Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77981
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅筱鳳(Hsiao-Feng Lo)
dc.contributor.authorChao-Lun Chenen
dc.contributor.author陳兆倫zh_TW
dc.date.accessioned2021-07-11T14:38:52Z-
dc.date.available2022-08-29
dc.date.copyright2017-08-29
dc.date.issued2017
dc.date.submitted2017-07-05
dc.identifier.citation1.丁文彥. 1993. 蘭陽地區青蔥栽培土壤酸化及連作障礙之改進方法. 花蓮區農業專訊 6:2-4.
2.王毓華、黃晉興、鄧汀欽、吳錫家. 2011. 瓜類蔬菜品種改良與栽培技術改進之研究-以甜瓜育種及栽培技術研發為例. 農業生技產業季刊25:38-45.
3.江汶錦、黃瑞彰、林晉卿、林經偉、卓家榮. 2010. 設施甜瓜合理化施肥技術. 臺南區農業專訊72:16-21.
4.沈再發. 1989. NO3/NH4比率和養液深度對溫室洋香瓜生育之影響. 中華農業研究 38:53-71.
5.沈再發、許淼淼. 1990. 溫室洋香瓜水耕之養分吸收研究. 中華農業研究39:59-64.
6.沈再發、陳甘澍. 1997. 甜瓜栽培與營養、生理障害. 財團法人農友社會福利基金會編印. 高雄.
7.沈再發、許淼淼. 2010. 網紋洋香瓜之養液栽培技術. 農業世界323:68-75.
8.林世旻. 2011. 黃皮洋香瓜直立式栽培之結果生理及使用NaCl對果實品質之影響. 國立中興大學園藝學系研究所碩士論文. 臺中.
9.林祥智. 2014. 光皮洋香瓜直立式栽培養液、整枝及連作障礙之研究. 國立中興大學園藝學系研究所碩士論文. 臺中.
10.黃圓滿. 2004. 設施栽培洋香瓜栽培技術. 台南區農業專訊50:4-7.
11.黃瑞彰、黃圓滿、彭瑞菊、黃秀雯、陳昇寬、鄭安秀. 2016. 設施洋香瓜健康管理技術. 臺南. 臺灣.
12.蔡永暭、施純堅. 1995. 農水產廢棄物堆肥化之開發及應用I.培養土調製與洋香瓜連作之效應. 高雄區農業改良場研究彙報6:10-22.
13.蔡尚光.1987. 水耕栽培的魅力. 淑馨出版社. 台北. 台灣.
14.蔡尚光. 1995. 設施洋香瓜與胡瓜的高品質生產. 淑馨出版社. 台北. 台灣.
15.蔡青園. 1999. 以供源~積儲觀念來看洋香瓜之留葉及留果技術. 農業世界雜誌10:94-98.
16.蔡東纂. 2006. p. 238. 臺灣植物線蟲病害圖鑑. 行政院農業農委會動植物防疫檢疫局. 臺北.
17.鄭安秀、黃圓滿、黃瑞彰、陳昇寬、彭瑞菊. 2009. 洋香瓜安全生產管理. 台南區農業改良場技術專刊137:98-2.
18.王荔军、王运华、周益林、段霞喻、李敏與张福锁. 2001. 奈米結構SiO2與植物真菌病害發生的關係. 華中農業大學學報20:593-597.
19.卢钢、曹家树. 2001. 矽對甜瓜早熟性及光合特性的影響. 園藝學報28:421-424.
20.冯东听、李宝栋. 1998. 可溶性矽在植物抵禦病害中的作用. 植物病理學報28:293-297.
21.江雪飞、乔飞、邹志荣. 2006. 不同生育期鹹水灌溉對砂培甜瓜產量和品質的影響.西北農林科技大學學報 34:87-90.
22.江雪飞、乔飞、邹志荣. 2007. 鹽水灌溉對砂培甜瓜各器官生長和鹽離子分布的影響. 西北農林科技大學學報 35:114-120.
23.刑雪荣、张蕾. 1998. 植物的矽素營養研究综述. 植物學學報15:33-40.
24.杜彩琼、林克惠. 2002. 矽素營養研究進展. 雲南農業大學學報 17 :192-196.
25.郭玉蓉、赵桦、陈德蓉、刘磊、毕阳. 2005. 兩種矽化物對甜瓜白粉病的抑制機理研究. 中國農業科學 38:576-581.
26.陳小央. 2010. 網紋甜瓜網紋形成發育研究進展. 中國蔬菜18:5-9.
27.管学玉. 2006. 網紋甜瓜品質形成特點的研究. 浙江大學蔬菜研究所碩士論文. 杭州.
28.梁永超、张永春、马同生. 1993. 植物的矽素營養. 土壤學進展 21:7-12.
29.夏石头、萧浪涛、彭克勤. 2001. 高等植物中矽元素的生理矽應及其在農業生產中的應用. 植物生理學通訊 37:356-360.
30.夏嫱、胡慧、黄江海、苏晓庆. 2013. NaCl溶液對貴陽腐霉菌絲生長、孢子囊產生及滅蚊能力的影響. 菌物學報 32:249-254.
31.潘静娴、黄丹枫、王世平、贾志宽. 2005. 營養液濃度對甜瓜幼苗生長和光合特性的影響. 植物營養與肥料學報 11:254-258.
32.戚乐磊、陈阳、贾恢先. 2002. 鹽脅迫下有機及無機矽對水稻種子萌發的影響. 甘肅農業大學學報 37 : 272-278.
33.魏国强. 2004. 矽提高黄瓜白粉病抗性和耐鹽性的生理機制研究. 浙江大學蔬菜學博士. 浙江.
34.川上昭太郎、坂口栄一郎、梅田重夫. 1996. メロンのネットパターン. 農業機械学会誌58:17-32.
35.中山葉子. 1968. マスクメロンの糖含有量について. 家政学雑誌 19:85-88.
36.中野好基、村上信行. 1991. ネットメロンのロックウール栽培に関する研究. 筑波大学技術報告11:13-18.
37.神谷園一. 1984. アールスメロンの地床栽培. 東海種苗園. 靜岡. 日本.
38.福山寿雄. 1990. 土耕との比較でみた各種養液栽培メロン果実の形状ならびに糖,アミノ酸含量と食味評価. 生物環境調節 28:61-69.
39.福元康文、西村安代、島崎一彦. 2003. 循環式養液栽培における温室メロン(Cucumis melo L.)の着果に伴う葉内および果実内無機成分の変化. 生物環境調節41:279-288.
40.張洪基、青木弘行、福山寿雄、逸見彰男、橋本康. 1996. 養液栽培での生育に伴うメロン果実の表面積と体積変化の自動計測および養分吸収との関係. 植物工場学会誌8:99-103.
41.籠橋悟、狩野広美、景山美葵陽. 1981. 養分吸収制限が秋作及び春作における温室メロンの生育及び果実に及ぼす影響について. 園学雑50:306-316.
42.Adatia, M.H. and R.T. Besford. 1986. The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann. Bot. 58:343-351.
43.Agarie S.H.U., W. Agata, and F. Kubota. 1998. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Production Sci. 1:89-95.
44.Balibrea, M.E., A.M.S. Cruz, M.C. Bolarin, and F. Perez-Alfocea. 1996. Sucrolytic activities in relation to sink strength and carbohydrate composition in tomato fruit growing under salinity. Plant Sci. 118: 47-55.
45.Bar-Yosef, B. 2008. Fertigation management and crops response to solution recycling in semi-closed greenhouses, p. 341-424. In: Raviv, M., and H.J. Lieth (eds.). Soilless culture: Theory and Practice. Elsevier, Amsterdam, The Netherlands, Ind.
46.Bishnu, P., B.P. Chapagain, and Z. Wiesman. 2004. Effect of potassium magnesium chloride in the fertigation solution as partial source of potassium on growth, yield and quality of greenhouse tomato. Sci. Hort. 99:279-288.
47.Botía, P., J.M. Navarro, A. Cerda, and V. Martinez. 2005. Yield and fruit quality of two melon cultivars irrigated with saline water at different stages of development. Europ. J. Agron. 23:243–253.
48.Bouzo, C.A., and S.B. Cortez. 2012. Effect of calcium foliar application on the fruit quality of melon. Revista de Investigaciones Agropecuarias 38.
49.Bowen, P., J Menzies, D. Ehret, L. Samuel, and A.D.M. Glass. 1992. Soluble silicon sprays inhibit powdery mildew development on grape leaves. J. Am. Soc. Hortic. Sci. 117:906-912.
50.Brady, NC. 1984. The nature and properties of soils. Macmillan, New York.
51.Bustan, A., S. Cohen, Y.D. Malach, P. Zimmermann, R. Golanb, M. Sagi, and D. Pasternak. 2005. Effects of timing and duration of brackish irrigation water on fruit yield and quality of late summer melons. Agr. Water Mgt. 74:123–134.
52.Buwalda, J.G. and R.E. Freeman. 1986. Melons: effects of vine pruning and nitrogen on yields and quality. N. Z. J. Crop Hort. Sci. 14:355-359.
53.Chérif, M., and R.R. Belanger. 1992. Use of potassium silicate amendments in recirculating nutrient solutions to suppress Pythium ultimum on long English cucumber. Plant Dis. 76:1008-1011.
54.Chérif, M., A. Asselin, and R.R. Belanger. 1994. Defense response induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84:236-242.
55.Colla, G., Y. Rouphael, M. Cardarelli, D. Massa, A. Salerno and E. Rea. 2006. Yield, Fruit quality and mineral composition of grafted melon plants grown under saline conditions. J. Hortic. Sci. Biotech. 81:146-152.
56.Dallagnol L.J., F.A. Rodrigues, S.F. Pascholati, A.A. Fortunato and L.E.A. Camargo. 2015. Comparison of root and foliar applications of potassium silicate in potentiating post-infection defences of melon against powdery mildew. Plant Pathol. 64:1-9.
57.Del Amor F.M., V. Martinez, and A. Cerdá. 1999. Salinity duration and concentration affect fruit yield and quality, and growth and mineral composition of melon plants grown in perlite. HortScience 34:1234-1237.
58.Dik, A.J., M.A. Verhaar, and R.R. Belanger. 1998. Comparison of three biological control agents against cucumber powdery mildew (Spharotheca fuliginea) in semi-commercial-scale glasshouse trials. Eur. J. Plant. Patho. 104: 413-423.
59.Edelstein, M., Z. Plaut, and M. Ben-Hu. 2011. Sodium and chloride exclusion andretention by non-grafted and grafted melon and Cucurbita plants. J. Exp. Bot. 62:177–184.
60.Ehret, D.L., and L.C. Ho. 1986. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. J. Hort. Sci. 61:361-367.
61.Fawe A, M. Abou-Zaid, J.G. Menzies, and R.R. Belanger. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopatholo. 88:396-401.
62.Franco, J.A., C. Esteban, and C. Rodriguez. 1993. Effect of salinity on various growth stages of muskmelon cv. Revigal. J. Hort. Sci. 68:899-904.
63.Franco, J., Fernandez, J. and Banon, S. 1997. Relationship between the effects of salinity on seedling leaf area and fruit yield of six muskmelon cultivars. HortScience 32:642-644.
64.Fukutoku, Y., S. Koto, Y. Teraoka, and K. Kubo. 2000. Nitrogen absorption and distribution of muskmelons (Cucumis melo L.) at different growth stages using hydroponics. Jpn. J. Soil Sci. Plant Nutr. 71: 72-81.
65.Gao, Z., M. Sagi, and S.H. Lips. 1998. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Sci. 135:149-159.
66.Gerchikov, N., A. Keren-Keiserman, R. Perl-Treves, and I. Ginzberg. 2008. Wounding of melon as a model system to study rind netting. Sci. Hort. 117:115-122.
67.Giuffrida, F., G. Graziani, V. Fogliano, D. Scuderi,D. Romano, and C. Leonardi. 2014. Effects of nutrient and NaCl salinity on growth, yield, quality and composition of pepper grown in soilless closed system. J. Plant Nutri. 37:1455-1474.
68.Guzmán, M. and J. Olave. 2006. Both electrical conductivity and sodium adsorption ratio of the fertigation solution affect yield and quality of soil less melon crops. Acta Hortic. 718:485–490.
69.Huang, C.H., L. Zong, M. Buonanno, X. Xue, T. Wang, and A. Tedeschi. 2012. Impact of saline water irrigation on yield and quality of melon (Cucumis melo L. ‘Huanghemi’) in northwest China. Europ. J. Agron. 43:68–76.
70.Kaya, C., D. Higgs, H. Kirnak, and I. Tas. 2003. Ameliorative effect of calcium nitrate oncucumber and melon plants drip irrigated with saline water. J. Plant Nutr. 26:1665–1681.
71.Läuchli, A., and S.R. Grattan. 2011. Plant responses to saline and sodic conditions, p. 169-205. In: W.W. Wallender and K. K. Tanji. (eds.). Agricultural Salinity Assessment and Management.
72.Läuchli, A., and S.R. Grattan. 1990. Plant responses to saline and sodic conditions, p. 113-137. In: K.K. Tanji (ed). Agricultural salinity assessment and management. ASCE manuals and reports on engineering practice No, 71. pp 113–137 ASCE New York.
73.Lester G.E., and M.A. Grusak. 1999. Postharvest application of calcium and magnesium to honeydew and netted muskmelons: effects on tissue ion concentrations, quality, and senescence. J. Amer. Soc. Hort. Sci. 124:545–552.
74.Lester, G.E., J.L. Jifon, and G. Rogers. 2005. Supplemental foliar potassium applications during muskmelon (Cucumis melo L.) fruit development can improve fruit quality, ascorbic acid and beta-carotene contents. J. Amer. Soc. Hort. Sci. 130:649-653.
75.Lester, G.E., J.L. Jifon, and D.J. Makus. 2006. Supplemental foliar potassium applications with or without a surfactant can enhance netted muskmelon quality. HortScience 41:741-744.
76.Maas, E.V., and G.J. Hoffman. 1977. Crop salt tolerance-Current assessment. ASCE Journal of the Irrigation and Drainage Division103:115–134.
77.Mavrogiannopoulos, G.N., J. Spanakis, and P. Tsikalas. 1999. Effect of carbon dioxide enrichment and salinity on photosynthesis and yield in melon. Sci. Hortic. 79:51–63.
78.Mengel, K., and E.A. Kirkby. 2001. Principles of plant nutrition, 5th ed. Kluwer academic publishers, Dordrecht, Netherlands.
79.Menzies, J.G., D. Ehret, A.D.M. Glass, and A.L. samuels. 1991. a. The influence of silicon on cytological interactions between Sphaerotheca fuliginea and Cucumis sativus. Physiol. Mol. Plant Patho. 39:403-414.
80.Menzies, J.G., D.L. Ehret, A.D.M. Glass, T. Helmer, C. Koch and F. Seywerd. 1991. b. Effects of soluble silicon on the parasitic fitness of Sphaerotheca fuliginea on Cucumis sativus. Phytopathology 81:84-88.
81.Menzies J.G., P. Bowen, and D. Ehret 1992. Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. J. Am. Soc. Hortic. Sci. 117: 902-905.
82.Mitchell, J.P., C. Shennan, and S.R. Grattan. 1991. Developmental changes in tomato fruit composition in response to water deficit and salinity. Physiol. Plant. 83:77-185.
83.Miyake, Y. and E. Takahashi. 1983. Effect of silicon on the growth of solution-cultured cucumber plant. Soil Sci. Plant Nutr. 29:71-83.
84.Munns, R., P.A. Gardner, M.L. Tonnet, and H.M. Rawson. 1988. Growth and development in NaCl-treated plants II. Do Na+ or Cl- concentrations in dividing or expanding tissues determine growth in barley Aust. J. Plant Physiol. 15:529-540.
85.Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239-250.
