請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7801
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周泰立(Tai-Li Chou) | |
dc.contributor.author | Ciao-Han Wong | en |
dc.contributor.author | 翁巧涵 | zh_TW |
dc.date.accessioned | 2021-05-19T17:54:03Z | - |
dc.date.available | 2022-06-12 | |
dc.date.available | 2021-05-19T17:54:03Z | - |
dc.date.copyright | 2017-06-12 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-04-10 | |
dc.identifier.citation | American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). Washington, DC: American Psychiatric Association.
Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45, 2883-2901. Bartolucci, G., Pierce, S. J., & Streiner, D. (1980). Cross-sectional studies of grammatical morphemes in autistic and mentally retarded children. Journal of Autism and Developmental Disorders, 10, 39-50. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767-2796. Bishop, D. V., Maybery, M., Wong, D., Maley, A., Hill, W., & Hallmayer, J. (2004). Are phonological processing deficits part of the broad autism phenotype? American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 128, 54-60. Bitan, T., Burman, D. D., Chou, T. L., Lu, D., Cone, N. E., Cao, F., . . . Booth, J. R. (2007). The interaction between orthographic and phonological information in children: An fMRI study. Human Brain Mapping, 28, 880-891. Blumenfeld, H. K., Booth, J. R., & Burman, D. D. (2006). Differential prefrontal–temporal neural correlates of semantic processing in children. Brain and Language, 99, 226-235. Bookheimer, S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151-188. Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. (2002). Modality independence of word comprehension. Human Brain Mapping, 16, 251-261. Borghi, A. M., & Caramelli, N. (2003). Situation bounded conceptual organization in children: From action to spatial relations. Cognitive Development, 18, 49-60. Burock, M. A., Buckner, R. L., Woldorff, M. G., Rosen, B. R., & Dale, A. M. (1998). Randomized event‐related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport, 9, 3735-3739. Capps, L., Losh, M., & Thurber, C. (2000). “The frog ate the bug and made his mouth sad”: Narrative competence in children with autism. Journal of Abnormal Child Psychology, 28, 193-204. Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564-583. Chen, P. J., Gau, S. S. F., Lee, S. H., & Chou, T. L. (2016). Differences in age-dependent neural correlates of semantic processing between youths with autism spectrum disorder and typically developing youths. Autism Research, 9, 1263-1273. Chou, T. L., Booth, J. R., Bitan, T., Burman, D. D., Bigio, J. D., Cone, N. E., . . . Cao, F. (2006). Developmental and skill effects on the neural correlates of semantic processing to visually presented words. Human Brain Mapping, 27, 915-924. Chou, T. L., Booth, J. R., Burman, D. D., Bitan, T., Bigio, J. D., Lu, D., & Cone, N. E. (2006). Developmental changes in the neural correlates of semantic processing. Neuroimage, 29, 1141-1149. Chou, T. L., Chen, C. W., Fan, L. Y., Chen, S. Y., & Booth, J. R. (2009). Testing for a cultural influence on reading for meaning in the developing brain: The neural basis of semantic processing in Chinese children. Frontiers in Human Neuroscience, 3, 1-9. Ciesielski, K. T., Lesnik, P. G., Savoy, R. L., Grant, E. P., & Ahlfors, S. P. (2006). Developmental neural networks in children performing a Categorical N-Back Task. Neuroimage, 33, 980-990. Diggle, P., Heagerty, P., Liang, K. Y., & Zeger, S. (2002). Analysis of longitudinal data. Oxford: Oxford University Press. Estes, Z., Golonka, S., & Jones, L. L. (2011). Thematic thinking: The apprehension and consequences of thematic relations. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 54, pp. 249-294). San Diego, CA: Academic Press. Fairhall, S. L., & Caramazza, A. (2013). Brain regions that represent amodal conceptual knowledge. The Journal of Neuroscience, 33, 10552-10558. Fan, L.-Y., Lee, S.-H., & Chou, T.-L. (2010). Interaction between brain regions during semantic processing in Chinese adults. Lang Linguist, 11, 159-181. Fletcher, P. C., Shallice, T., & Dolan, R. J. (2000). “Sculpting the response space”—An account of left prefrontal activation at encoding. Neuroimage, 12, 404-417. Gabrieli, J. D., Ghosh, S. S., & Whitfield-Gabrieli, S. (2015). Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron, 85, 11-26. Gaffrey, M. S., Kleinhans, N. M., Haist, F., Akshoomoff, N., Campbell, A., Courchesne, E., & Müller, R.-A. (2007). A typical participation of visual cortex during word processing in autism: An fMRI study of semantic decision. Neuropsychologia, 45, 1672-1684. Gaillard, W. D., Sachs, B. C., Whitnah, J. R., Ahmad, Z., Balsamo, L. M., Petrella, J. R., . . . Xu, B. (2003). Developmental aspects of language processing: fMRI of verbal fluency in children and adults. Human Brain Mapping, 18, 176-185. Gastgeb, H. Z., Strauss, M. S., & Minshew, N. J. (2006). Do individuals with autism process categories differently? The effect of typicality and development. Child Development, 77, 1717-1729. Gau, S. S. F., Chong, M. Y., Chen, T. H. H., & Cheng, A. T. A. (2005). A 3-year panel study of mental disorders among adolescents in Taiwan. American Journal of Psychiatry, 162, 1344-1350. Gau, S. S. F., Lee, C. M., Lai, M. C., Chiu, Y. N., Huang, Y. F., Kao, J. D., & Wu, Y. Y. (2011). Psychometric properties of the Chinese version of the Social Communication Questionnaire. Research in Autism Spectrum Disorders, 5, 809-818. Groen, W., Tesink, C., Petersson, K. M., Van Berkum, J., Van der Gaag, R., Hagoort, P., & Buitelaar, J. (2010). Semantic, factual, and social language comprehension in adolescents with autism: An FMRI study. Cerebral Cortex, 20, 1937-1945. Grossman, M., Peelle, J. E., Smith, E. E., McMillan, C. T., Cook, P., Powers, J., . . . Boller, A. (2013). Category-specific semantic memory: Converging evidence from bold fMRI and Alzheimer's disease. Neuroimage, 68, 263-274. Hampton, J. A. (2006). Concepts as prototypes. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 46, pp. 79-113). San Diego, CA: Academic Press. Harris, G. J., Chabris, C. F., Clark, J., Urban, T., Aharon, I., Steele, S., . . . Tager-Flusberg, H. (2006). Brain activation during semantic processing in autism spectrum disorders via functional magnetic resonance imaging. Brain and Cognition, 61, 54-68. Hashimoto, N., McGregor, K. K., & Graham, A. (2007). Conceptual organization at 6 and 8 years of age: Evidence from the semantic priming of object decisions. Journal of Speech, Language, and Hearing Research, 50, 161-176. Hines, D., Czerwinski, M., Sawyer, P. K., & Dwyer, M. (1986). Automatic semantic priming: Effect of category exemplar level and word association level. Journal of Experimental Psychology: Human Perception and Performance, 12, 370. Hue, C. W., Gao, C. H., & Lo, M. (2005). Association norms for 600 Chinese characters. Taipei: Taiwanese Psychological Association. Hung, K. C., Lee, S. H., Chen, S. Y., & Chou, T. L. (2010). Effect of semantic radical and semantic association on semantic processing of Chinese characters for adults and fifth graders. Chinese Journal of Psychology, 52, 327-344. Hutchison, K. A. (2003). Is semantic priming due to association strength or feature overlap? A microanalytic review. Psychonomic Bulletin & Review, 10, 785-813. Johnson, C. R., & Rakison, D. (2006). Early categorization of animate/inanimate concepts in young children with autism. Journal of Developmental and Physical Disabilities, 18, 73-89. Josephs, O., & Henson, R. N. (1999). Event-related functional magnetic resonance imaging: Modelling, inference and optimization. Philosophical Transactions of the Royal Society B: Biological Sciences, 354, 1215-1228. Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain, 127, 1811-1821. Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2006). Sentence comprehension in autism: Thinking in pictures with decreased functional connectivity. Brain, 129, 2484-2493. Kjelgaard, M. M., & Tager-Flusberg, H. (2001). An investigation of language impairment in autism: Implications for genetic subgroups. Language and Cognitive Processes, 16, 287-308. Klinger, L. G., & Dawson, G. (2001). Prototype formation in autism. Development and Psychopathology, 13, 111-124. Koshino, H., Carpenter, P. A., Minshew, N. J., Cherkassky, V. L., Keller, T. A., & Just, M. A. (2005). Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage, 24, 810-821. Kotz, S. A., Cappa, S. F., von Cramon, D. Y., & Friederici, A. D. (2002). Modulation of the lexical–semantic network by auditory semantic priming: An event-related functional MRI study. Neuroimage, 17, 1761-1772. Lai, M. C., Lombardo, M. V., & Baron-Cohen, S. (2014). Autism. The Lancet, 383, 896-910. Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics:(de) Constructing the N400. Nature Reviews Neuroscience, 9, 920-933. Lee, S. H., Booth, J. R., Chen, S. Y., & Chou, T. L. (2011). Developmental changes in the inferior frontal cortex for selecting semantic representations. Developmental Cognitive Neuroscience, 1, 338-350. Lee, S. H., Chen, S. Y., & Chou, T. L. (2009). Effect of vocabulary size on semantic processing of Chinese characters for fifth graders and adults. Formosa Journal of Mental Health, 22, 354-382. Lee, S. H., Booth, J. R., & Chou, T. L. (2015). Developmental changes in the neural influence of sublexical information on semantic processing. Neuropsychologia, 73, 25-34. Lin, E. L., & Murphy, G. L. (2001). Thematic relations in adults' concepts. Journal of Experimental Psychology: General, 130, 3-28. Liu, Y. Y., Shu, H., & Li, P. (2007). Word naming and psycholinguistic norms: Chinese. Behavior Research Methods, 39, 192-198. Lucariello, J., Kyratzis, A., & Nelson, K. (1992). Taxonomic knowledge: What kind and when? Child Development, 63, 978-998. Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 19, 1233-1239. McClelland, J. L., & Rogers, T. T. (2003). The parallel distributed processing approach to semantic cognition. Nature Reviews Neuroscience, 4, 310-322. McGregor, K. K., & Appel, A. (2002). On the relation between mental representation and naming in a child with specific language impairment. Clinical Linguistics & Phonetics, 16(1), 1-20. McGregor, K. K., Friedman, R. M., Reilly, R. M., & Newman, R. M. (2002). Semantic representation and naming in young children. Journal of Speech, Language, and Hearing Research, 45, 332-346. McNorgan, C., Chabal, S., O'Young, D., Lukic, S., & Booth, J. R. (2015). Task dependent lexicality effects support interactive models of reading: A meta-analytic neuroimaging review. Neuropsychologia, 67, 148-158. McRae,K.,&Boisvert,S.(1998). Automatic semantic similarity priming. Journal of Experimental Psychology: Learning, Memory and Cognition, 24, 558-572. Minshew, N. J., Meyer, J., & Goldstein, G. (2002). Abstract reasoning in autism: A disassociation between concept formation and concept identification. Neuropsychology, 16, 327. Minshew, N. J., Muenz, L. R., Goldstein, G., & Payton, J. B. (1992). Neuropsychological functioning in nonmentally retarded autistic individuals. Journal of Clinical and Experimental Neuropsychology, 14, 749-761. Moss, H. E., Ostrin, R. K., Tyler, L. K., & Marslen-Wilson, W. D. (1995). Accessing different types of lexical semantic information: Evidence from priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 863-883. Moss, H. E., & Tyler, L. K. (1995). Investigating semantic memory impairments: The contribution of semantic priming. Memory, 3, 359-395. Nation, K., & Snowling, M. J. (1999). Developmental differences in sensitivity to semantic relations among good and poor comprehenders: Evidence from semantic priming. Cognition, 70, B1-B13. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97-113. Plaut, D. C. (1995). Semantic and associative priming in a distributed attractor network. Paper presented at the Proceedings of the 17th annual conference of the cognitive science society, Pittsburgh, PA. Roberts, J. A., Rice, M. L., & Tager-Flusberg, H. (2004). Tense marking in children with autism. Applied Psycholinguistics, 25, 429-448. Rönnlund, M., Nyberg, L., Bäckman, L., & Nilsson, L. G. (2005). Stability, growth, and decline in adult life span development of declarative memory: Cross-sectional and longitudinal data from a population-based study. Psychology and Aging, 20, 3-18. Rutter, M., & Lord, C. (2003). Autism Diagnostic Interview-Revised. Los Angeles, CA: Western Psychological Services. Sachs, O., Weis, S., Krings, T., Huber, W., & Kircher, T. (2008). Categorical and thematic knowledge representation in the brain: Neural correlates of taxonomic and thematic conceptual relations. Neuropsychologia, 46, 409-418. Sachs, O., Weis, S., Zellagui, N., Huber, W., Zvyagintsev, M., Mathiak, K., & Kircher, T. (2008). Automatic processing of semantic relations in fMRI: Neural activation during semantic priming of taxonomic and thematic categories. Brain Research, 1218, 194-205. Salthouse, T. A. (2000). Methodological assumptions in cognitive aging research. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (2 ed., pp. 467-498). Hillsdale, NJ: Erlbaum. Sauzéon, H., Lestage, P., Raboutet, C., N’Kaoua, B., & Claverie, B. (2004). Verbal fluency output in children aged 7–16 as a function of the production criterion: Qualitative analysis of clustering, switching processes, and semantic network exploitation. Brain and Language, 89, 192-202. Schaie, K. W. (1990). Intellectual development in adulthood. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (3 ed., pp. 291-310). San Diego, CA: Academic Press. Schaie, K. W. (1994). Developmental designs revisited. In S. H. Cohen & H. W. Reese (Eds.), Life-span developmental psychology (pp. 45-64). Hillsdale, NJ: Erlbaum. Scheuner, N., Bonthoux, F., Cannard, C., & Blaye, A. (2004). The role of associative strength and conceptual relations in matching tasks in 4‐and 6‐year‐old children. International Journal of Psychology, 39, 290-304. Schlaggar, B. L., Brown, T. T., Lugar, H. M., Visscher, K. M., Miezin, F. M., & Petersen, S. E. (2002). Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science, 296, 1476-1479. Shen, M. D., Shih, P., Öttl, B., Keehn, B., Leyden, K. M., Gaffrey, M. S., & Müller, R.-A. (2012). Atypical lexicosemantic function of extrastriate cortex in autism spectrum disorder: Evidence from functional and effective connectivity. Neuroimage, 62, 1780-1791. Shriberg, L. D., Paul, R., McSweeny, J. L., Klin, A., Cohen, D. J., & Volkmar, F. R. (2001). Speech and prosody characteristics of adolescents and adults with high-functioning autism and Asperger syndrome. Journal of Speech, Language, and Hearing Research, 44, 1097-1115. Shulman, C., Yirmiya, N., & Greenbaum, C. W. (1995). From categorization to classification: A comparison among individuals with autism, mental retardation, and normal development. Journal of Abnormal Psychology, 104, 601. Sigman, M., & Ungerer, J. A. (1984). Cognitive and language skills in autistic, mentally retarded, and normal children. Developmental Psychology, 20, 293. Sinica Corpus. (1998). Academia sinica balanced corpus. Taipei: Academia Sinica. Tager-Flusberg, H. (1981). On the nature of linguistic functioning in early infantile autism. Journal of Autism and Developmental Disorders, 11, 45-56. Taylor, K. I., Devereux, B. J., & Tyler, L. K. (2011). Conceptual structure: Towards an integrated neurocognitive account. Language and Cognitive Processes, 26, 1368-1401. Wong, C. H., Chen, S. Y., & Chou, T. L. (2014). A longitudinal study of semantic association and categorical relatedness on children's semantic processing of Chinese characters. Chinese Journal of Psychology, 56, 65-81. Wong, C. H., Chen, S. Y., Chou, T. L., & Lee, S. H. (2011). The impacts of word recognition ability and semantic relation on semantic processing for third graders. Chinese Journal of Psychology, 53, 293-307. Wu, J. T., & Liu, I. M. (1987). Exploring the phonetic and semantic features of Chinese words. Taiwan National Science Council: Technical Report NSC75-0301-H002-024. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7801 | - |
dc.description.abstract | 目的:瞭解語意處理的發展變化對於探討語意知識發展具有其重要性。過去關於健康青少年語意發展的研究,皆採用橫斷式取向觀察年齡變化的差異,而且沒有將語意關聯與類別語意關係對於語意處理的影響清楚區分。此外,神經發展障礙的自閉症疾病,其主要臨床症狀為溝通障礙與語意處理能力缺失,已被證實在進行語意處理時會伴隨著異常神經活動。然而,對於自閉症青少年與健康青少年在處理語意關係時,是否在神經機制上也有著異同表現的知識仍然缺乏。此論文藉由行為測量與功能性磁振造影(fMRI),檢驗健康青少年的語意關聯與類別語意關係的發展變化,並進一步地比較自閉症青少年處理語意關聯與類別語意關係時對應的神經活動表現。方法:實驗一採縱貫式取向,正交地操弄語意關聯(高、低)與類別語意關係(高、低)兩個變項,以檢驗16位10到14歲青少年參與者語意知識的發展。參與者在進入fMRI後,判斷依序出現的視覺中文字對是否具有意義關係,在間隔兩年後,再次進行相同作業。實驗一更進一步的檢驗第一次的行為表現是否能預測兩年後的神經活化變化。實驗二以fMRI檢驗31位自閉症青少年與36位年齡、性別、慣用手與智力配對的健康青少年在進行語意處理時相對應的神經活動表現,參與者需判斷視覺呈現的中文字是否具有語意關係。分析判斷結果時將語意相關字對,依照語意關聯與類別語意關係的評分視為一連續性的刺激(item-level)參數調節變項。結果:實驗一,在弱語意關聯字對的表現,第二次比第一次有較多的神經生理反應,顯現在左顳中回(middle temporal gyrus)與左額下回(inferior frontal gyrus)有較多的活化反應,而第一次的行為正確率表現也預測了第二次的左額下回活化反應。推論處理越精緻化的語意表徵時,需要更仔細的選擇適當的語意表徵。此外,高類別語意關係字對則是在左枕-顳葉皮質區(occipito-temporal cortex)與左楔前葉(precuneus)有較多的活化,而第一次的行為正確率表現則預測了第二次的左楔前葉活化反應。推論較為精緻化的語意屬性能完整的整合語意訊息。實驗二,相較於健康青少年,自閉症青少年在進行語意關係判斷時,隨著語意關聯性減弱,在左楔狀葉(cuneus)有明顯的活化反應,而健康青少年則是在隨著語意關聯性減弱,在左額下回與左顳中回有較明顯的活化反應;隨著類別語意關係增加,在左楔前葉(precuneus)與左枕-顳葉皮質區(occipito-temporal cortex)有明顯的活化反應。根據結果推論自閉症青少年與健康青少年在處理語意關係時的神經生理反應層次不同。自閉症青少年仰賴使用較低層次的視覺處理來進行語意處理,而健康青少年有著較精緻化的語意表徵,以較高層次的提取能力選擇適當語意表徵,對於語意屬性的掌握也較為精熟,得以將類別知識進行整合。 | zh_TW |
dc.description.abstract | To understand the developmental changes of semantic processing in autism spectrum disorders (ASD) and typical development (TD) youths is crucial to know the nature of the organization of semantic knowledge. However, the distinction of semantic knowledge including association strength and categorical relatedness has not been made clear in the literature for these two groups. In Experiment 1, using a longitudinal approach for the TD group, I orthogonally manipulated association strength (strong, weak) and categorical relatedness (high, low) to examine the developmental changes in activation of sixteen 10- to 14-year-old children over a two-year interval. Moreover, I examined whether initial behavioral performance (Time 1) predicted brain activation changes (Time 2-Time 1). Experiment 2 used fMRI to examine the neural correlates of semantic processing in thirty-one male youths with ASD and thirty-six TD youths. The association strength and categorical relatedness were item-level parametric modulators as two continuous variables. In Experiment 1, for Time 2-Time 1, the weak versus strong association strength produced greater activation in the left middle temporal gurus (MTG, BA 21) and inferior frontal gyrus (IFG, BA 45) as well as accuracy (Time 1) predicted activation changes in the IFG, suggesting more elaborate semantic representations that require greater engagement of selection processes. Moreover, the high versus low categorical relatedness produced greater activation in the left occipito-temporal cortex (OTC, BA37) and precuneus (BA 30) as well as accuracy (Time 1) predicted activation changes in the precuneus, suggesting more elaborate features of categorical knowledge that allow complete integration. In Experiment 2, for group comparisons, the ASD group showed greater activation in the left cuneus (BA 7) for the weaker association strength. The TD group showed greater activation in the left IFG and MTG for the weaker association strength, and greater activation in the left precuneus and left OTC for the higher categorical relatedness as compared to the ASD group. The ASD group may use lower-level visual processing during semantic processing. The TD group showed higher-level controlled processes of more elaborate semantic representations for selection processes and more elaborate features of categorical knowledge for integration. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:54:03Z (GMT). No. of bitstreams: 1 ntu-106-D00227103-1.pdf: 1328800 bytes, checksum: 40bdab90d3db3a9eb8d3924f028323f0 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii Introduction 1 Chapter 1 Developmental changes of association strength and categorical relatedness on semantic processing in the brain 3 1-1 Introduction 3 1-2 Methods 9 1-3 Results 17 1-4 Discussion 21 Chapter 2 Association strength and categorical relatedness of semantic processing in youth with autism spectrum disorder 28 2-1 Introduction 28 2-2 Methods 34 2-3 Results 42 2-4 Discussion 44 Chapter 3 General discussion 49 References 51 Tables 65 Figures 73 Appendix 78 Curriculum vitae 79 | |
dc.language.iso | en | |
dc.title | 健康與自閉症青少年之中文語意知識 | zh_TW |
dc.title | Chinese Semantic Knowledge in Typically Developing Youths and Youths with Autism Spectrum Disorder | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 高淑芬(Susan Shur-Fen Gau) | |
dc.contributor.oralexamcommittee | 陳修元,陳欣進,龔俊嘉 | |
dc.subject.keyword | 自閉症,類別語意關係,發展,語意關聯, | zh_TW |
dc.subject.keyword | Association strength,Autism spectrum disorders (ASD),Categorical relatedness,Development,Longitudinal, | en |
dc.relation.page | 83 | |
dc.identifier.doi | 10.6342/NTU201700744 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-04-10 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 心理學研究所 | zh_TW |
顯示於系所單位: | 心理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 1.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。