery Platform for Overexpressing Mitochondrial-Derived Peptide MOTS-c in Mammalian Cellsen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張震東(Geen-Dong Chang),冀宏源(Hung-Yuan Chi)
dc.subject.keywordMOTS-c,類病毒顆粒,信使核糖核酸,轉譯作用,轉錄作用,zh_TW
dc.subject.keywordMOTS-c,virus-like particle,VLP,mRNA,transcription,translation,en
dc.relation.page77
dc.identifier.doi10.6342/NTU201700127
dc.rights.note有償授權
dc.date.accepted2017-01-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-R03b46003-1.pdf
  未授權公開取用
1.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved