Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77997
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余佳慧(Linda Chia-Hui Yu)
dc.contributor.authorYi-Ting Yangen
dc.contributor.author楊依婷zh_TW
dc.date.accessioned2021-07-11T14:39:15Z-
dc.date.available2025-08-16
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation1. Gershon, M.D., The enteric nervous system: a second brain. Hospital Practice, 1999. 34(7): p. 31-52.
2. Schneider, S., C.M. Wright, and R.O. Heuckeroth, Unexpected roles for the second brain: Enteric nervous system as master regulator of bowel function. Annual review of physiology, 2019. 81: p. 235-259.
3. Blackshaw, L., S. Brierley, and P. Hughes, TRP channels: new targets for visceral pain. Gut, 2010. 59(01): p. 126-135.
4. Sikandar, S. and A.H. Dickenson, Pregabalin modulation of spinal and brainstem visceral nociceptive processing. PAIN®, 2011. 152(10): p. 2312-2322.
5. Lange, W., Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell and tissue research, 1975. 157(1): p. 115-124.
6. Van Oudenhove, L., et al., Central nervous system involvement in functional gastrointestinal disorders. Best Practice Research Clinical Gastroenterology, 2004. 18(4): p. 663-680.
7. Mayer, E.A. and K. Tillisch, The brain-gut axis in abdominal pain syndromes. Annual review of medicine, 2011. 62: p. 381-396.
8. Collins, S.M. and P. Bercik, The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology, 2009. 136(6): p. 2003-2014.
9. Moloney, R.D., et al., Stress and the microbiota–gut–brain axis in visceral pain: relevance to irritable bowel syndrome. CNS neuroscience therapeutics, 2016. 22(2): p. 102-117.
10. Carabotti, M., et al., The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of gastroenterology: quarterly publication of the Hellenic Society of Gastroenterology, 2015. 28(2): p. 203.
11. Mayer, E.A., T. Savidge, and R.J. Shulman, Brain–gut microbiome interactions and functional bowel disorders. Gastroenterology, 2014. 146(6): p. 1500-1512.
12. Garcia-Larrea, L., The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiologie Clinique/Clinical Neurophysiology, 2012. 42(5): p. 299-313.
13. Millan, M.J., Descending control of pain. Progress in neurobiology, 2002. 66(6): p. 355-474.
14. Heinricher, M., et al., Descending control of nociception: specificity, recruitment and plasticity. Brain research reviews, 2009. 60(1): p. 214-225.
15. Sengupta, J.N., Visceral pain: the neurophysiological mechanism, in Sensory Nerves. 2009, Springer. p. 31-74.
16. Verne, G.N., M.E. Robinson, and D.D. Price, Hypersensitivity to visceral and cutaneous pain in the irritable bowel syndrome. Pain, 2001. 93(1): p. 7-14.
17. Price, D.D., et al., Peripheral and central contributions to hyperalgesia in irritable bowel syndrome. The Journal of Pain, 2006. 7(8): p. 529-535.
18. Corazziari, E., Definition and epidemiology of functional gastrointestinal disorders. Best Practice Research Clinical Gastroenterology, 2004. 18(4): p. 613-631.
19. Drossman, D., et al., Identification of sub-groups of functional gastrointestinal disorders. Gastroenterology International, 1990. 3(4): p. 159-172.
20. Lovell, R.M. and A.C. Ford, Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clinical gastroenterology and hepatology, 2012. 10(7): p. 712-721. e4.
21. Tang, Y.-R., et al., Age-related symptom and life quality changes in women with irritable bowel syndrome. World Journal of Gastroenterology: WJG, 2012. 18(48): p. 7175.
22. Chang, F.-Y., C.-L. Lu, and T.-S. Chen, The current prevalence of irritable bowel syndrome in Asia. Journal of neurogastroenterology and motility, 2010. 16(4): p. 389.
23. Kim, Y.S. and N. Kim, Sex-gender differences in irritable bowel syndrome. Journal of neurogastroenterology and motility, 2018. 24(4): p. 544.
24. Lovell, R.M. and A.C. Ford, Effect of gender on prevalence of irritable bowel syndrome in the community: systematic review and meta-analysis. American Journal of Gastroenterology, 2012. 107(7): p. 991-1000.
25. Sperber, A.D., et al., The global prevalence of IBS in adults remains elusive due to the heterogeneity of studies: a Rome Foundation working team literature review. Gut, 2017. 66(6): p. 1075-1082.
26. Anbardan, S.J., et al., Gender role in irritable bowel syndrome: a comparison of irritable bowel syndrome module (ROME III) between male and female patients. Journal of neurogastroenterology and motility, 2012. 18(1): p. 70.
27. Chial, H.J. and M. Camilleri, Gender differences in irritable bowel syndrome. The journal of gender-specific medicine: JGSM: the official journal of the Partnership for Women's Health at Columbia, 2002. 5(3): p. 37-45.
28. Drossman, D.A., Functional gastrointestinal disorders: history, pathophysiology, clinical features, and Rome IV. Gastroenterology, 2016. 150(6): p. 1262-1279. e2.
29. Lacy, B.E. and N.K. Patel, Rome criteria and a diagnostic approach to irritable bowel syndrome. Journal of clinical medicine, 2017. 6(11): p. 99.
30. Lewis, S.J. and K.W. Heaton, Stool form scale as a useful guide to intestinal transit time. Scandinavian journal of gastroenterology, 1997. 32(9): p. 920-924.
31. Longstreth, G.F., et al., Functional bowel disorders. Gastroenterology, 2006. 130(5): p. 1480-1491.
32. Enck, P., et al., Irritable bowel syndrome. Nature Reviews Disease Primers, 2, 16014. 2016.
33. Drossman, D.A., et al., Bowel Patterns Among Subjects Not Seeking g Health Care: Use of a Questionnaire to Identify a Population With Bowel Dysfunction. Gastroenterology, 1982. 83(3): p. 529-534.
34. Drossman, D.A., et al., AGA technical review on irritable bowel syndrome. Gastroenterology, 2002. 123(6): p. 2108-2131.
35. Posserud, I., et al., Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut, 2004. 53(8): p. 1102-1108.
36. Bradford, K., et al., Association between early adverse life events and irritable bowel syndrome. Clinical Gastroenterology and Hepatology, 2012. 10(4): p. 385-390. e3.
37. Chitkara, D.K., et al., Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. The American journal of gastroenterology, 2008. 103(3).
38. Thabane, M., D. Kottachchi, and J. Marshall, Systematic review and meta‐analysis: the incidence and prognosis of post‐infectious irritable bowel syndrome. Alimentary pharmacology therapeutics, 2007. 26(4): p. 535-544.
39. Spiller, R. and K. Garsed, Postinfectious irritable bowel syndrome. Gastroenterology, 2009. 136(6): p. 1979-1988.
40. Mearin, F., et al., Dyspepsia and irritable bowel syndrome after a Salmonella gastroenteritis outbreak: one-year follow-up cohort study. Gastroenterology, 2005. 129(1): p. 98-104.
41. Moss-Morris, R. and M. Spence, To “lump” or to “split” the functional somatic syndromes: can infectious and emotional risk factors differentiate between the onset of chronic fatigue syndrome and irritable bowel syndrome? Psychosomatic Medicine, 2006. 68(3): p. 463-469.
42. Wang, L., X. Fang, and G. Pan, Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut, 2004. 53(8): p. 1096-1101.
43. Neal, K.R., J. Hebden, and R. Spiller, Prevalence of gastrointestinal symptoms six months after bacterial gastroenteritis and risk factors for development of the irritable bowel syndrome: postal survey of patients. Bmj, 1997. 314(7083): p. 779.
44. Yang, X., et al., Synaptic plasticity: the new explanation of visceral hypersensitivity in rats with Trichinella spiralis infection? Digestive diseases and sciences, 2009. 54(5): p. 937-946.
45. Aerssens, J., et al., Alterations in the brain–gut axis underlying visceral chemosensitivity in Nippostrongylus brasiliensis-infected mice. Gastroenterology, 2007. 132(4): p. 1375-1387.
46. Gwee, K., et al., Psychometric scores and persistence of irritable bowel after infectious diarrhoea. The Lancet, 1996. 347(8995): p. 150-153.
47. Jonefjäll, B., et al., Characterization of IBS‐like symptoms in patients with ulcerative colitis in clinical remission. Neurogastroenterology Motility, 2013. 25(9): p. 756-e578.
48. Halpin, S.J. and A.C. Ford, Prevalence of symptoms meeting criteria for irritable bowel syndrome in inflammatory bowel disease: systematic review and meta-analysis. American journal of gastroenterology, 2012. 107(10): p. 1474-1482.
49. Teruel, C., E. Garrido, and F. Mesonero, Diagnosis and management of functional symptoms in inflammatory bowel disease in remission. World journal of gastrointestinal pharmacology and therapeutics, 2016. 7(1): p. 78.
50. Long, M.D. and D.A. Drossman, Inflammatory bowel disease, irritable bowel syndrome, or what?: a challenge to the functional–organic dichotomy. American Journal of Gastroenterology, 2010. 105(8): p. 1796-1798.
51. Ng, Q.X., et al., The role of inflammation in irritable bowel syndrome (IBS). Journal of inflammation research, 2018. 11: p. 345.
52. Barbara, G., et al., A role for inflammation in irritable bowel syndrome? Gut, 2002. 51(suppl 1): p. i41-i44.
53. Barbara, G., et al., Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology, 2007. 132(1): p. 26-37.
54. Greenwood-Van Meerveld, B., D.K. Prusator, and A.C. Johnson, Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2015. 308(11): p. G885-G903.
55. Soderholm, J.D. and M.H. Perdue, II. Stress and intestinal barrier function. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2001. 280(1): p. G7-G13.
56. Bradesi, S., et al., Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2005. 289(1): p. G42-G53.
57. Ibeakanma, C., et al., Brain–gut interactions increase peripheral nociceptive signaling in mice with postinfectious irritable bowel syndrome. Gastroenterology, 2011. 141(6): p. 2098-2108. e5.
58. Wallon, C., et al., Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut, 2008. 57(1): p. 50-58.
59. Wallon, C. and J.D. Söderholm, Corticotropin‐releasing hormone and mast cells in the regulation of mucosal barrier function in the human colon. Annals of the New York Academy of Sciences, 2009. 1165(1): p. 206.
60. Sagami, Y., et al., Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut, 2004. 53(7): p. 958-964.
61. Troeger, H., et al., Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut, 2007. 56(3): p. 328-335.
62. Scott, K.G.E., et al., Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase–dependent fashion. Gastroenterology, 2002. 123(4): p. 1179-1190.
63. Scott, K.G.-E., C. Linda, and A.G. Buret, Role of CD8+ and CD4+ T lymphocytes in jejunal mucosal injury during murine giardiasis. Infection and immunity, 2004. 72(6): p. 3536-3542.
64. Robertson, L.J., et al., Giardiasis–why do the symptoms sometimes never stop? Trends in parasitology, 2010. 26(2): p. 75-82.
65. Langford, T.D., et al., Central importance of immunoglobulin A in host defense against Giardia spp. Infection and immunity, 2002. 70(1): p. 11-18.
66. Chen, T.-L., et al., Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice. Gut pathogens, 2013. 5(1): p. 26.
67. Mørch, K., et al., High rate of fatigue and abdominal symptoms 2 years after an outbreak of giardiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2009. 103(5): p. 530-532.
68. Halliez, M.C., et al., Giardia duodenalis induces paracellular bacterial translocation and causes postinfectious visceral hypersensitivity. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2016. 310(8): p. G574-G585.
69. Allgayer, H., K. Deschryver, and W.F. Stenson, Treatment with 16, 16'-dimethyl prostaglandin E2 before and after induction of colitis with trinitrobenzenesulfonic acid in rats decreases inflammation. Gastroenterology, 1989. 96(5): p. 1290-1300.
70. Grisham, M.B., et al., Metabolism of trinitrobenzene sulfonic acid by the rat colon produces reactive oxygen species. Gastroenterology, 1991. 101(2): p. 540-547.
71. Isik, F., et al., Protective effects of black cumin (Nigella sativa) oil on TNBS-induced experimental colitis in rats. Digestive diseases and sciences, 2011. 56(3): p. 721-730.
72. Morris, G.P., et al., Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology, 1989. 96(2): p. 795-803.
73. Zhou, Q., et al., Visceral and somatic hypersensitivity in a subset of rats following TNBS-induced colitis. Pain, 2008. 134(1-2): p. 9-15.
74. Dothel, G., et al., Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology, 2015. 148(5): p. 1002-1011. e4.
75. de Carvalho Rocha, H.A., et al., Main ion channels and receptors associated with visceral hypersensitivity in irritable bowel syndrome. Annals of gastroenterology: quarterly publication of the Hellenic Society of Gastroenterology, 2014. 27(3): p. 200.
76. Hutter, M.M., et al., Transient receptor potential vanilloid (TRPV-1) promotes neurogenic inflammation in the pancreas via activation of the neurokinin-1 receptor (NK-1R). Pancreas, 2005. 30(3): p. 260-265.
77. Barbara, G., et al., Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology, 2004. 126(3): p. 693-702.
78. Hughes, P., et al., TRPV1-expressing sensory fibres and IBS: links with immune function. Gut, 2009. 58(3): p. 465-466.
79. Wouters, M.M., et al., Histamine receptor H1–mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology, 2016. 150(4): p. 875-887. e9.
80. Sugiuar, T., K. Bielefeldt, and G. Gebhart, TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-hydroxytryptamine receptor activation. Journal of Neuroscience, 2004. 24(43): p. 9521-9530.
81. Cenac, N., et al., Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut, 2010. 59(4): p. 481-488.
82. Akbar, A., et al., Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut, 2008. 57(7): p. 923-929.
83. Yu, Y.-B., et al., Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome. Gut, 2012. 61(5): p. 685-694.
84. Zhang, Y., et al., Increased expression of brain-derived neurotrophic factor is correlated with visceral hypersensitivity in patients with diarrhea-predominant irritable bowel syndrome. World journal of gastroenterology, 2019. 25(2): p. 269.
85. Valdez-Morales, E.E., et al., Sensitization of peripheral sensory nerves by mediators from colonic biopsies of diarrhea-predominant irritable bowel syndrome patients: a role for PAR2. American Journal of Gastroenterology, 2013. 108(10): p. 1634-1643.
86. Wong, A.W., et al., Neurite outgrowth in normal and injured primary sensory neurons reveals different regulation by nerve growth factor (NGF) and artemin. Molecular and Cellular Neuroscience, 2015. 65: p. 125-134.
87. Mittal, R., et al., Neurotransmitters: The critical modulators regulating gut–brain axis. Journal of cellular physiology, 2017. 232(9): p. 2359-2372.
88. Washburn, S., The role of neurotransmitters in IBS pathophysiology: a literature review. Australian Journal of Medical Herbalism, 2007. 19(4).
89. Atkinson, W., et al., Altered 5-hydroxytryptamine signaling in patients with constipation-and diarrhea-predominant irritable bowel syndrome. Gastroenterology, 2006. 130(1): p. 34-43.
90. Dunlop, S.P., et al., Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome. Clinical Gastroenterology and Hepatology, 2005. 3(4): p. 349-357.
91. Gershon, M.D. and J. Tack, The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology, 2007. 132(1): p. 397-414.
92. Nakatani, Y., et al., Augmented brain 5‐HT crosses the blood–brain barrier through the 5‐HT transporter in rat. European Journal of Neuroscience, 2008. 27(9): p. 2466-2472.
93. O’Mahony, S.M., et al., Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural brain research, 2015. 277: p. 32-48.
94. Wade, P., et al., Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. Journal of Neuroscience, 1996. 16(7): p. 2352-2364.
95. Israelyan, N. and K.G. Margolis, Reprint of: Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacological research, 2019. 140: p. 115-120.
96. Lee, K.J., et al., The alteration of enterochromaffin cell, mast cell, and lamina propria T lymphocyte numbers in irritable bowel syndrome and its relationship with psychological factors. Journal of gastroenterology and hepatology, 2008. 23(11): p. 1689-1694.
97. Dunlop, S.P., et al., Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS. Gastroenterology, 2003. 125(6): p. 1651-1659.
98. Park, J., et al., Enteroendocrine cell counts correlate with visceral hypersensitivity in patients with diarrhoea‐predominant irritable bowel syndrome. Neurogastroenterology Motility, 2006. 18(7): p. 539-546.
99. Wong, H.L.X., et al., Early life stress disrupts intestinal homeostasis via NGF-TrkA signaling. Nature communications, 2019. 10(1): p. 1-14.
100. Faure, C., et al., Serotonin signaling is altered in irritable bowel syndrome with diarrhea but not in functional dyspepsia in pediatric age patients. Gastroenterology, 2010. 139(1): p. 249-258.
101. Thijssen, A., et al., Alterations in serotonin metabolism in the irritable bowel syndrome. Alimentary pharmacology therapeutics, 2016. 43(2): p. 272-282.
102. Coates, M.D., et al., Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology, 2004. 126(7): p. 1657-1664.
103. Kerckhoffs, A.P., et al., SERT and TPH-1 mRNA expression are reduced in irritable bowel syndrome patients regardless of visceral sensitivity state in large intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2012. 302(9): p. G1053-G1060.
104. Foley, S., et al., Impaired uptake of serotonin by platelets from patients with irritable bowel syndrome correlates with duodenal immune activation. Gastroenterology, 2011. 140(5): p. 1434-1443. e1.
105. El‑Salhy, M., I. Wendelbo, and D. Gundersen, Serotonin and serotonin transporter in the rectum of patients with irritable bowel disease. Molecular medicine reports, 2013. 8(2): p. 451-455.
106. Kerckhoffs, A., et al., Trypsinogen IV, serotonin transporter transcript levels and serotonin content are increased in small intestine of irritable bowel syndrome patients. Neurogastroenterology Motility, 2008. 20(8): p. 900-907.
107. Zhang, L., et al., Luminal serotonin time‐dependently modulates vagal afferent driven antinociception in response to colorectal distention in rats. Neurogastroenterology Motility, 2011. 23(1): p. 62-e6.
108. Lu, C.L., et al., Estrogen rapidly modulates 5-hydroxytrytophan-induced visceral hypersensitivity via GPR30 in rats. Gastroenterology, 2009. 137(3): p. 1040-1050.
109. Bardhan, K., et al., A double-blind, randomized, placebo-controlled dose-ranging study to evaluate the efficacy of alosetron in the treatment of irritable bowel syndrome. Alimentary pharmacology therapeutics, 2000. 14(1): p. 23-34.
110. Müller‐Lissner, S., et al., Tegaserod, a 5‐HT4 receptor partial agonist, relieves symptoms in irritable bowel syndrome patients with abdominal pain, bloating and constipation. Alimentary pharmacology therapeutics, 2001. 15(10): p. 1655-1666.
111. Zou, B.-C., et al., Expression and role of 5-HT7 receptor in brain and intestine in rats with irritable bowel syndrome. Chinese medical journal, 2007. 120(23): p. 2069-2074.
112. Guseva, D., et al., Serotonin 5-HT7 receptor is critically involved in acute and chronic inflammation of the gastrointestinal tract. Inflammatory bowel diseases, 2014. 20(9): p. 1516-1529.
113. Liddle, R.A., Cholecystokinin cells. Annual review of physiology, 1997. 59(1): p. 221-242.
114. Roth, K.A., S. Kim, and J.I. Gordon, Immunocytochemical studies suggest two pathways for enteroendocrine cell differentiation in the colon. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1992. 263(2): p. G174-G180.
115. Rehfeld, J.F., Cholecystokinin—from local gut hormone to ubiquitous messenger. Frontiers in endocrinology, 2017. 8: p. 47.
116. Wank, S.A., Cholecystokinin receptors. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1995. 269(5): p. G628-G646.
117. Zhang, H., et al., Correlation of gut hormones with irritable bowel syndrome. Digestion, 2008. 78(2-3): p. 72-76.
118. Van der Schaar, P., et al., Effect of cholecystokinin on rectal motor and sensory function in patients with irritable bowel syndrome and healthy controls. Colorectal Disease, 2013. 15(1): p. e29-e34.
119. Friedrich, A.E. and G. Gebhart, Modulation of visceral hyperalgesia by morphine and cholecystokinin from the rat rostroventral medial medulla. Pain, 2003. 104(1-2): p. 93-101.
120. Rivat, C., et al., Chronic stress induces transient spinal neuroinflammation, triggering sensory hypersensitivity and long-lasting anxiety-induced hyperalgesia. Pain, 2010. 150(2): p. 358-368.
121. Heinricher, M.M. and M.J. Neubert, Neural basis for the hyperalgesic action of cholecystokinin in the rostral ventromedial medulla. Journal of neurophysiology, 2004. 92(4): p. 1982-1989.
122. Hsu, L.T., et al., Gut‐derived cholecystokinin contributes to visceral hypersensitivity via nerve growth factor‐dependent neurite outgrowth. Journal of gastroenterology and hepatology, 2016. 31(9): p. 1594-1603.
123. Huang, E.J. and L.F. Reichardt, Neurotrophins: roles in neuronal development and function. Annual review of neuroscience, 2001. 24(1): p. 677-736.
124. Pezet, S. and S.B. McMahon, Neurotrophins: mediators and modulators of pain. Annu. Rev. Neurosci., 2006. 29: p. 507-538.
125. Wang, P., et al., BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit. Scientific reports, 2016. 6: p. 20320.
126. Yang, Y., et al., Effect of nerve growth factor on colorectal visceral hypersensitivity in rats. Chinese Journal of Digestion, 2008. 28(11): p. 764-766.
127. Barreau, F., et al., Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology, 2004. 127(2): p. 524-534.
128. Palecek, J. and W. Willis, The dorsal column pathway facilitates visceromotor responses to colorectal distention after colon inflammation in rats. Pain, 2003. 104(3): p. 501-507.
129. Cawston, E.E. and L.J. Miller, Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. British journal of pharmacology, 2010. 159(5): p. 1009-1021.
130. Macleod, M.R., et al., Serum withdrawal causes apoptosis in SHSY 5Y cells. Brain research, 2001. 889(1-2): p. 308-315.
131. Gershon, M. and M.T. Liu, Serotonin and neuroprotection in functional bowel disorders. Neurogastroenterology Motility, 2007. 19: p. 19-24.
132. Samuels, B.A., et al., 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nature neuroscience, 2015. 18(11): p. 1606.
133. Mendez-David, I., et al., Rapid anxiolytic effects of a 5-HT 4 receptor agonist are mediated by a neurogenesis-independent mechanism. Neuropsychopharmacology, 2014. 39(6): p. 1366-1378.
134. Imoto, Y., et al., Role of the 5-HT 4 receptor in chronic fluoxetine treatment-induced neurogenic activity and granule cell dematuration in the dentate gyrus. Molecular brain, 2015. 8(1): p. 29.
135. Numakawa, T., H. Odaka, and N. Adachi, Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. International journal of molecular sciences, 2018. 19(11): p. 3650.
136. Jiang, D.-g., et al., Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress. Neural regeneration research, 2016. 11(9): p. 1471.
137. Galambos, J.T., et al., Loperamide: a new antidiarrheal agent in the treatment of chronic diarrhea. Gastroenterology, 1976. 70(6): p. 1026-1029.
138. Siuciak, J.A., et al., BDNF induction of tryptophan hydroxylase mRNA levels in the rat brain. Journal of neuroscience research, 1998. 52(2): p. 149-158.
139. Mamounas, L.A., et al., BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain. Journal of Neuroscience, 2000. 20(2): p. 771-782.
140. Mamounas, L.A., et al., Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. Journal of Neuroscience, 1995. 15(12): p. 7929-7939.
141. Ferrer, I., et al., BDNF up‐regulates TrkB protein and prevents the death of CA1 neurons following transient forebrain ischemia. Brain pathology, 1998. 8(2): p. 253-261.
142. Tirassa, P. and N. Costa, CCK-8 induces NGF and BDNF synthesis and modulates TrkA and TrkB expression in the rat hippocampus and septum: Effects on kindling development. Neurochemistry international, 2007. 50(1): p. 130-138
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77997-
dc.description.abstract背景: 腸躁症 (Irritable bowel syndrome, IBS) 為伴隨反覆性腹痛之功能性腸胃道疾病。腸躁症的危險因子包含遺傳因素、精神壓力、腸道慢性發炎、腸道感染病史等。過去研究發現腸躁症患者結直腸黏膜層檢體中高密度的神經纖維分布及較高表現量的神經營養因子,如:神經生長因子 (Nerve Growth Factor, NGF) 及腦源性神經營養因子 (Brain-derived neurotrophic factor, BDNF),與腸躁症患者腹痛程度有關。此外,神經內分泌物質的失調,如血清素 (Serotonin, 5-HT) 與膽囊收縮素 (cholecystokinin, CCK),也被指出參與在腸道痛覺機制中。本篇研究目的為探討血清素受器在神經纖維延長機制中扮演之角色,以及神經內分泌物質與神經營養因子間之交互作用。
材料與方法: 兩種類腸躁症動物模式包含使用2,4,6-三硝基苯磺酸誘發的後腸炎性類腸躁症之PT小鼠,以及寄生蟲後排除期/慢性避水壓力試驗之GW/WAS小鼠。藉由結直腸撐張刺激所引發的內臟動器反應來測定其腹痛程度,並以腹腔注射方式給予PT小鼠第七型血清素受器化合物CYY073-b,測試其對PT小鼠腸道疼痛感覺之效用。另外也收集動物大腸黏膜、腸段全組織以及背根神經節 (胸椎第九節至腰椎第一節以及腰椎第五節至薦椎第一節) 作核醣核酸分析。神經纖維長度、mRNA及蛋白表現量則是在SH-SY5Y人類神經細胞株 (human neuroblastoma) 中探討,以無菌小鼠腸道組織上清液或外加血清素及神經營養因子NGF、BDNF,觀察神經纖維延長及細胞中與神經內分泌物質及神經營養因子相關之基因和蛋白表現量。
結果: 在兩種類腸躁症動物模式皆發現有內臟高敏感性的現象,給予PT小鼠第七型血清素受器化合物CYY073-b可抑制其腸道疼痛感覺。PT小鼠的大腸全組織中,tryptophan hydroxylase 2 (TPH2)、5-HT7R、BDNF基因表現量上升,而TPH1、NGF基因表現量無改變;PT小鼠的大腸黏膜和背根神經節中,這些基因皆無改變。GW小鼠的大腸全組織中,p75 neurotrophin receptor (p75NTR) and Tropomyosin-related kinase receptor B (TrkB)基因表現量上升,而其餘基因有上升趨勢但無統計差異。在SH-SY5Y人類神經細胞株的實驗方面,以無菌之小鼠腸道組織上清液刺激會使神經細胞的神經內分泌物質及神經營養因子相關之基因表現量上升,但PT組與Sham組小鼠之間並無差異。在神經細胞實驗中,外加血清素使其神經纖維延長之效果可受5-HT7R拮抗劑抑制。以血清素或第七型血清素受器促進劑LP-211刺激之神經細胞,其NGF、BDNF及其受器p75NTR、TrkB 和CCK及其受器CCK-AR、CCK-BR mRNA 表現量上升,且此現象可受5-HT7R拮抗劑抑制。以NGF或BDNF刺激之神經細胞,其TPH2、5-HT7R mRNA表現量增加,而TPH1、CCK及其受器CCK-AR、CCK-BR mRNA表現量則無顯著差異。
結論: 本篇研究證實,類腸躁症動物模式小鼠之腸道痛覺異常可受第七型血清素受器拮抗劑所抑制。而神經內分泌物質與神經營養因子間存在交互作用,血清素透過第七型血清素受器與神經營養因子形成之正回饋反應可促進神經纖維延長。
zh_TW
dc.description.abstractBackground: Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder with recurrent abdominal pain. Risk factors related to IBS include hereditary factors, psychological stress, chronic inflammation, and history of intestinal infection etc. Higher nerve fiber density and neurotrophin levels such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were found in colorectal biopsies associated with pain scores in IBS patients. In addition, dysregulation of neuroendocrines such 5-hydroxytryptamine (5-HT) and cholecystokinin (CCK) was involved in intestinal pain. Our aim is to investigate the interaction between neurotrophins and neuroendocrines in the mechanisms of intestinal neurite outgrowth and visceral hypersensitivity.
Materials and Methods: Two animal models were used, including mice post-inflammatory of Trinitrobenzene sulfonic acid-induced colitis (PT) and mice that received post-giardiasis and chronic water avoidance stress (GW/WAS). Visceromotor response (VMR) to colorectal distension was measured to quantify intestinal pain. PT mice were used to test the effect of newly synthesized 5-HT7 receptor (5-HT7R) ligand―CYY073-b on visceral hypersensitivity. Colonic mucosa, colonic whole tissue, and Thoracic vertebra 9 to Lumbar vertebra 1 and Lumbar vertebra 5 to Sacral vertebra 1 (T9 - L1 and L5-S1) of dorsal root ganglia (DRG) collected from animals are used for measurement of mRNA expression. The human neuroblastoma SH-SY5Y cells were used for analysis of nerve fiber length, real-time PCR and Western blotting.
Results: Higher VMR was found in the two animal models, and the visceral hypersensitivity in PT mice was inhibited by the newly synthesized 5-HT7R ligand―CYY073-b. Higher tryptophan hydroxylase 2 (TPH2), 5-HT7R, and BDNF mRNA expression were found in the colonic whole tissues of PT mice, whereas no change was seen in the TPH1 and NGF levels; no difference of these gene transcription was observed in mucosal tissues and DRG samples between PT and Sham mice. Higher levels of p75 neurotrophin receptor (p75NTR) and Tropomyosin-related kinase receptor B (TrkB) were found in the colonic whole tissues of GW mice but only increased trend was seen in other molecules without statistical significance. For the experiments in differentiated SH-SY5Y neural cells, all neuroendocrine- and neurotrophin-related gene expression were increased following incubation with bacteria-free mouse colonic supernatant; however, no difference was seen between PT and sham groups of colonic supernatants. In the differentiated SH-SY5Y neural cells, neurite outgrowth that are induced by 5-HT were inhibited by 5-HT7R antagonists. Treatment with 5-HT and 5-HT7R agonist LP-211 increased the NGF, BDNF, p75NTR, TrkB, CCK and CCK receptor mRNA expression, but not TrkA level, in neural cells. Treatment with recombinant NGF and BDNF increased the TPH2 and 5-HT7R mRNA expression, but not TPH1, CCK or CCK receptor levels.
Conclusion: Colonic hyperalgesia of IBS-like animal model was inhibited by 5-HT7R antagonists. A positive feedback loop was observed between neuroendocrine and neurotrophin expression. Serotonin contributed to neurite outgrowth by promoting neurotrophin expression via 5-HT7R.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:39:15Z (GMT). No. of bitstreams: 1
U0001-1508202023214400.pdf: 2459935 bytes, checksum: 6e6e99a56beb60cf2d5ede367984f79c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents壹、前言 1
1. 神經系統對腸道功能之調控 1
2. 雙向腦腸軸 (bidirectional brain-gut axis) 2
3. 內臟痛覺傳遞途徑 2
3.1上行痛覺傳遞 (Ascending visceral pain pathway) 2
3.2 下行痛覺傳遞 (Descending visceral pain pathway) 3
3.3 內臟高敏感性 (visceral hypersensitivity) 3
4. 腸躁症 (Irritable bowel syndrome, IBS) 3
4.1 流行病學 3
4.2 診斷標準及亞型分類 4
4.3 危險因子 4
4.3.1精神壓力 5
4.3.2腸胃道感染 5
4.3.3慢性腸道發炎 6
4.4類腸躁症動物模式 6
4.4.1避水行為誘發精神壓力模式 7
4.4.2梨形鞭毛蟲感染排除後模式 7
4.4.3三硝基苯黃酸誘導發炎復原模式 8
5. 內臟高敏感性 (visceral hypersensitivity) 之相關分子機制 9
5.1離子通道及痛覺受器表現量改變 9
5.2 神經纖維數目及結構改變 10
5.3 神經內分泌物質及其受器表現量改變 10
5.3.1 血清素產量或代謝異常 11
5.3.2血清素受器表現量異常 13
5.3.3 膽囊收縮素及其受器表現量異常 14
5.4 神經營養因子及其受器表現量改變 15
6. 研究目的 16
貳、材料與方法 17
1. 實驗動物 17
2. 後腸炎性類腸躁症模式 17
2.1 三硝基苯磺酸 (2,4,6-trinitrobenzenesulfonic acid solution, TNBS) 誘導小鼠結腸炎模式 17
2.2新合成血清素受器化合物 18
2.2.1藥物試驗流程 19
3. 後感染與精神壓力類腸躁症模式 20
4. 結直腸撐張刺激-內臟動器反應分析 (Colorectal distension-Visceromotor response, CRD-VMR) 21
4.1 腹外斜肌電極埋入手術 21
4.2 結直腸撐張刺激-內臟動器反應實驗 22
5. 動物檢體收集 23
6. 細胞實驗 24
6.1 SH-SY5Y細胞株 24
6.2 實驗所需細胞種植濃度 24
6.3 外加刺激物實驗 25
6.3.1 測試胎牛血清濃度之影響 25
6.3.2 腸道組織上清液刺激 25
6.3.2.1 腸組織無菌上清液 (bacteria-free gut supernatant) 製備 25
6.3.2.2 腸道組織上清液刺激實驗 26
6.3.3 神經營養因子刺激 27
6.3.4血清素刺激與抑制劑及促進劑實驗 27
6.3.4.1血清素刺激 27
6.3.4.2血清素的刺激下抑制劑及促進劑預處理實驗 27
6.3.5第七型血清素受器促進劑 (5-HT7 receptor agonist) 刺激 28
6.4 神經纖維生長 (neurite outgrowth) 實驗 29
6.4.1 細胞影像攝影與神經細胞纖維長度測量 29
7. 核糖核酸 (mRNA) 測定 30
7.1核糖核酸之萃取 30
7.1.1萃取組織核糖核酸 30
7.1.2萃取細胞核糖核酸 30
7.2反轉錄聚合酶連鎖反應 (Reverse Transcription Polymerase Chain Reaction, RT-PCR) 31
7.3即時聚合酶連鎖反應 (Real time polymerase chain reaction, real-time PCR) 31
8. 西方墨點法 (Western blotting) 36
8.1 第七型血清素受器促進劑刺激與神經營養因子刺激實驗 36
8.1.1第七型血清素受器促進劑刺激 36
8.1.2神經營養因子刺激 36
8.2 SH-SY5Y細胞蛋白質萃取 37
8.3 蛋白質電泳 (SDS-PAGE) 37
8.4 蛋白質分析 37
9. 統計方法 38
參、實驗結果 39
1. 類腸躁症小鼠模式之腸道痛覺測定 39
1.1 對照組 (Sham) 及後腸炎性類腸躁症模式 (Post-TNBS, PT) 小鼠的內臟動器反應: 腹腔注射給予單一劑量第七型血清素受器配體之影響 39
1.2 精神壓力誘發之類腸躁症模式 (water avoidance stress, WAS) 小鼠的內臟動器反應 39
2. 類腸躁症小鼠模式之神經內分泌物質與神經營養因子相關基因表現 39
2.1 PT小鼠之神經內分泌物質與神經營養因子相關基因表現 39
2.1.1大腸黏膜層中神經內分泌物質、神經營養因子及其受器基因表現 40
2.1.2大腸腸段全組織中神經內分泌物質、神經營養因子及其受器基因表現 40
2.1.3背根神經節中神經內分泌物質、神經營養因子及其受器基因表現 41
3.1 GW小鼠之神經內分泌物質與神經營養因子相關基因表現 41
3.1.1 大腸腸段全組織中神經內分泌物質、神經營養因子及其受器基因表現 41
4.1 WAS小鼠之神經內分泌物質與神經營養因子相關基因表現 41
4.1.1 大腸腸段全組織中神經內分泌物質、神經營養因子及其受器基因表現 41
3. 利用人類SH-SY5Y神經細胞探討神經內分泌物質與神經營養因子間之交互作用 42
3.1 小鼠腸道上清液對SH-SY5Y神經細胞神經內分泌物質與神經營養因子及其受器基因表現量之影響 42
3.2 探討血清素受器亞型在SH-SY5Y神經細胞纖維延長機制中扮演之角色 43
3.3 探討外加神經內分泌物質或神經營養因子對SH-SY5Y神經細胞及特定基因表現量之影響 43
3.3.1 外加血清素對SH-SY5Y神經細胞神經營養因子及其受器基因表現量之影響 43
3.3.2 外加第七型血清素受器促進劑對SH-SY5Y神經細胞神經營養因子及其受器基因表現量之影響 43
3.3.3預處理抑制劑及促進劑對血清素刺激SH-SY5Y神經細胞造成神經營養因子及其受器基因表現量之影響 44
3.3.4 外加神經營養因子對SH-SY5Y神經細胞血清素合成酵素及血清素受器基因表現量之影響 45
3.3.5 探討血清素及神經營養因子對SH-SY5Y神經細胞膽囊收縮素及其受器基因表現量之影響 45
3.3.5.1 外加血清素對SH-SY5Y神經細胞的膽囊收縮素及其受器基因表現量之影響 45
3.3.5.2 探討第七型血清素受器在血清素促進SH-SY5Y神經細胞膽囊收縮素及其受器基因表現量影響中之角色 46
3.3.5.3 外加神經營養因子對SH-SY5Y神經細胞膽囊收縮素及其受器基因表現量之影響 46
3.4 探討細胞培養液的胎牛血清 (fetal bovine serum, FBS) 對SH-SY5Y神經細胞特定基因之影響 47
3.5 探討外加第七型血清素受器促進劑或神經營養因子對SH-SY5Y神經細胞特定蛋白表現量之影響 48
肆、討論 49
伍、附圖 55
陸、參考文獻 92
dc.language.isozh-TW
dc.subject神經內分泌物質zh_TW
dc.subject內臟高敏感性zh_TW
dc.subject腸躁症zh_TW
dc.subject神經纖維延長zh_TW
dc.subject血清素受器zh_TW
dc.subject神經營養因子zh_TW
dc.subjectIrritable bowel syndromeen
dc.subjectvisceral hypersensitivityen
dc.subjectneuroendocrineen
dc.subjectneurotrophinen
dc.subjectneurite outgrowthen
dc.subject5-HT receptorsen
dc.title內臟高敏感性機制中神經營養因子與神經內分泌之交互作用zh_TW
dc.titleInteraction Between Neurotrophins and Neuroendocrines in Visceral Hypersensitivityen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳明賢(Ming-Shiang Wu),忻凌偉(Ling-Wei Hsin),張哲逢(Che-Feng Chang)
dc.subject.keyword腸躁症,內臟高敏感性,神經內分泌物質,神經營養因子,神經纖維延長,血清素受器,zh_TW
dc.subject.keywordIrritable bowel syndrome,visceral hypersensitivity,neuroendocrine,neurotrophin,neurite outgrowth,5-HT receptors,en
dc.relation.page103
dc.identifier.doi10.6342/NTU202003542
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
dc.date.embargo-lift2025-08-16-
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
U0001-1508202023214400.pdf
  未授權公開取用
2.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved