請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77928
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉逸軒(I-Hsuan Liu) | |
dc.contributor.author | Chun-Lin Ko | en |
dc.contributor.author | 柯均霖 | zh_TW |
dc.date.accessioned | 2021-07-11T14:37:36Z | - |
dc.date.available | 2022-08-30 | |
dc.date.copyright | 2017-08-30 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-07 | |
dc.identifier.citation | Abascal, F., and Zardoya, R. (2012). LRRC8 proteins share a common ancestor with pannexins, and may form hexameric channels involved in cell-cell communication. BioEssays : news and reviews in molecular, cellular and developmental biology 34, 551-560.
Akita, T., and Okada, Y. (2014). Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience 275, 211-231. Arreola, J., Begenisich, T., Nehrke, K., Nguyen, H., Park, K., Richardson, L., Yang, B., Schutte, B.C., Lamb, F.S., and Melvin, J.E. (2002). Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl− channel gene. Journal of Physiology 545, 207-216. Blanco, G., and Mercer, R.W. (1998). Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. American Physiological Society. Bortner, C.D., and Cidlowski, J.A. (2007). Cell shrinkage and monovalent cation fluxes: role in apoptosis. Archives of biochemistry and biophysics 462, 176-188. Chang, Y.C., Ding, S.T., Lee, Y.H., Wang, Y.C., Huang, M.F., and Liu, I.H. (2013). Taurine homeostasis requires de novo synthesis via cysteine sulfinic acid decarboxylase during zebrafish early embryogenesis. Amino acids 44, 615-629. Chien, L.T., and Hartzell, H.C. (2008). Rescue of Volume-regulated Anion Current by Bestrophin Mutants with Altered Charge Selectivity. J Gen Physiol 132, 537–546. Dereeper, A., Audic, S., Claverie, J.M., and Blanc, G. (2010). BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evolutionary Biology 10. Devreker, F., Bergh, M.V.D., Biramane, J., Winston, R.L., Englert, Y., and Hardy, H. (1999). Effects of taurine on human embryo development in vitro. European Society of Human Reproduction and Embryology 14 2350–2356. Dolan, J., Walshe, K., Alsbury, S., Hokamp, K., O'Keeffe, S., Okafuji, T., Miller, S.F., Tear, G., and Mitchell, K.J. (2007). The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC genomics 8, 320. Dumoulin, J.C.M., Evers, J.L.H., Bras, M., Pieters, M.H.E.C., and Geraedts, J.P.M. (1992). Positive effects of taurine on preimplantation development of mouse embryos in vitro. Journals of reproduction & fertility 94, 373-380. Gay, N.J., Symmons, M.F., Gangloff, M., and Bryant, C.E. (2014). Assembly and localization of Toll-like receptor signalling complexes. Nature reviews Immunology 14, 546-558. Gründer, S., Thiemann, A., Pusch, M., and Jentsch, T.J. (1992). Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360, 759-762. Grinstein, S., Clarke, C.A., Dupre, A., and Rothstein, A. (1982a). Volume-induced increase of anion permeability in human lymphocytes. JOURNAL OF GENERAL PHYSIOLOGY 80. Grinstein, S., Clarke, C.A., and Rothstein, A. (1982b). Increased Anion Permeability During Volume Regulation in Human Lymphocytes. Philos Trans R Soc Lond B Biol Sci 299, 509-518. Hazama, A., and Okada, Y. (1988). Ca2+ sensitivity of volume‐regulatory K+ and Cl‐channels in cultured human epithelial cells. The Journal of physiology 420, 687-702. Hoffmann, E.K., Lambert, I.H., and Pedersen, S.F. (2009). Physiology of Cell Volume Regulation in Vertebrates. Physiol Rev 89, 193-277. Hoffmann, E.K., Simonsen, L.O., and Lambert, I.H.J. (1984). Volume-induced increase of K+ and Cl− permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+. The Journal of membrane biology 78, 211-222. Hoffmann, E.K., Simonsen, L.O., and SJ0HOLM, C. (1979). Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumour cells. The Journal of physiology 296, 61-84. Ise, T., Shimizu, T., Lee, E.L., Inoue, H., Kohno, K., and Okada, Y. (2005). Roles of volume-sensitive Cl- channel in cisplatin-induced apoptosis in human epidermoid cancer cells. The Journal of membrane biology 205, 139-145. Jackson, P.S., Morrison, R., and Strange, K. (1994). The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding. American Physiological Society, C1203-C1209. Jackson, P.S., and Strange, K. (1993). Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. American Journal of Physiology 265, C1489-C1500. Jentsch, T.J. (2016). VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nature reviews Molecular cell biology 17, 293-307. Jentsch, T.J., Lutter, D., Planells-Cases, R., Ullrich, F., and Voss, F.K. (2016). VRAC: molecular identification as LRRC8 heteromers with differential functions. Pflugers Archiv : European journal of physiology 468, 385-393. Kimelberg, H.K., Goderie, S.K., Higman, S., Pang, S., and Waniewski, R.A. (1990). Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. The Journal of Neuroscience 10, 1583-1591. Kozlowski, D.J., Chen, Z., Zhuang, L., Fei, Y.J., Navarre, S., and Ganapathy, V. (2008). Molecular characterization and expression pattern of taurine transporter in zebrafish during embryogenesis. Life Science 82, 1004-1011. Kubota, K., Kim, J.Y., Sawada, A., Tokimasa, S., Fujisaki, H., Matsuda-Hashii, Y., Ozono, K., and Hara, J. (2004). LRRC8 involved in B cell development belongs to a novel family of leucine-rich repeat proteins. FEBS Letters 564, 147-152. Kumar, L., Chou, J., Yee, C.S., Borzutzky, A., Vollmann, E.H., von Andrian, U.H., Park, S.Y., Hollander, G., Manis, J.P., Poliani, P.L., et al. (2014). Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function. The Journal of experimental medicine 211, 929-942. Lambert, I.H., Jensen, J.V., and Pedersen, P.A. (2014). mTOR ensures increased release and reduced uptake of the organic osmolyte taurine under hypoosmotic conditions in mouse fibroblast. Am J Physiol Cell Physiol 306, C1028–C1040. Lee, C.C., Freinkman, E., Sabatini, D.M., and Ploegh, H.L. (2014). The protein synthesis inhibitor blasticidin s enters mammalian cells via leucine-rich repeat-containing protein 8D. The Journal of biological chemistry 289, 17124-17131. Lieschke, G.J., and Currie, P.D. (2007). Animal models of human disease: zebrafish swim into view. Nature reviews Genetics 8, 353-367. Lowery, L.A., and Sive, H. (2005). Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products. Development 132, 2057-2067. Maeno, E., Ishizaki, Y., Kanaseki, T., Hazama, A., and Okada, Y. (2000). Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. PNAS 97, 9487-9492. McManus, M.L., Churchwell, K.B., and Strange, K. (1995). Regulation of Cell Volume in Health and Disease. THE NEW ENGLAND JOURNAL OF MEDICINE 333, 1260-1267. Miyanishi, H., Okubo, K., Kaneko, T., and Takei, Y. (2013a). Role of cardiac natriuretic peptides in seawater adaptation of medaka embryos as revealed by loss-of-function analysis. Am J Physiol Regul Integr Comp Physiol 304, R423–R434. Miyanishi, H., Okubo, K., Nobata, S., and Takei, Y. (2013b). Natriuretic peptides in developing medaka embryos: implications in cardiac development by loss-of-function studies. Endocrinology 154, 410-420. Murphy, T., Melville, H., Fradkin, E., Bistany, G., Branigan, G., Olsen, K., Comstock, C.R., Hanby, H., Garbade, E., and DiBenedetto, A.J. (2017). Knockdown of epigenetic transcriptional co-regulator Brd2a disrupts apoptosis and proper formation of hindbrain andmidbrain-hindbrain boundary (MHB) region in zebrafis. Mechanisms of Development 140, 10-30. Nilius, B., J., E., Voets, T., Buyse, G., Manolopoulos, V., and Droogmans, G. (1997). Properties of volume-regulated anion channels in mammalian cells. Prog Biophys Mol Biol 68, 69–119. North, T.E., Goessling, W., Peeters, M., Li, P., Ceol, C., Lord, A.M., Weber, G.J., Harris, J., Cutting, C.C., Huang, P., et al. (2009). Hematopoietic stem cell development is dependent on blood flow. Cell 137, 736-748. Okada, Y. (1997). Volume expansion-sensing outward-rectifier Cl- channel: fresh start to the molecular identity and volume sensor. American Journal of Physiology 273, C755-C789. Okada, Y., and Maenoa, E. (2001). Apoptosis, cell volume regulation and volume-regulatory chloride channels. Comparative Biochemistry and Physiology 130, 377-383. Okada, Y., Sato, K., and Numata, T. (2009). Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. The Journal of physiology 587, 2141-2149. Okada, Y., Shimizu, T., Maeno, E., Tanabe, S., Wang, X., and Takahashi, N. (2006). Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. The Journal of membrane biology 209, 21-29. Oudit, G.Y., Trivieri, M.G., Khaper, N., Husain, T., Wilson, G.J., Liu, P., Sole, M.J., and Backx, P.H. (2004). Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation 109, 1877-1885. Pasantes-Morales, H., Alavez, S., Sfinchez Olea, R., and Morfin, J. (1993). Contribution of Organic and Inorganic Osmolytes to Volume Regulation in Rat Brain Cells in Culture. Neurochemical Research 18, 445-452. Pedersen, S.F., Klausen, T.K., and Nilius, B. (2015). The identification of a volume-regulated anion channel: an amazing Odyssey. Acta physiologica 213, 868-881. Planells-Cases, R., Lutter, D., Guyader, C., Gerhards, N.M., Ullrich, F., Elger, D.A., Kucukosmanoglu, A., Xu, G., Voss, F.K., Reincke, S.M., et al. (2015). Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. The EMBO journal 34, 2993-3008. Platt, C.D., Chou, J., Houlihan, P., Badran, Y.R., Kumar, L., Bainter, W., Poliani, P.L., Perez, C.J., Dent, S.Y., Clapham, D.E., et al. (2017). Leucine-rich repeat containing 8A (LRRC8A)-dependent volume-regulated anion channel activity is dispensable for T-cell development and function. The Journal of allergy and clinical immunology. Poulsen, K.A., Andersen, E.C., Hansen, C.F., Klausen, T.K., Hougaard, C., Lambert, I.H., and Hoffmann, E.K. (2010). Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels. Am J Physiol Cell Physiol 298, C14–C25. Qiu, Z., Dubin, A.E., Mathur, J., Tu, B., Reddy, K., Miraglia, L.J., Reinhardt, J., Orth, A.P., and Patapoutian, A. (2014). SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157, 447-458. Quaife, N.M., Watson, O., and Chico, T.J. (2012). Zebrafish: an emerging model of vascular development and remodelling. Current opinion in pharmacology 12, 608-614. Sørensen, B.H., Nielsen, D., Thorsteinsdottir, U.A., Hoffmann, E.K., and Lambert, I.H. (2016). Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation. Am J Physiol Cell Physiol 310, C857–C873. Sørensen, B.H., Thorsteinsdottir, U.A., and Lambert, I.H. (2014). Acquired cisplatin resistance in human ovarian A2780 cancer cells correlates with shift in taurine homeostasis and ability to volume regulate. Am J Physiol Cell Physiol 307, C1071–C1080. Sanchez-Olea, R., Morán, J., Schousboe, A., and Pasantes-Morales, H. (1991). Hyposmolarity-activated fluxes of taurine in astrocytes are mediated by diffusion. Neuroscience Letters 130, 233-236. Sarkadi, B., Mack, E., and Rothstein, A. (1984). Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. I. Distinctions between volume-activated Cl- and K+ conductance pathways. J GEN PHYSIOL 83, 497-512. Sawada, A., Takihara, Y., Kim, J.Y., Matsuda-Hashii, Y., Tokimasa, S., Fujisaki, H., Kubota, K., Endo, H., Onodera, T., Ohta, H., et al. (2003). A congenital mutation of the novel gene causes agammaglobulinemia in humans. The Journal of Clinical Investigation 112, 1707-1713. Schaffer, S., Solodushko, V., Pastukh, V., Ricci, R., and Azuma, J. (2003). Possible Cause of Taurine-deficient Cardiomyopathy: Potentiation of Angiotensin II Action. J Cardiovasc Pharmaco 41, 751–759. Schaffer, S.W., Azuma, J., and Mozaffari, M. (2009). Role of antioxidant activity of taurine in diabetes. Canadian journal of physiology and pharmacology 87, 91-99. Schier, A.F., Neuhauss, S.C.F., Harvey, M., Malicki, J., Solnica-Krezel, L., Stainier, D.Y.R., Zwartkruis, F., Abdelilah, S., Stemple, D.L., Rangini, Z., et al. (1996). Mutations affecting the development of the embryonic zebrafish brain. Development 126, 165-178. Shimizu, T., Numata, T., and Okada, Y. (2004). A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-) channel. Proceedings of the National Academy of Sciences of the United States of America 101, 6770-6773. Speake, T., Whitwell, C., Kajita, H., Majid, A., and Brown, P.D. (2001). Mechanisms of CSF Secretion by the Choroid Plexus. MICROSCOPY RESEARCH AND TECHNIQUE 52, 49-59 Strange, K., Emma, F., and Jackson, P.S. (1996). Cellular and molecular physiology of volume-sensitive anion channels. American Journal of Physiology 270, C711-C730. Strange, K., and Jackson, P.S. (1995). Swelling-activated organic osmolyte efflux: A new role for anion channels. Kidney International 48, 994—1003. Syeda, R., Qiu, Z., Dubin, A.E., Murthy, S.E., Florendo, M.N., Mason, D.E., Mathur, J., Cahalan, S.M., Peters, E.C., Montal, M., et al. (2016). LRRC8 Proteins Form Volume-Regulated Anion Channels that Sense Ionic Strength. Cell 164, 499-511. Therien, A.G., and Blostein, R. (2000). Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279, C541–C566. Van de Peer, Y., Taylor, J.S., Braasch, I., and Meyer, A. (2001). The ghost of selection past: rates of evolution and functional divergence of anciently duplicated genes. Journal of molecular evolution 53, 436-446. Voss, F.K., Ullrich, F., Munch, J., Lazarow, K., Lutter, D., Mah, N., Andrade-Navarro, M.A., von Kries, J.P., Stauber, T., and Jentsch, T.J. (2014). Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344, 634-638. Wehner, F., Olsen, H., Tinel, H., Kinne-Saffran, E., and Kinne, R.K. (2003). Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Reviews of physiology, biochemistry and pharmacology 148, 1-80. Xu, Y.J., Arneja, A.S., Tappia, P.S., and Dhalla, N.S. (2008). The potential health benefits of taurine in cardiovascular disease. Exp Clin Cardiol 13, 57-65. Yamada, T., Wondergem, R., Morrison, R., Yin, V.P., and Strange, K. (2016). Leucine-rich repeat containing protein LRRC8A is essential for swelling-activated Cl- currents and embryonic development in zebrafish. Physiological reports 4. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77928 | - |
dc.description.abstract | 目前已知滲透壓之調控途徑乃透過細胞內外之滲透質移動所調控。而滲透壓之調控除了對細胞體積之調節有著重要的貢獻以外,近幾年也有許多研究指出無機離子滲透壓調節機制對於胚胎之腦室型態發生有著密切的影響。然而,過去之研究指出有機滲透調節機制對於滲透壓之調節有著同樣重要的貢獻。因此我們便推測有機滲透調節機制亦參與胚胎發育過程中之型態發生。目前已知之有機滲透調控機制,主要透過體積調節陰離子通道 (volume-regulated anion channel,VRAC) 將牛磺酸 (taurine) 等有機滲透質送至細胞外來達到滲透壓調節之目的。過去本實驗室之研究已證實,若將斑馬魚胚胎中牛磺酸之關鍵合成酵素 (cysteine sulfinic acid decarboxylase) 調降表現時,會引起胚胎循環系統之發育異常,此一結果也間接地支持了有機滲透調節機制同樣影響著胚胎發育的假設。在近幾年之研究已證實,哺乳動物之細胞中 Leucine-rich repeat containing 8A (LRRC8A) 為構成與維持 VRAC 活性不可取代的重要組成蛋白,並因此將其另名為 SWELL1。
為了進一步證實有機滲透壓調節機制在胚胎型態發生中所扮演的角色,我們於斑馬魚之基因庫中找到了兩個可能為 swell1 之基因,並將其命名為 swell1a 與 swell1b。透過反轉錄聚合酶鏈鎖反應 (reverse transcription polymerase chain reaction) 與全胚胎原位雜合染色 (whole-mount in situ hybridization) ,可以發現此二基因於胚齡 0 至 12 hpf (hours post fertilization) 皆會廣泛的表現於整個胚胎體,且於 24 hpf 開始會集中表現於腦室 (ventricle),及近心臟之周邊組織。為解析此二基因於胚胎發育過程之功能,嗎啉基寡核苷酸 (morpholino oligonucleotide,MO) 被設計合成用以調降各基因之表現,結果皆可於 24 hpf 的胚胎中,觀察到腦室以及循環系統之型態發生出現明顯的異常。為了對腦室之發育異常進行定量比較,我們使用 TRITC-dextran 進行腦室成像並對腦室大小進行定量,結果顯示 swell1a 與 swell1b 被調降的胚胎,其腦室空腔顯著小於正常之胚胎。而針對 32 hpf 胚胎進行血管造影的結果亦顯示,swell1a 與 swell1b 受到調降的胚胎,其循環系統及血管網絡之發育顯著出現異常。此外,當 swell1a 與 swell1b 被調降時,胚胎之心跳速率也會顯著小於正常之胚胎。為了確認這些現象的確是因 swell1a 與 swell1b 被調降所導致,swell1a 與 swell1b 之 mRNA 與 MOs 被共同注射於胚胎,結果顯示此二基因之 mRNA 能隨劑量增加而顯著提升正常胚胎之比率。此外,因 VRAC 主要活動特性之一乃藉由輸出牛磺酸來進行滲透壓調節,為了驗證我們所觀察到之胚胎異常表現為VRAC滲透壓調控途徑受到干擾所導致,我們便於 E3 培養水中額外添加牛磺酸 (13mM),以回復胚胎細胞滲透壓之平衡,結果亦發現添加牛磺酸可顯著提升正常胚胎之比率。 綜觀上述之結果,我們的研究指出在斑馬魚基因體中存有兩個對應為哺乳類 LRRC8A 的同源基因,且兩基因皆為母系信息 (maternal message) 基因,並廣泛表現於斑馬魚胚胎發育階段,此二基因似乎功能相似,皆參與有機滲透壓調節機制。而若有其中一基因缺失,可能因總量不足致使有機滲透壓調節機轉受限,將會導致斑馬魚胚胎之腦室及循環系統之型態發育產生異常。 | zh_TW |
dc.description.abstract | The osmoregulation pathway is so far considered to be regulated by movement of osmolytes inside or outside of a cell. Despite the contribution of osmoregulation to the cell volume regulation, inorganic osmoregulation has also been reported to be attributed to the embryonic cerebral ventricular morphogenesis. Notwithstanding, previous studies has revealed the equivalent significance of organic osmoregulation to inorganic one. Therefore, we presume organic osmoregulation also participates in the morphogenesis of embryonic developmental process. As far as is known, the mechanism of organic osmoregulation is to transfer organic osmolytes such as taurine extracellularly through volume-regulated anion channel (VRAC). In the past, we have demonstrated that knockdown of cysteine sulfinic acid decarboxylase, a key rate limiting enzyme in de novo synthesis of taurine, resulted in aberration of embryonic cardiovascular system in zebrafish, which indirectly supports the hypothesis that organic osmoregulation also plays an important role on embryonic development. In recent years, leucine-rich repeat containing 8A (LRRC8A) has been found in mammals serving as the indispensable component for the volume-regulated anion channel (VRAC) activity and thereby named “SWELL1”.
To further confirm the roles of the mechanism of organic osmoregulation on embryonic morphogenesis, two potential swell1 genes were found in zebrafish data base and named swell1a and swell1b. Through reverse transcription polymerase chain reaction and whole-mount in situ hybridization, the RNA expression of two genes could be detected ubiquitously in 0-12 hours-post-fertilization (hpf) embryos and specifically in cerebral ventricles and parenchyma around the heart. To clarify the functions of the two genes in the embryonic development, morpholino oligonucleotides (MO) were used to manipulate gene expression. The result shows that knockdown of either swell1 gene lead to obvious cerebral ventricular and cardiovascular disorder in 24 hpf zebrafish embryos. To quantify the abnormality of the cerebral ventricular development, cerebral ventricles were visualized with TRITC-dextran and the sizes of the visualized cerebral ventricles were quantified for comparison. The outcome demonstrated smaller cerebral ventricles in the groups treated with swell1a or swell1b MO in comparison with normal zebrafish embryos. Angiography at 32 hpf also demonstrated aberrant development of circulatory system and vascular network on swell1a or swell1b knock-down embryos. In addition, swell1a or swell1b knock-down group also showed slower heart beat rate. To further confirm that the developmental aberration was due to the down regulation of swell1a or swell1b, swell1a or swell1b mRNA was co-injected with their corresponding swell1a or swell1b MO and found capable of raise the proportion of normality dose dependently. Furthermore, as one of the features of VRAC is regulate osmotic pressure by releasing taurine, to verify the aberrancy of knock-down embryos is due to disruption of pathway of VRAC osmoregulation, extra taurine (13mM) was added to E3 medium to remain isotonicity in embryonic cells. We found addition of taurine is able to rescue the normality proportion in knock-down embryos. In sum, our study introduces two zebrafish genes corresponding the LRRC8A gene in mammals. They are both maternal massage genes, widely expressing in the embryonic development. They seemly have similar functions in participation of organic osmoregulation. Loss of either gene results in serious cerebral ventricular and cardiovascular disorder due to the limitation of organic osmoregulation. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:37:36Z (GMT). No. of bitstreams: 1 ntu-106-R03626017-1.pdf: 3530902 bytes, checksum: abeb3b3ccd2afeb73069d2e37549970f (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 目錄
誌謝 i 摘要 ii ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 xi Chapter 1 文獻回顧 1 1.1 細胞體積之調節 (cell volume regulation) 1 1.2 體積調節陰離子通道 (volume regulatory anion channel, VRAC) 之發現 3 1.3 LRRC8 異聚體 (heteromers) 為 VRAC 之重要組成 5 1.4 有機滲透質 (organic osmolytes) 於 VRAC 之運輸 7 1.5 VRAC 對細胞凋亡 (apoptosis) 及癌細胞抗藥性之影響 7 1.6 滲透壓分子對細胞體積調節之貢獻與其對胚胎發育之影響 9 1.7 LRRC8A 對生物體生理功能之影響 10 1.8 斑馬魚為發育生物學相關研究之最重要的模式動物 11 Chapter 2 研究動機與目標 12 Chapter 3 材料與方法 14 3.1 斑馬魚品系與飼養環境 14 3.2 RNA萃取與反轉錄聚合酶鏈鎖反應 (reverse transcription polymerase chain reaction) 14 3.3 全胚胎原位雜合 (whole-mount in situ hybridization) 15 3.4 嗎啉基寡核苷酸(morpholino oligonucleotide, MO)設計與顯微注射 (microinjection) 16 3.5 基因全長克隆 (full-length cloning) 與 message RNA 合成 16 3.6 以外源之牛磺酸 (taurine) 回復 (rescue) swell1a/b 之基因抑制 (knockdown) 斑馬魚 17 3.7 腦室成像與腦室面積定量分析 17 3.8 血管造影分析 (angiography) 18 3.9 即時定量PCR (real-time polymerase chain reaction) 18 3.10 統計分析 18 Chapter 4 試驗結果 20 4.1 系統發生分析 (phylogenetic analysis) 20 4.2 swell1a 與 swell1b 於斑馬魚胚胎之基因表現圖譜 (expression pattern) 20 4.3 swell1a 與 swell1b 之基因抑制 (knockdown)斑馬魚 21 4.4 利用 swell1a/b mRNA 回復 (rescue) swell1a/b 之基因抑制 (knockdown) 斑馬魚 22 4.5 外源提供牛磺酸 (taurine) 回復 (rescue) swell1a/b 之基因抑制 (knockdown) 斑馬魚 23 4.6 腦室成像與其定量結果 24 4.7 斑馬魚胚胎心跳速率 (heart rate) 24 4.8 斑馬魚胚胎血管造影 (angiography) 24 4.9 swell1a/b 之調降對於斑馬魚胚胎血球分化之影響 25 Chapter 5 討論 42 Chapter 6 結論 47 參考文獻 48 口試問題回答與討論 60 | |
dc.language.iso | zh-TW | |
dc.title | 有機滲透壓調節對斑馬魚胚胎循環系統及腦室發育上之影響 | zh_TW |
dc.title | The Role of Organic Osmoregulation on the Circulation System and Brain Ventricle Development in Zebrafish Embryos | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳靜宜,管永恕,皇甫維君 | |
dc.subject.keyword | 斑馬魚,胚胎發育,有機滲透壓調節,LRRC8A,SWELL1,VRAC,VSOAC, | zh_TW |
dc.subject.keyword | zebrafish development,organic osmoregulation,LRRC8A,SWELL1,VRAC,VSOAC, | en |
dc.relation.page | 63 | |
dc.identifier.doi | 10.6342/NTU201702700 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-07 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-R03626017-1.pdf 目前未授權公開取用 | 3.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。