86.Navarro, J.M., M.A. Botella, A. Cerdá, and V. Martínez. 2000. Effect of salinity × calciuminteraction on cation balance in melon plants grown under two regimes oforthophosphate. J. Plant Nutr. 23:991–1006.
87.Neocleous, D. and D. Savvas. 2015. Effect of different macronutrient cation ratios on macronutrient and water uptake by melon (Cucumis melo) grown in recirculating nutrient solution. J. Plant Nutr. Soil Sci. 178:320–332.
88.Neocleous, D. and D. Savvas. 2016. NaCl accumulation and macronutrient uptake by a melon crop in aclosed hydroponic system in relation to water uptake. Agric. Water Manage.165:22–32.
89.Nukaya, A., M. Masui and A. Ishida. 1983. Salt Tolerance of Muskmelons as Affected by Various Salinities in Sand Culture. J. Japan. Soc. Hort. Sci. 51:427-434.
90.Perez-Alfocea, F., E.M.T. Caro, and G. Guerrier. 1993. Osmotic adjustment in Lycopersicon esculentum and L. pennellii under NaCl and polyethylene glycerol 6000 iso-osmotic stresses. Plysiol. Plant. 87:493-498.
91.Samuels, A.L., A.D.M. Glass, D.L. Ehret, and J.G. Menzies. 1991. Distribution of silicon in cucumber leaves during infection by powdery mildew fungus (Sphaerotheca fuliginea). Can. J. Bot. 69:140-146.
92.Sonneveld, C., and W. Voogt. 2009. Plant nutrition of greenhouse crops. Springer, Dordrecht, The Netherlands.
93.Taiz, L., E. Zeiger, I. M. Møller, and A. Murphy. 2015. Plant physiology and development, p. 121. In: A.J. Bloom, S. Smith (eds.). Mineral nutrition. Sinauer assoicates, Sunderland, MA.
94.Tedeschi, A., A. Lavini, M. Riccardi, C. Pulvento, and R. d’Andria. 2011. Melon crops (Cucumis melo L. ‘Tendral’) grown in a mediterranean environment under saline-sodic conditions: Part I. Yield and quality. Agr. Water Mgt. 98:1329-1338.
95.Wilcox, E.G. 1973. Muskmelon response to rates and sources of nitrogen. Agron. J. 65:694-697.
96.Yamamoto, T., V. U. Ultra, S. Tanaka, K. Sakurai, and K. Iwasaki. 2008. Effects of methyl bromide fumigation, chloropicrin fumigation and steam sterilization on soil nitrogen dynamics and microbial properties in a pot culture experiment. Soil Science and Plant Nutrition 54:886-894.
97.Yang, R.X., Z.G. Gao, X. Liu, Y. Yao and Y. Cheng. 2014. Root exudates from muskmelon (Cucumis melon. L) induce autotoxicity and promote growth of Fusarium oxysporum f. sp. melonis. Allelopathy J. 33:175-18.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77981-
dc.description.abstract網紋洋香瓜是全球重要的園藝作物。於設施內以水耕栽培蔬菜可以克服連作障礙,增加複作指數;然水耕網紋洋香瓜吸收過量的水分和養分,果實不易達到高品質。本研究篩選適合水耕網紋洋香瓜之品種和養液配方,並利用氯化鈉造成生理乾旱,改善果實品質。
網紋洋香瓜‘淑芬’和‘Earl’s夏系二號’以介質耕與水耕栽培,水耕‘Earl’s夏系二號’之果實較圓、果肉較硬、硝酸鹽含量較低、品評甜度與總接受度較高,較適合水耕栽培。春夏作‘Earl’s夏系二號’栽培於「山崎」、「山崎加矽」、「沈」和「沈加矽」配方之養液。加矽處理組之節間較短、葉色較濃綠;「沈加矽」組之果實較圓、網紋發育良好,香氣、甜度與總體可接受度之品評分數皆較高,可溶性固形物達14.3 ºBrix顯著較高,故「沈加矽」配方較適合用以水耕網紋洋香瓜‘Earl’s夏系二號’。
第一次夏秋作種植網紋洋香瓜,於結果期以1次或分3次添加1及2 g‧L-1氯化鈉於「沈加矽」養液中;以分3次添加2 g‧L-1氯化鈉不影響網紋洋香瓜葉面積、果重、網紋外觀、鹹味,但可增加果肉厚度、可溶性固形物與乾物率,提高香味、糖度與總接受度之品評分數,僅降低抗壞血酸含量。第II次夏秋作種植網紋洋香瓜於結果期添加氯化鈉,分3次添加2 g‧L-1氯化鈉抑制游走蔓與葉片水分潛勢,不減產且可增加果實可溶性固形物、乾物率與品評總接受度,但果肉鉀、鈣含量及硬度下降。於春夏作結果期以1次或分3次添加2 g‧L-1氯化鈉於養液中,分3次添加2 g‧L-1氯化鈉亦可抑制植株鮮重、水分潛勢與游走蔓生長,增加果實可溶性固形物,但降低抗壞血酸含量與果肉硬度。添加氯化鈉於養液之操作簡單、成本低、符合安全考量,可應用於生產實務上。
網紋洋香瓜‘Earl’s 夏系二號’栽培於「沈加矽分次添加2 g‧L-1氯化鈉」配方養液,並於結果期再葉面噴施0.8 g‧L-1氯化鉀與2.0 g‧L-1氯化鈣;單獨噴施氯化鉀使果實變小、網紋變差;單獨噴施氯化鈣之品評總接受度較高,惟品質提升尚不足又需增加人力;故不須再於結果期葉施氯化鉀或氯化鈣。
zh_TW
dc.description.abstractMuskmelon is an important horticultural crop in the world. Hydroponically growing vegetables in the facilities could eacape from continuous-cropping obstacles and increase cropping index. Since the roots of hydroponic melon bath in nutrient solution and absorb excessive water and nutrients, the fruit quality is reduced. The aim of this study was to select suitable cultivar and nutrient solution formula for hydroponic muskmelon, and to improve fruit quality by applying sodium chloride in the nutrient solution resulting physiological drought.
Muskmelon ‘Shufen’ and ‘Earl’s summer line II’ were planted by substrate culture and hydroponics in the spring and summer. Fruits of hydroponic ‘Earl’s summer line II’ were round with firmer pulp, lower nitrate content, higher scores of sweetness and overall acceptability. ‘Earl’s summer line II’ is more suitable for hydroponics. ‘Earl’s summer line II’ was cultivated with nutrient solutions of “Yamazaki”, “Yamazaki plus silicon”, “Shen”, and “Shen plus silicon”. Treatments of silicon addition showed shorter internodes and deeper-green leaves. Fruits of “Shen plus silicon” treatment were round with well-developed netting, and higher scores of aroma, sweetness and overall acceptability. The total soluble solids content reached 14.3 ºBrix which was significantly the highest. Nutrient formula of “Shen plus silicon” is more suitable for hydroponic muskmelon ‘Earl’s summer line II’.
Planting I in the summer and autumn, 1 and 2 g‧L-1 NaCl was once or thrice added in “Shen plus silicon” nutrient solution in fruiting stage. Thrice adding 2 g‧L-1 NaCl can increase muskmelon flesh thickness, total soluble solids, dry matter, and scores of aroma, sweetness and overall acceptability without reducing leaf area, fruit weight, appearance of netting and saltness, but reduce ascorbic acid content. Planting II in the summer and autumn, 1~2 g‧L-1 NaCl was once or thrice added in nutrient solution in rainy fruiting stage. Thrice adding 2 g‧L-1 NaCl can improve total soluble solids, dry matter, scores of overall acceptability without reducing the yield, but lower pulp calcium content and hardness of muskmelon. In the spring and summer, nutrient solution was once and thrice adding 2 g‧L-1 NaCl in the fruiting stage. Thrice adding 2 g‧L-1 NaCl can inhibit muskmelon shoot fresh weight, water potential, and roaming vine, improve total soluble solid, but reduce ascorbic acid content and hardness. Appropriate addition of NaCl could also improve the net of muskmelon. The total soluble solids in muskmelon fruit also increased by 0.81~1.56 ºBrix. Adding NaCl in nutrient solution is a practicable operation, which is simple, affordable and safe.
Muskmelon ‘Earl’s summer line II’ was cultivated in “Shen plus silicon with thrice adding 2 g‧L-1 NaCl” nutrient solutions. Foliar spray of 0.8 g‧L-1 KCl or 2.0 g‧L-1 CaCl2 was applied in the fruiting stage. In fruits of foliar KCl application, the weight and appearance of nets were reduced. Foliar application of CaCl2 makes overall acceptability higher, but the quality improvement is not enough and also extra manpower is needed. Hence, extra foliar application KCl and CaCl2 were not required.
Since the nutrient solution is recyclable and the hydroponic system is closed, water and fertilizer is surely saved for sustainable development of agriculture. Besides, muskmelon can be quickly re-planted after each planting without continuous cropping obstacles. The high investment for greenhouse can be itself quickly. At present, commercial price of one hydroponic muskmelon in worth at least NT$ 800 in Taiwan. After deducting cost of NT$350 for production and NT$100 for packaging and marketing management, the net income is NT$350 per fruit. Optimistically, the investment of fixed cost can repay itself in two years. The high profit makes this technology valuable and promising.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:38:52Z (GMT). No. of bitstreams: 1
ntu-106-R03628113-1.pdf: 5269150 bytes, checksum: a1fdf617c10b2a8bd16b89736df6d434 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 II
致謝 III
中文摘要 IV
英文摘要 V
表目錄 IX
圖目錄 XII
前言 (Introduction) 1
前人研究 (Literature review) 2
一、洋香瓜生育習性及整枝栽培2
二、網紋洋香瓜網紋4
三、洋香瓜連作障礙 (continuous cropping obstacles) 6
四、水耕栽培網紋洋香瓜 7
五、水耕網紋洋香瓜養液吸收量 8
六、矽對作物之影響 10
七、調整EC值對於網紋洋香瓜品質之影響 15
八、鹽對於洋香瓜之影響 16
九、葉面施用鉀肥對網紋洋香瓜之影響 22
十、葉面施用鈣肥對網紋洋香瓜之影響 23
十一、採收成熟度 23
材料方法 (Material and methods) 25
結果 (Results) 38
一、水耕網紋洋香瓜品種試驗 38
二、水耕網紋洋香瓜於養液中添加矽之影響 46
三、夏秋作水耕網紋洋香瓜於結果期添加氯化鈉之影響 60
(一)第一次種植 60
(二)第二次種植 74
四、春夏作水耕網紋洋香瓜於結果期添加氯化鈉之影響 87
五、水耕網紋洋香瓜於結果期葉面噴施鉀鈣之影響 100
六、溫室網紋洋香瓜水耕栽培成本評估 112
討論 (Discussion) 118
一、水耕網紋洋香瓜品種試驗 118
二、水耕網紋洋香瓜於養液中添加矽之影響 120
三、夏秋作水耕網紋洋香瓜於結果期添加氯化鈉之影響 122
(一)第一次種植122
(二)第二次種植 126
四、春夏作水耕網紋洋香瓜於結果期添加氯化鈉之影響 131
五、水耕網紋洋香瓜於結果期葉面噴施鉀鈣之影響 135
六、溫室網紋洋香瓜水耕栽培成本評估 137
結論 (Conclusion) 138
參考文獻 (References) 139
dc.language.isozh-TW
dc.title水耕網紋洋香瓜養液配方之研究zh_TW
dc.titleStudy on Nutrient Formula of Hydroponical Muskmelon (Cucumis melo L. var reticulatus Naud.)en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊雯如(Wen-Ju Yang),林淑怡(Shu-I Lin)
dc.subject.keyword網紋洋香瓜,水耕,矽,氯化鈉,葉面施肥,zh_TW
dc.subject.keywordMuskmelon,Hydroponic,Silicon,NaCl,Foliar fertilization,en
dc.relation.page146
dc.identifier.doi10.6342/NTU201701305
dc.rights.note有償授權
dc.date.accepted2017-07-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-106-R03628113-1.pdf
  目前未授權公開取用
5.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved