請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78010
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳億乘(Yi-Chen Chen) | |
dc.contributor.author | Chia-Jung Chan | en |
dc.contributor.author | 詹家榮 | zh_TW |
dc.date.accessioned | 2021-07-11T14:39:36Z | - |
dc.date.available | 2027-12-31 | |
dc.date.copyright | 2017-02-21 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-02-09 | |
dc.identifier.citation | 張耀霖。2014。探討牛磺酸減緩D-半乳糖造成之認知學習能力障礙與腦中氧化壓力。碩士論文。國立台灣大學生物資源暨農學院動物科學技術學系。台北。
林鈺軒。2015。機能性卵繫帶水解物製備與慢性酒精攝取下肝臟保護功效探討。碩士論文。國立台灣大學生物資源暨農學院動物科學技術學系。台北。 Abbott, A. (2011). Dementia: a problem for our age. Nature, 475, S2-S4. Abrous, D. N., & Wojtowicz, J. M. (2008). Neurogenesis and hippocampal memory system. Adult Neurogenesis, 21, 445-461. Aftabuddin, M., & Kundu, S. (2007). Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophysical Journal, 93, 225-231. Ahmed, N. (2005). Advanced glycation end products — role in pathology of diabetic complications. Diabetes Research and Clinical Practice, 67, 3-21. Ahn, C. B., Kim, J. G., & Je, J. Y. (2014). Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chemistry, 147, 78-83. Alhamdani, M. S., Al-Azzawie, H. F., & Abbas, F. K. (2007). Decreased formation of advanced glycation end-products in peritoneal fluid by carnosine and related peptides. Peritoneal Dialysis International, 27, 86-89. Avila, J., Perez, M., Lucas, J. J., Gomez-Ramos, A., Santa, M. I., Moreno, F., Smith, M., Perry, G., & Hernandez, F. (2004). Assembly in vitro of tau protein and its implications in Alzheimer’s disease. Current Alzheimer Research, 1, 97-101. Baker, R. C., Hartsell, S. E., & Stadelman, W. J. (1959). Lysozyme studies on chicken egg chalazae. Journal of Food Science, 24, 529-538. Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., & Jones, E. (2011). Alzheimer’s disease. Lancet, 377, 1019-1031. Blass, J. P. (2001). Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia? Journal of Neuroscience Research, 66, 851-856. Boffetta, P., & Nyberg, F. (2003). Contribution of environmental factors to cancer risk. British Medical Bulletin, 68, 71-94. Block, F. (1999). Global ischemia and behavioural deficits. Progress in Neurobiology, 58, 279-295. Bromley-Brits, K., Deng, Y., & Song, W. (2011). Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. Journal of Visualized Experiments, 53, e2920. Brownlee, M., Cerami, A., & Vlassara, H. (1988). Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. New England Journal of Medicine. 318, 1315-1321. Brownlee, M., Vlassara, H., & Cerami, A. (1984). Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Annals of Internal Medicine, 101, 527-537. Bucala, R., Makita, Z., Vega, G., Grundy, S., Koschinsky, T., Cerami, A., & Vlassara, H. (1994). Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proceedings of the National Academy of Sciences of the United States of America, 91, 9441-9445. Bureau of Standards, Metrology & Inspection. Chinese National Standard. (1991). Method of test for fruit and vegetable juices and drinks- Determination of free amino acids. CNS 12632 N6221. Taipei, Taiwan. Burley, R. W., & Vadehra, D. V. (1989). The avian egg: chemistry and biology (pp.65-128). New York: Wiley Interscience. Campos-Bedolla, P., Walter, F. R., Veszelka, S., & Deli, M. A. (2014). Role of the blood-brain barrier in the nutrition of the central nervous system. Archives of Medical Research, 45, 610-638. Carlo, M. D. (2012). Simple model systems: a challenge for Alzheimer’s disease. Immunity & Aging, 9, 3. Cartledge, J. J., Eardley, I., & Morrison, J. F. (2001). Advanced glycation end-products are responsible for the impairment of corpus cavernosal smooth muscle relaxation seen in diabetes. BJU International, 87, 402-407. Chan, K. M., & Decker, E. A. (1994). Endogenous skeletal muscle antioxidants. Critical Reviews in Food Science and Nutrition, 34, 403-426. Chang, O. K., Ha, G. E., Han, G. S., Seol, K. H., Kim, H. W., Jeong, S. G., Oh, M. H., Park, B. Y., & Ham, J. S. (2013). Novel antioxidant Peptide derived from the ultrafiltrate of ovomucin hydrolysate. Journal of Agricultural and Food Chemistry, 61, 7294-7300. Chang, Y. Y., Chou, C. H., Chiu, C. H., Yang, K. T., Lin, Y. L., Weng, W. L., & Chen, Y. C. (2011). Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit. Journal of Agricultural and Food Chemistry, 59, 450-457. Chou, C. H., Wang, S. Y., Lin, Y. T., & Chen, Y. C. (2014). Antioxidant activities of chicken liver hydrolysates by pepsin treatment. International Journal of Food Science & Technology, 49, 1654-1662. Charles River Laboratories. Japan. The examination result of organ weights and serum biochemical values. (2013). http://www.crj.co.jp/cms/pdf/info_common/ICR-IGS_CRLJ_nov_2013.pdf. Accessed 17.01.09. Cruz-Sanchez, F. F., Gironès, X., Ortega, A., Alameda, F., & Lafuente, J. V. (2010). Oxidative stress in Alzheimer’s disease hippocampus: a topographical study. Journal of the Neurological Sciences, 299, 163-167. Cui, X., Wang, L., Zou, P., Han, Z., Fang, Z., Li, W., & Liu, J. (2004). D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress. Biogerontology, 5, 317-325. Cui, X., Zou, P., Zang, Q., Li, X., Hu, Y., Long, J., Packer, L., & Liu, J. (2006). Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. Journal of Neuroscience Research, 83, 1584-1590. D’Hooge, R., & De Deyn, P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews, 36, 60-90. Dickson, T. C., & Vickers, J. C. (2001). The morphological phenotype of beta-amyloid plaques and associated neuritic changes in Alzheimer's disease. Neuroscience, 105, 99-107. Doetsch, F. (2003). A niche for adult neural stem cells. Current Opinion in Genetics & Development, 13, 543-550. Eisenstein, M. (2011). Finding risk factors. Nature, 475, S20. Elias, R. J., Bridgewater, J. D., Vachet, R. W., Waracho, T., McClements, D. J., & Decker, E. A. (2006). Antioxidant mechanisms of enzymatic hydrolysates of β-lactoglobulin in food lipid dispersions. Journal of Agricultural and Food Chemistry, 54, 9565-9572. Feeney, R. E., Rhodes, M. B., & Anderson, J. S. (1960). The distribution and role of sialic acid in chicken egg white. Journal of Biological Chemistry, 235, 2633-2637. Flood, J. F., Morley, J. E., & Roberts, E. (1991). Amnestic effects in mice of four synthetic peptides homologous to amyloid beta protein from patients with Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 88, 3363-3366. Floyd, R. A. (1999). Antioxidants, oxidative stress, and degenerative neurological disorders. Proceedings of the Society for Experimental Biology and Medicine, 222, 236-245. Fratiglioni, L., De Ronchi, D., & Aguero-Torres, H. (1999). Worldwide prevalence and incidence of dementia. Drugs & Aging, 15, 365-375. Gauthier, S. F., Pouliot, Y., & Saint-Sauveur, D. (2006). Immunomodulatory peptides obtained by the enzyme hydrolysis of whey proteins. International Dairy Journal, 16, 1315-1323. Golde, T. E. (2003). Alzheimer disease therapy: can the amyloid cascade be halted? Journal of Clinical Investigation, 111, 11-18. Gong, G. Q., & Xu, F. B. (1991). Study of aging model in mice. Journal of China Pharmaceutical University, 22, 101-103. Han, C. H., Lin, Y. F., Lin, Y. S., Lee, T. L., Huang, W. J., Lin, S. Y., & Hou, W. C. (2014). Effects of yam tuber protein, diosorin, on attenuating oxidative status and learning dysfunction in D-galactose-induced BALB/c mice. Food and Chemical Toxicology, 65, 356-363. Hobart, L. J., Seibel, I., Yeargans, G. S., & Seidler, N.W. (2004). Anti-crosslinking properties of carnosine: significance of histidine. Life Sciences, 75, 1379-1389. Hsieh, H. M., Wu, W. M., & Hu, M. L. (2009). Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food and Chemical Toxicology, 47, 625-632. Ho, S. C., Liu, J. H., & Wu, R. Y. (2003). Establishment of the mimetic aging effect in mice caused by D-galactose. Biogerontology, 4, 15-18. Hu, M. L. (1994). Measurement of protein thiol groups and glutathione in plasma. Methods in Enzymology, 233, 380-385. Huang, X. J., Choi, Y. K., Im, H. S., Yarimaga, O., Yoon, E., & Kim, H. S. (2006). Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors, 6, 756-782. Hung, M. Y., Fu, T. Y., Shih, P. H., Lee, C. P., & Yen, G. C. (2006). Du-Zhong (Eucommia ulmoides Oliv.) leaves inhibits CCl4-induced hepatic damage in rats. Food and Chemical Toxicology, 44, 1424-1431. Ichikawa, K., Okabayashi, T., Shima, Y., Iiyama, T., Takezaki, Y., Munekage, M., Namikawa, T., Sugimoto, T., Kobayashi, M., Mimura, T., & Hanazaki, K. (2012). Branched-chain amino acid-enriched nutrients stimulate antioxidant DNA repair in a rat model of liver injury induced by carbon tetrachloride. Molecular Biology Reports, 39, 10803-10810. Iijima, R., Takahashi, H., Namme, R., Ikegami, S., & Yamazaki, M. (2004). Novel biological function of sialic acid (N-acetylneuraminic acid) as a hydrogen peroxide scavenger. FEBS Letters, 561, 163-166. Itoh, T., Miyakazi, J., Sugawara, H., & Adachi, S. (1987). Studies on the characterization of ovomucin and chalaza of the hen’s egg. Journal of Food Science, 52, 1518-1521. Ittner, L. M., & Götz, J. (2011). Amyloid-β and tau — a toxic pas de deux in Alzheimer’s disease. Neuroscience, 11, 67-72. Je, J. Y., Park, P. J., Byun, H. G., Jung, W. K. & Kim, S. K. (2005). Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce fermented blue mussel, Mytilus edulis. Bioresource Technology, 96, 1624-1629. Juneja, L. R., Koketsu, M., Nishmoto, K., Kim, M., Yamamoto, T., & Itoh, T. (1991). Large-scale preparation of sialic acid from chalazae and egg yolk membrane. Carbohydrate Research, 214, 179-186. Kawasaki, T., & Kamijo, S. (2012). Inhibition of aggregation of amyloid β42 by arginine-containing small compounds. Bioscience, Biotechnology, and Biochemistry, 76, 762-766. Khaidar, A., Marx, M., Lubec, B., & Lubec, G. (1994). L-arginine reduces heart collagen accumulation in the diabetic db/db mouse. Circulation, 90, 479-483. Kim, S. K., Kim, Y., Baek, I. K., Auh, J. H. (2012). Carnosine and anserine in chicken: distribution, age-dependency and their anti-glycation activity. Korean Journal for Food Science of Animal Resources, 32, 45-48. Kobayashi, K., Hattori, M., Kudo, H. Y., Okubo, T., Yamamoto, S., Takita, T., & Sugita-Konishi, Y. (2004). Glycopeptide derived from hen egg ovomucin has the ability to bind enterohemorrhagic Escherichia coli O157:H7. Journal of Agricultural and Food Chemistry, 52, 5740-5746. Kohen, R., Yamamoto, Y., Cundy, K. C., & Ames, B. N. (1988). Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proceedings of the National Academy of Sciences of the United States of America, 85, 3175-3179. Kumar, A., Dogra, S., & Prakash, A. (2009). Effect of carvedilol on behavioral, mitochondrial dysfunction, and oxidative damage against D-galactose induced senescence in mice. Naunyn-Schmiedeberg’s Archives of Pharmacology, 380, 431-441. Lei, M., Hua, X., Xiao, M., Ding, J., Han, Q., & Hu, G. (2008). Impairments of astrocytes are involved in the d-galactose-induced brain aging. Biochemical and Biophysical Research Communications, 369, 1082-1087. Liaury, K., Miyaoka, T., Tsumori, T., Furuya, M., Wake, R., Ieda, M., Tsuchie, K., Taki, M., Ishihara, K., Tanra, A. J., & Horiguchi, J. (2012). Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model. Journal of Neuroinflammation, 9, 56. Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer’s transgenic mouse. Journal of Neuroscience, 28, 4785-4794. Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443, 787-795. Liu, J., Chen, Z., He, J., Zhang, Y., Zhang, T., & Jiang, Y. (2014). Anti-oxidative and anti-apoptosis effects of egg white peptide, Trp-Asn-Trp-Ala-Asp, against H2O2-induced oxidative stress in human embryonic kidney 293 cells. Food & Function, 5, 3179-3188. Lu, J., Wu, D. M., Zheng, Y. L., Hu, B., Zhang, Z. F., Ye, Q., Liu, C. M., Shan, Q., & Wang, Y. J. (2010). Ursolic acid attenuates D-galactose-induced inflammatory response in mouse prefrontal cortex through inhibiting AGEs/RAGE/NF-κB pathway activation. Cerebral Cortex, 20, 2540-2548. Lu, L., Peng, W. H., Wang, W., Wang, L. J., Chen, Q. J., & Shen, W. F. (2011). Effects of atorvastatin on progression of diabetic nephropathy and local RAGE and soluble RAGE expressions in rats. Journal of Zhejiang University. Science. B., 12, 652-659. Lubec, G., Bartosch, B., Mallinger, R., Adamiker, D., Graef, I., Frisch, H., & Hӧger, H. (1990). The effect of substance L on glucose-mediated cross-links of collagen in the diabetic db/db mouse. Nephron, 56, 281-284. Luevano-Contreras, C., & Chapman-Novakofski, K. (2010). Dietary advanced glycation end products and aging. Nutrients, 2, 1247-1265. Maksimovich, N. E., & Maslakov, D. A. (2003). The amino acid L-arginine and the potential for its use in clinical practice. Sovetskoe zdravookhranenie, 5, 35-37. McCann, K. B., Shiell, B. J., Michalski, W. P., Lee, A., Wan, J., Roginiski, H., & Coventry, M. J. (2006). Isolation and characterization of a novel antibacterial peptide from bovine S1-casein. International Dairy Journal, 16, 316-323. Meisel, H. (2005). Biochemical properties of peptides encrypted in bovine milk proteins. Current Medicinal Chemistry, 12, 1905-1919. Memarpoor-Yazdi, M., Asoodeh, A., & Chamani, J. (2012). A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. Journal of Functional Foods, 4, 278-286. Menzel, E. J., & Reihsner, R. (1991). Alterations of biochemical and biomechanical properties of rat tail tendons caused by non-enzymatic glycation and their inhibition by dibasic amino acids arginine and lysine. Diabetologia, 34, 12-16. Mine, Y, Ma, M., & Lauriau, S. (2004). Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. Journal of Agricultural and Food Chemistry, 52, 1088-1094. Morgan, B. L., & Winick, M. (1980). Effects of administration of N-acetylneuraminic acid (NANA) on brain NANA content and behavior. Journal of Nutrition, 110, 416-424. Moure, A., Domínguez, H., & Parajó, J. C. (2005). Fractionation and enzymatic hydrolysis of soluble protein present in waste liquors from soy processing. Journal of Agricultural and Food Chemistry, 53, 7600-7608. Mueller, A. S., Bosse, A. C., Most, E., Klomann, S. D., Schneider, S., & Pallauf, J. (2009). Regulation of the insulin antagonistic protein tyrosine phosphatase 1B by dietary Se studied in growing rats. Journal of Nutritional Biochemistry, 20, 235-247. Murphy, M. P., & Levine, H. (2010). Alzheimer’s disease and the β-amyloid peptide. Journal of Alzheimer’s Disease, 19, 311. Myhre, A., &Tysnes, O. (2002). Etiology and genetics of Alzheimer disease. Tidsskrift for den Norske Laegeforening, 122, 50-53. Oguro, T., Watanabe, K., Tani, H., Ohishi, H., & Ebina, T. (2000). Morphological observations on antitumour activities of 70 kDa fragment in α-subunit from pronase treated ovomucin in a double grafted tumor system. Food Science and Technology Research, 6, 179-185. Okubo, T., Akachi, S., & Hatta, H. (1997). Structure of hen eggs and physiology of egg laying. In T. Yamamoto, L. R. Juneja, H. Hatta, & M. Kim (Eds.), Hen Eggs: Their Basic and Applied Science, (pp. 1-12). New York: CRC Press. Ooigawa, H., Nawashiro, H., Fukui, S., Otani, N., Osumi, A., Toyooka, T., & Shima, K. (2006). The fate of Nissl-stained dark neurons following traumatic brain injury in rats: difference between neocortex and hippocampus regarding survival rate. Acta Neuropathologica, 112, 471-481. Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine. 70, 158-169. Paxinos, G., & Franklin, K. B. (2001). The mouse brain in stereotaxic coordinates. (2nd ed.). San Diego: Academic Press. Phelps, E. A. (2004). Human emotion and memory: interactions of the amygdale and hippocampal complex. Current Opinion in Neurobiology, 14, 198-202. Praticò, D. (2000). In vivo measurements of oxidative stress. Lipids, 136, S45-S47. Praticò, D. (2008). Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends in Pharmacological Sciences, 29, 609-615. Praticò, D., & Sung, S. (2004). Lipid peroxidation and oxidative imbalance: early functional events in Alzheimer’s disease. Journal of Alzheimer’s Disease, 6, 171-175. Qian, Z. J., Jung, W. K., & Kim, S. K. (2008). Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysates of bullfrog skin, Rana catesbeiana Shaw. Bioresource Technology, 99, 1690-1698. Rahman, M. A., Baoyindeligeer, Iwasawa, A., & Yoshizaki, N. (2007). Mechanism of chalaza formation in quail eggs. Cell and Tissue Research, 330, 535-543. Rajapakse, N., Mendis, E., Jung, W. K., Je, J. Y., & Kim, S. K. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Research International, 38, 175-182. Reilly, J. F., Games, D., Rydel, R. D., Freedman, S., Schenk, D., Young, W. G., Morrison, J. H., & Bloom, F. E. (2003). Amyloid deposition in the hippocampus and entorhinal cortex: quantitative analysis of a transgenic mouse model. Proceedings of the National Academy of Sciences of the United States of America, 100, 4837-4842. Richard, M. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11, 47-60. Ross, K. L., Davis, C. N., & Fridovich-Keil, J. L. (2004). Differential roles of the Leloir pathway enzymes and metabolites in defining galactose sensitivity in yeast. Molecular Genetics and Metabolism, 83, 103-116. Ryoko, K., Makoto, H., Yukiko, K., Kazuo, K., Noriyuki, I., Tsutomu, O., & Juneja, R. R. (2004). Inactivation composition of food poisoning bacteria. Patent, JP2004269420. Saiga, A., Tanabe, S., & Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry, 51, 3661-3667. Sahay, A., Drew, M. R., & Hen, R. (2007). Dentate gyrus neurogenesis and depression. Progress in Brain Research, 163, 697-722. Samaranayaka, A. G. P., & Li-Chan, E. C. Y. (2012). Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. Journal of Functional Foods, 3, 229-254. Sapolsky, R. M. (2001). Depression, antidepressants, and the shrinking hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 98, 12320-12322. Sasaki, N., Fukatsu, R., Tsuzuki, K., Hayashi, Y., Yoshida, T., Fujii, N., Koike, T., Wakayama, I., Yanagihara, R., & Garruto, R. (1998). Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. The American Journal of Pathology, 153, 1149-1155. Schnabel, J. (2011). Little proteins, big clues. Nature, 475, S12-S14. Schubert, D., Behl, C., Lesley, R., Brack, A., Dargusch, R., Sagara, Y., & Kimura, H. (1995). Amyloid peptides are toxic via a common oxidative mechanism. Proceedings of the National Academy of Sciences of the United States of America, 92, 1989-1993. Scott, G. S., & Bolton, C. (2000). L-arginine modifies free radical production and the development of experimental allergic encephalomyelitis. Inflammation Research, 49, 720-726. Seib, D. R., & Martin-Villalba, A. (2015). Neurogenesis in the normal ageing hippocampus: A mini-review. Gerontology, 61, 327-335. Seri, B., Garcia-Verdugo, J. M., Collado-Morente, L., McEwen, B. S., & Alvarez-Buylla, A. (2004). Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. Journal of Comparative Neurology, 478, 359-378. Shors, T. J., Miesegaes, G., Beylin, A., Zhou, M., Rydel, T., & Gould, E. (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410, 372-376. Song, X., Bao, M., Li, D., & Li, Y. M. (1999). Advanced glycation in D-galactose induced mouse aging model. Mechanisms of Aging and Development, 108, 239-251. Srikanth, V., Maczurek, A., Phan, T., Steele, M., Westcott, B., Juskiw, D., & Münch, G. (2011). Advanced glycation end products and their receptor RAGE in Alzheimer’s disease. Neurobiology of Aging, 32, 763-777. Sun, Y., Pan, D., Guo, Y., & Li, J. (2012). Purification of chicken breast protein hydrolysate and analysis of its antioxidant activity. Food and Chemical Toxicology, 50, 3397-3404. Szwergold, B. S. (2005). Carnosine and anserine act as effective transglycating agents in decomposition of aldose-derived Schiff bases. Biochemical and Biophysical Research Communications, 336, 36-41. Tanaka, H., Fukahori, S., Baba, S., Ueno, T., Sivakumar, R., Yagi, M., Asagiri, K., Ishii, S., & Tanaka, Y. (2016). Branched-chain amino acid–rich supplements containing microelements have antioxidant effects on nonalcoholic steatohepatitis in mice. Journal of Parenteral and Enteral Nutrition, 40, 519-528. Tomiyama, T., Matsuyama, S., Iso, H., Umeba, T., Takuma, H., Ohnishi, K., Ishibashi, K., Teraoka, R., Sakama, N., Yamashita, T., Nishitsuji, K., Ito, K., Shimada, H., Lambert, M. P., Klein, W. L., & Mori, H. (2010). A mouse model of amyloid β oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, gial activation, and neuronal loss in vivo. Journal of Neuroscience, 30, 4845-4856. Treuting, P., & Dintzis, S. M. (2011). Comparative anatomy and histology: A mouse and human atlas. Alanta: Elsevier Science. Tsuge, Y., Shimoyamada, M., & Watanabe, K. (1996). Binding of egg white proteins to viruses. Bioscience, Biotechnology, and Biochemistry, 60, 1503-1504. USDA (United States Department of Argriculture). Egg grading manual. (2000). http://www.ams.usda.gov/poultry/pdfs/EggGrading%20nanual.pdf. Accessed 17.01.09. Uribarri, J., & Tuttle, K. R. (2006). Advanced glycation end products and nephrotoxicity of high-protein diets. Clinical Journal of the American Society of Nephrology, 1, 1293-1299. Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. T. (2009). Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology, 7, 65-74. Vlassara, H. (1996). Advanced glycation end-products and atherosclerosis. Annals of Medicine, 28, 419-426. Vorhees, C. V., & Williams, M. T. (2006). Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1, 848-858. Wang, B. (2012). Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Advances in Nutrition, 3, 465S-472S. Wang, Z. (1999). Physiology and biochemical changes of mimetic aging induced D-galactose in rats. Laboratory Animal Science, 16, 23-25. Wei, H., Li, L., Song, Q., Ai, H., Chu, J., & Li, W. (2005). Behavioural study of the D-galactose induced aging model in C57BL/6J mice. Behavioural Brain Research, 157, 245-251. Wu, H. C., Shiau, C. Y., Chen, H. M., & Chiou, T. K. (2003). Antioxidant activities of carnosine, anserine, some free amino acids and their combination. Journal of Food and Drug Analysis, 11, 148-153. Wu, W., Wang, X., Xiang, Q., Meng, X., Peng, Y., Du, N., Liu, Z., Sun, Q., Wang, C., & Liu, X. (2014). Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food & Function, 5, 158-166. Xavier, G. F., & Costa, V. C. I. (2009). Dentate gyrus and spatial behavior. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33, 762-773. Xavier, G. F., Oliveira-Filho, F. J., & Santos, A. M. (1999). Dentate gyrus-selective colchicine lesion and disruption of performance in spatial tasks: difficulties in ‘‘place strategy’’ because of a lack of flexibility in the use of environmental cues? Hippocampus, 9, 668-681. Xiao, F., Li, F. G., Zhang, X. Y., Hou, J. D., Lin, L. F., Gao, Q., & Luo, H. M. (2011). Combined administration of D-galactose and aluminium induces Alzheimerlike lesions in brain. Neuroscience Bulletin, 27, 143-155. Xiong, Y. L. (2010). Antioxidant peptides. In Y. Mine, E. Li-Chan, & B. Jiang (Eds.), Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals, (pp. 29-42). New York: John Wiley & Sons. Xu, F. B. (1985). Sub-acute toxicity of D-galactose. Proceedings of the second national conference on aging research. Herbin, China. Yang, K. T., Lin, C., Liu, C. W., & Chen, Y. C. (2014). Effects of chicken-liver hydrolysates on lipid metabolism in a high-fat diet. Food Chemistry, 160, 148-156. Yoo, D. Y., Kim, W., Lee, C. H., Shin, B. N., Nam, S. M., Choi, J. H., Won, M. H., Yoo, Y. S., & Hwang, I. K. (2012). Melatonin improves D-galactose-induced aging effects on behavior, neurogenesis, and lipid peroxidation in the mouse dentate gyrus via increasing pCREB expression. Journal of Pineal Research, 52, 21-28. Zhong, F., Liu, J., Ma, J., & Shoemaker, C. F. (2007). Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food Research International, 40, 661-667. Zhou, Y., Dong, Y., Xu, Q., He, Y., Tian, S., Zhu, S, Zhu, Y., & Dong, X. (2013). Mussel oligopeptides ameliorate cognition deficit and attenuate brain senescence in D-galactose-induced aging mice. Food and Chemical Toxicology, 59, 412-420. Zhu, S. Y., Dong, Y., Tu, J., Zhou, Y., Zhou, X. H., & Xu, B. (2014). Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose. Pharmacognosy Magazine, 10, S92-S99. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78010 | - |
dc.description.abstract | 失智症好發於老年人口,隨著全球老年人口急遽地增加,失智症已對社會造成嚴重負擔。腦中氧化上升容易造成腦部發炎反應及神經損傷進而導致認知行為障礙進而造成失智症。本實驗室先前研究發現,利用液蛋產業產生之副產物─繫帶,其經protease A水解之蛋白質水解物(protease A-digested crude chalazae hydrolysates, CCH-As)在餵飼酒精飼糧的小鼠下有抗氧化及抗發炎之功效。故本研究目標為探討CCH-As在D-半乳糖(D-galactose, DG)誘導小鼠腦內氧化壓力上升模式下對認知行為障礙及腦中氧化傷害之保護功效。
首先,相較於水解前之乾燥繫帶原料(lyophilized crude chalazae),CCH-As含有更高量的具抗氧化游離胺基酸(如Leu、Arg、Lys)及機能性雙胜肽(anserine)。由動物實驗結果顯示:在水迷宮試驗中,於DG誘導下補充CCH-As之組別能縮短(p<0.05)參考記憶試驗中搜尋平台時間,並能延長(p<0.05)空間性探測試驗中在目標象限之停留時間。由海馬迴組織切片分析可看出補充CCH-As之組別能減緩齒狀迴神經細胞皺縮的現象。雖然補充CCH-As後未能明顯地減少齒狀迴類澱粉蛋白(amyloid β-peptide, Aβ)斑塊的堆積,卻有減少腦中Aβ蛋白表現量的效果。此外,血清及腦中的抗氧化能力在CCH-As的補充下均顯著地提升(p<0.05)。而經由CCH-As的補充,腦中糖化終產物(advanced glycation end products, AGEs)蛋白表現量顯著地下降(p<0.05),且腦中AGEs受器(RAGE)基因及發炎相關基因表現(Nfκb, IL-6, and Tnfα)均有調降作用(p<0.05)。綜觀上述研究結果,CCH-As對DG誘導下產生的腦部氧化傷害及認知行為障礙有改善的效果。 | zh_TW |
dc.description.abstract | As global aging populations increase rapidly, dementia, of which the best-known factor is aging, has caused heavy social burdens. The reason for causing dementia has been reported that serious oxidative damages in brains, cause inflammatory responses and neurodegenerations, thus leading to cognitive dysfunction. According to our previous study, protease A-digested crude chalazae hydrolysates (CCH-As), a byproduct in the liquid egg industry, possess antioxidant and anti-inflammatory activities in mice fed an alcohol liquid diet. The purpose of this study was to investigate the protective effects of CCH-As on cognitive dysfunction and oxidative damage in the brain of D-galactose (DG) treated mice.
First, the amounts of antioxidant free amino acids (i.e. leucine, arginine, and lysine) and dipeptides (anserine) in CCH-As were higher than those of lyophilized crude chalazae, a byproduct produced from the liquid egg industry. In the in vivo study, the administration of CCH-As reduced (p<0.05) the prolonged escape latency in the reference memory test and extended (p<0.05) the searching time around the target quadrant in the probe test of DG treated mice in the Morris water maze test. In the observations of hippocampus histology, the CCH-A co-treatment attenuated the neuronal degenerations and nucleus shrinkages in the dentate gyrus area. No clear effects of the depositions of amyloid β-peptide (Aβ) in dentate gyrus area were observed, but reduced Aβ protein levels in the whole brain tissues were analyzed by the CCH-A co-treatment. In addition, the CCH-A co-treatment enhanced (p<0.05) the antioxidant capacity in both sera and brains. Moreover, the accumulation of advanced glycation end products (AGEs) in the brain tissues dramatically decreased (p<0.05) by the CCH-A co-treatment. Furthermore, AGE receptor (RAGE) gene and inflammation related gene (Nfκb, IL-6, and Tnfα) expressions were downregulated (p<0.05) as well. These results suggested that CCH-As show protective effects on brain oxidative damage and the development of cognitive dysfunction induced by DG injection. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:39:36Z (GMT). No. of bitstreams: 1 ntu-106-R03626020-1.pdf: 3178942 bytes, checksum: d6be9cd7815062a877a16865e445a569 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Abstract (Chinese Ver.) ………………………………………………………x
Abstract (English Ver.) ………………………………………………………xi I. Introduction…………………………………………1 II. Literature review……………………………………………………… 4 2.1 The fact of aging and dementia………………………………………4 2.2 The classification of dementia…………………………………………9 2.2.1 Alzheimer's disease (AD)……………………………………………11 2.2.2 The hippocampus and Alzheimer's disease (AD)……………………12 2.3 The risk factors of Alzheimer's disease (AD)………………………14 2.3.1 Genetics………………………………………………………………14 2.3.2 Amyloid β-peptide (Aβ) and tau protein……………………………15 2.3.3 Oxidative stress………………………………………………………17 2.3.4 Advanced glycation end products (AGEs)……………………………19 2.4 D-galactose induced aging model……………………………………21 2.4.1 The metabolism of D-galactose………………………………………21 2.4.2 The applications of D-galactose induced aging model………………23 2.5 Food-derived protein hydrolysates……………………………………25 2.5.1 Antioxidant protein hydrolysates……………………………………26 2.6 Chicken egg chalazae…………………………………………………28 2.6.1 Liquid egg industry……………………………………………………29 2.6.2 The composition and bioactivity of chalazae…………………………30 2.6.3 Functional chicken egg chalaza hydrolysates…………………………32 III. Materials and Methods………………………………………………35 3.1 Experimental design…………………………………………………35 3.2 Experimental materials………………………………………………36 3.3 Preparation of crude chalaza hydrolysates (CCHs) and free amino acid profile analyses…………………………………………………36 3.4 Animals and treatments………………………………………………39 3.5 Behavior test (Morris water maze)……………………………………40 3.5.1 Experimental apparatus and design……………………………………40 3.5.2 Day 1: Visible platform………………………………………………41 3.5.3 Day 2~5: Reference memory test……………………………………42 3.5.4 Day 6: Probe test………………………………………………………42 3.6 Sample collection……………………………………………………44 3.6.1 Brain tissues collection………………………………………………44 3.6.2 Preparation of brain homogenates……………………………………45 3.7 Serum biochemical value analyses……………………………………47 3.8 Antioxidative capacity analyses………………………………………47 3.8.1 Thiobarbituric acid reactive substances (TBARS) value……………47 3.8.2 Trolox equivalent antioxidant capacity (TEAC) value………………48 3.8.3 Reduced glutathione (GSH) content…………………………………49 3.8.4 Superoxide dismutase (SOD) activity…………………………………50 3.8.5 Catalase (CAT) activity………………………………………………51 3.8.6 Glutathione peroxidase (GPx) activity………………………………51 3.9 Histopathological sections and staining………………………………52 3.10 Western blotting for protein quantification…………………………53 3.11 mRNA expression analyses……………………………………………55 3.12 Immunohistochemical analysis (IHC)…………………………………59 3.13 Statistical analysis……………………………………………………61 IV. Results and discussion…………………………………………………62 4.1 Analyses of free amino acid profile and carnosine/anserine contents in protease A-digested crude chalaza hydrolysates (CCH-As)………62 4-2 Effects of protease A-digested crude chalaza hydrolysates (CCH-As) on growth performance, relative sizes of brain, liver, and fat tissues, and serum biochemical values of D-galactose (DG) induced aging mice……………………………………………………………………65 4-3 Effects of protease A-digested crude chalaza hydrolysates (CCH-As) on spatial learning and memory abilities in Morris water maze of D-galactose (DG) induced aging mice………………………………67 4-4 Effects of protease A-digested crude chalaza hydrolysates (CCH-As) on histological pathology and β-amyloid (Aβ) depositions in the hippocampus of D-galactose (DG) induced aging mice………………70 4-5 Effects of protease A-digested crude chalaza hydrolysates (CCH-As) on serum and brain antioxidant capacities, and inflammatory responses in the brains of D-galactose (DG) induced aging mice……76 V. Conclusion……………………………………………………………98 References ……………………………………………………………………100 | |
dc.language.iso | en | |
dc.title | 探討繫帶水解物在D-半乳糖誘導老化小鼠模式下對認知行為障礙及腦中氧化傷害之保護功效 | zh_TW |
dc.title | The protective effects of crude chalaza hydrolysates on cognitive dysfunction and oxidative damage in the brain of D-galactose induced aging mice | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊國泰(Kuo-Tai Yang),邱智賢(Chih-Hsien Chiu),潘敏雄(Min-Hsiung Pan),楊順發(Shun-Fa Yang) | |
dc.subject.keyword | D-半乳糖,繫帶水解物,認知行為障礙,抗氧化能力,抗發炎作用,海馬迴組織觀察, | zh_TW |
dc.subject.keyword | D-galactose,crude chalaza hydrolysates,cognitive dysfunction,antioxidant capacity,anti-inflammatory response,hippocampus histology, | en |
dc.relation.page | 121 | |
dc.identifier.doi | 10.6342/NTU201700417 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-02-09 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
dc.date.embargo-lift | 2027-12-31 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-R03626020-1.pdf 目前未授權公開取用 | 3.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。