Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77925
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳玉如(Yu-Ju Chen)
dc.contributor.authorYu-Hsin Shihen
dc.contributor.author施玉芯zh_TW
dc.date.accessioned2021-07-11T14:37:32Z-
dc.date.available2022-08-31
dc.date.copyright2017-08-31
dc.date.issued2017
dc.date.submitted2017-08-09
dc.identifier.citation1 Zhu, J. et al. Analysis of serum haptoglobin fucosylation in hepatocellular carcinoma and liver cirrhosis of different etiologies. Journal of proteome research 13, 2986-2997, doi:10.1021/pr500128t (2014).
2 Tsuchiya, N. et al. Biomarkers for the early diagnosis of hepatocellular carcinoma. World journal of gastroenterology 21, 10573-10583, doi:10.3748/wjg.v21.i37.10573 (2015).
3 Sahani, D. V. et al. Autoimmune Pancreatitis Imaging Features. Radiology 233, 345-352 (2004).
4 Yin, H. et al. Mass-selected site-specific core-fucosylation of ceruloplasmin in alcohol-related hepatocellular carcinoma. Journal of proteome research 13, 2887-2896, doi:10.1021/pr500043k (2014).
5 Zhao, Y. J. et al. Tumor markers for hepatocellular carcinoma. Molecular and clinical oncology 1, 593-598, doi:10.3892/mco.2013.119 (2013).
6 Behne, T. et al. Biomarkers for hepatocellular carcinoma. International journal of hepatology 2012, 859076, doi:10.1155/2012/859076 (2012).
7 P., P. et al. Site-specific Glycoforms of Haptoglobin in Liver Cirrhosis and Hepatocellular Carcinoma. Molecular & Cellular Proteomics 12, 1281-1293, doi:10.1074/ (2013).
8 Meany, D. L. et al. Aberrant glycosylation associated with enzymes as cancer biomarkers. Clinical proteomics 8, 7 (2011).
9 Martin, T. et al. Anti-Cancer agents in medicinal chemistry (Formerly current medicinal chemistry-Anti-cancer agents). Anti-cancer agents in medicinal chemistry 10, 1-1 (2010).
10 Chandler, K. et al. Glycoprotein Disease Markers and Single Protein-omics. Molecular & Cellular Proteomics, doi:10.1074/ (2013).
11 Campion, B. et al. Presence of fucosylated triantennary, tetraantennary and pentaantennary glycans in transferrin synthesized by the human hepatocarcinoma cell line Hep G2. The FEBS Journal 184,405-413 (1989).
12 Vanderschaeghe, D. et al. Analysis of gamma-globulin mobility on routine clinical CE equipment: exploring its molecular basis and potential clinical utility. Electrophoresis 30, 2617-2623, doi:10.1002/elps.200900054 (2009).
13 Zhang, S. et al. N-linked glycan changes of serum haptoglobin beta chain in liver disease patients. Molecular bioSystems 7, 1621-1628, doi:10.1039/c1mb05020f (2011).
14 Dobryszycka, W. et al. Biological Functions of Haptoglobin - New Pieces to an Old Puzzle. European journal of clinical chemistry and clinical biochemistry 35, 647-654 (1997).
15 K., A. et al. Covalent structure of human haptoglobin a serine protease homolog. Proceedings of the National Academy of Sciences 77, 3388-3392 (1980).
16 Desaire, H. et al. Glycopeptide Analysis, Recent Developments and Applications. Molecular & Cellular Proteomics 12, 893-901, doi:10.1074/ (2013).
17 S., M. et al. Quantitative Liquid Chromatography-Mass Spectrometry-Multiple Reaction Monitoring (LC-MS-MRM) Analysis of Site-specific Glycoforms of Haptoglobin in Liver Disease. Molecular & Cellular Proteomics 12, 1294-1305, doi:10.1074/ (2013).
18 Wicher, K. B. et al. Haptoglobin, a hemoglobin-binding plasma protein, is present in bony fish and mammals but not in frog and chicken. Proceedings of the National Academy of Sciences of the United States of America 103, 4168-4173, doi:10.1073/pnas.0508723103 (2006).
19 Liu, X. E. et al. N-glycomic changes in hepatocellular carcinoma patients with liver cirrhosis induced by hepatitis B virus. Hepatology 46, 1426-1435, doi:10.1002/hep.21855 (2007).
20 Goldman, R. et al. Detection of hepatocellular carcinoma using glycomic analysis. Clinical Cancer Research 15, 1808-1813, doi:10.1158/1078-0432.CCR-07-5261 (2009).
21 Goldman, R. et al. Quantification of fucosylated hemopexin and complement factor H in plasma of patients with liver disease. Analytical chemistry 86, 10716-10723, doi:10.1021/ac502727s (2014).
22 John F. et al. Synthesis and Characterization of.. Chem. Mater (1996).
23 Richard D. Smith. et al. Probability-Based Evaluation of Peptide and Protein Identifications from Tandem Mass Spectrometry and SEQUEST Analysis. Journal of Proteome Research 4, 53-62 (2004).
24 Yoo, J. S. et al. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods. Mass spectrometry reviews 34, 148-165, doi:10.1002/mas.21428 (2015).
25 Brentnall, T. A. et al. Mass spectrometry based glycoproteomics--from a proteomics perspective. Molecular & Cellular Proteomics 10, R110 003251, doi:10.1074/mcp.R110.003251 (2011).
26 Sethi, M. K. et al. Comparative N-glycan profiling of colorectal cancer cell lines reveals unique bisecting GlcNAc and alpha-2,3-linked sialic acid determinants are associated with membrane proteins of the more metastatic/aggressive cell lines. Journal of proteome research 13, 277-288, doi:10.1021/pr400861m (2014).
27 Nakagawa, T. et al. Glycomic analysis of alpha-fetoprotein L3 in hepatoma cell lines and hepatocellular carcinoma patients. Journal pf Proteome Research 7, 2222-2233 (2007).
28 Mehta, A. et al. Increased levels of tetra-antennary N-linked glycan but not core fucosylation are associated with hepatocellular carcinoma tissue. Cancer Epidemiol Biomarkers Prev 21, 925-933, doi:10.1158/1055-9965.EPI-11-1183 (2012).
29 Alley, W. R., Jr. et al. N-linked glycan structures and their expressions change in the blood sera of ovarian cancer patients. Journal of proteome research 11, 2282-2300, doi:10.1021/pr201070k (2012).
30 Goldman, R. et al. Glycoprotein Disease Markers and Single Protein-omics. Molecular & Cellular Proteomics 12, 836-845, doi:10.1074/ (2013).
31 Yan, J. et al. Selective enrichment of glycopeptides/phosphopeptides using porous titania microspheres. Chemical Communications 46, 5488-5490, doi:10.1039/c000094a (2010).
32 Larsen, M. R. et al.. Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Molecular & cellular proteomics 6, 1778-1787, doi:10.1074/ (2007).
33 Tsokos, M. et al. Lectin binding patterns of alveolar epithelium and subepithelial seromucous glands of the bronchi in sepsis and controls – an approach to characterize the non-specific immunological response of the human lung to sepsis. Virchows Archiv 440, 181-186, doi:10.1007/s004280100488 (2001).
34 Alpert, A. J. et al. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. Journal of chromatography 499, 177-196 (1990).
35 Chen, C. C. et al. Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst 139, 688-704, doi:10.1039/c3an01813j (2014).
36 Quan, L. et al. CID,ETD and HCD Fragmentation to Study Protein Post-Translational Modifications. Modern Chemistry & Applications, doi:10.4172/mca.1000e102 (2012).
37 Sullivan, B. et al. Selective detection of glycopeptides on ion trap mass spectrometers. Analytical chemistry 76, 3112-3118 (2004).
38 Hashii, N. et al. Identification of glycoproteins carrying a target glycan-motif by liquid chromatography/multiple-stage mass spectrometry: identification of Lewis x-conjugated glycoproteins in mouse kidney. Journal of proteome research 8, 3415-3429 (2009).
39 Peterman, S. M. et al. A novel approach for identification and characterization of glycoproteins using a hybrid linear ion trap/FT-ICR mass spectrometer. Journal of the American Society for Mass Spectrometry 17, 168-179 (2006).
40 Olsen, J. V. et al. Higher-energy C-trap dissociation for peptide modification analysis. Nature methods 4, 709-712 (2007).
41 Alley, W. R. et al. Characterization of glycopeptides by combining collision‐induced dissociation and electron‐transfer dissociation mass spectrometry data. Rapid Communications in Mass Spectrometry 23, 161-170 (2009).
42 Ronsein, G. E. et al. Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics. Journal of proteomics 113, 388-399, doi:10.1016/j.jprot.2014.10.017 (2015).
43 Rauniyar, N. et al. Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry. International journal of molecular sciences 16, 28566-28581, doi:10.3390/ijms161226120 (2015).
44 Liu, X., et al. Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. Journal of Magnetism and Magnetic Materials 270, 1-6, doi:10.1016/j.jmmm.2003.07.006 (2004).
45 Lynn, K. S. et al. MAGIC: an automated N-linked glycoprotein identification tool using a Y1-ion pattern matching algorithm and in silico MS2 approach. Analytical chemistry 87, 2466-2473, doi:10.1021/ac5044829 (2015).
46 Fan, J. et al. MRMaid: The SRM Assay Design Tool for Arabidopsis and Other Species. Frontiers in plant science 3, 164, doi:10.3389/fpls.2012.00164 (2012).
47 C., W.-J. et al. Single glycoprotein-omics of Liver Disease Marker by Nanoprobe-based Affinity Mass Spectrometry (Master Thesis). Natuional Taiwan Normal University Library (2015).
48 Lin, P. C. et al. Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2, 485-489, doi:10.1002/smll.200500387 (2006).
49 Andersen, C. B. et al. Structure of the haptoglobin-haemoglobin complex. Nature 489, 456-459, doi:10.1038/nature11369 (2012).
50 Gallien, S. et al. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Molecular & cellular proteomics 11, 1709-1723, doi:10.1074/mcp.O112.019802 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77925-
dc.description.abstract基於蛋白質N型醣基化修飾的疾病生物標的已廣受積極探討,因為醣基化的表現量與其結構異質性之變異已與包含癌症等幾種疾病有關。此研究中,我們嘗試針對肝癌(HCC)的生物標的蛋白紅血球結合蛋白(Haptoglobin,Hp)中的位點特異性糖基化進行量化。我們的團隊於先前已經利用非靶向質譜方法(untargeted-MS)和生物資訊分析找出可能在肝癌患者中具有表現上升的Hp特殊醣型,為了驗證這些可能的醣型,我們開發了一種奈米探針結合質譜的技術,如多重反應監測(MRM-MS)和並行反應監測(PRM-MS),以應用於醣胜肽的定量。利用以血紅蛋白修飾的磁性奈米探針(MNP@Hb)從血清中純化出Hp,經由酵素水解消化後,再進行親水性作用層析法(Hydrophilic interaction chromatography,HILIC) 將醣胜肽做進一步分離與濃縮。為了確保醣胜肽分析的正確性,在二次質譜的圖譜中,除了判斷來自完整醣胜肽的Y1離子(胜肽+ HexNAc)和醣碎片離子(HexNAc與HexHexNAc)以外,同時也會監測來自胜肽主鏈上斷碎的b和y離子。雖然MRM-MS可以獲得良好的線性(r2 = 0.950〜0.990)和靈敏度(62.5 ng Hp),但其偵測質量範圍使得對於檢測高分子量範圍的糖胜肽(荷質比大於1000)分析受限。因此,我們利用具有更廣泛質量範圍的PRM-MS技術,分析Hp非醣胜肽可以得到良好的線性(r2 = 0.996〜0.997)及精確度(CV = 14.7%),進一步應用此方法來定量肝臟疾病中的104條Hp醣胜肽,其中12個標的在一次質譜圖中具有良好的層析譜圖與二次質譜圖中,其醣碎片離子,呈現好的定量共析曲線。初步分析20個臨床血清樣本(各含5位具有高濃度或低濃度甲型胎兒蛋白的肝癌、肝硬化、與B型肝炎帶原者的病人),我們發現在Hp的N184位點上具有核心岩藻糖基與三岩藻糖基化三分支醣型結構在肝癌患者中顯著升高(含低濃度AFP之肝癌患者)。為了確定此結果,未來將持續增加樣本數來確認分析趨勢。zh_TW
dc.description.abstractDisease biomarkers based on N-glycosylation profiles are explored actively because changes in the aberrations in glycosylation have been associated with several diseases, including cancer. Previously, our group has discovered potential HCC-elevated glycoforms through identification of glycosylation profiles of Haptoglobin (Hp) by untargeted mass spectrometry (MS) analysis and quantitative comparison across Hepatitis B virus (HBV), liver cirrhosis (LC) and Hepatocellular carcinoma (HCC) patients. The result revealed confident identification of 879 glycopeptides and 210 glycopeptides that show differential expression in HCC compared to HBV and LC. However, due to inferior sensitivity and limited duty cycle of untargeted MS methods, we switched to more robust targeted MS methods to verify our results.
To confirm the potential utility of Haptoglobin (Hp) as a biomarker for hepatocellular carcinoma (HCC), in this work, we attempted to develop a targeted mass spectrometry approach to quantify site-specific glycosylation in selected glycoforms in Hp. Specifically, we developed a nanoprobe-based assay coupled to targeted MS methods, including multiple reaction monitoring (MRM-MS) and parallel reaction monitoring (PRM-MS) for multiplexed quantification of glycopeptides. Magnetic nanoprobes functionalized with hemoglobin (MNP@Hb) were used to purify haptoglobin (Hp) from serum. Following enzyme digestion, glycopeptides were enriched using hydrophilic interaction chromatography (HILIC). To ensure correct glycopeptides analysis, b and y ions from the peptide backbone were monitored, in addition to Y1 ion (peptide + HexNAc) and oxonium ions (HexNAc and HexHexNac). The oxonium ions were much more intense than the Y1, b and y ions, making oxonium ions suitable quantifiers, while the latter as qualifiers. On the method development using oxonium ions, the MRM-MS can get good linearity (r2 = 0.950~0.990) and sensitivity (62.5 ng Hp). However, its limited mass range posed a problem with detecting high molecular weight glycopeptides (m/z>1000). Thus, we took advantage of the wider mass range of PRM-MS, where we obtained good linearity (r2 = 0.996~0.997) and precision (CV=14.7%) for an Hp non-glycopeptide. We applied this method to quantify 104 Hp glycopeptides in liver diseases, 12 of which have good chromatographic trace and co-elution profile. Using clinical samples (n=5 each for high-HCC, low-HCC, LC and HBV), we found that a core-fucosylated form and tri-fucosylated tri-antennary form were significantly elevated in HCC, including low-AFP HCC. To confirm the result, analysis on a larger sample cohort is underway.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:37:32Z (GMT). No. of bitstreams: 1
ntu-106-R04223120-1.pdf: 9250255 bytes, checksum: 02184051e26f8de12f0415cf14f58833 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsTable Content
謝誌 II
摘要 I
Abstract III
Table Content V
List of figure VIII
List of Table XIII
Chapter 1 Introduction 1
1.1 Progression of Hepatocellular Carcinoma (HCC) and Serum Biomarkers 1
1.2 Glycosylation in Liver Diseases 4
1.3 Haptoglobin (Hp) 6
1.4 Glycopeptide Analysis 7
1.4.1 Different Levels of Glycopeptide Analysis 7
1.4.2 Glycopeptide Enrichment Strategies 9
1.4.3 LC-MS/MS Analysis of glycopeptides for identification 11
1.5 Tandem Mass Spectrometry Quantification Techniques 12
1.5.1 Multiple Reaction Monitoring-Mass Spectrometry (MRM-MS) 13
1.5.2 Parallel Reaction Monitoring Mass Spectrometry (PRM-MS) 14
1.6 Objective 15
Chapter 2 Materials and Methods 17
2.1 Materials 17
2.1.1 Chemicals and Materials 17
2.1.2 Human Serum Samples 20
2.2 Method 21
2.2.1 Synthesis of Hemoglobin Conjugated Magnetic Nanoparticles (MNP@Hb) 21
2.2.2 Enrichment of Hp from PBS buffer and human serum 22
2.2.3 Hb@MNP enrichment efficiency evaluation using SDS-PAGE 22
2.2.4 Digestion of Haptoglobin 23
2.2.5 Standard Haptoglobin Calibration Curve 23
2.2.6 Glycopeptide Enrichment by Hydrophilic Interaction Chromatography (HILIC) 23
2.2.7 Synthetic Peptide dimethyl-labeling for standard of Tandem Mass-based Quantification 24
2.2.8 Q-TOF LC-MS/MS analysis 24
2.2.9 Q-Trap LC-MS/MS analysis 25
2.2.10 Orbitrap LC-MS/MS analysis 25
2.2.11 Data analysis 27
2.2.11.1 Glycopeptide Identification by MAGIC software 27
2.2.11.2 Glycopeptide Quantification by Skyline software 28
Chapter 3 Results and Discussion 29
3.1. Glycosylation Profiling of Haptoglobin 29
3.1.1 Enrichment efficiency for standard and serum Hp using MNP@Hb 30
3.1.2 Identification of glycopeptides of standard Hp using Q-TOF LC-MS/MS and MAGIC software 31
3.2 Development of Targeted MS/MS strategy for glycopeptide quantification 33
3.2.1 Transition selection and optimization 33
3.2.2 Validation of MRM-MS method for glycopeptide quantification 35
3.2.3 Evaluation of PRM-MS method for glycopeptide quantification 36
3.3 Glycosylation Profiling in Liver Diseases by PRM-MS 38
3.3.1 Selection of glycopeptide candidates and transitions for PRM-MS quantification 38
3.3.2 Evaluation of clinical utility of glycopeptides by PRM-MS quantification 40
Conclusion 44
Reference 47
Figures 52
Tables 101
Appendix 109
dc.language.isoen
dc.title以​多重反應監測質譜法​定量分析​肝癌​之​醣蛋白生物標​記zh_TW
dc.titleMultiple reaction monitoring mass spectrometry for targeted quantitation of glycoprotein biomarker in hepatocellular carcinomaen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee戴桓青(Tai, Hwan-Ching),陳培哲(Pei-Jer Chen)
dc.subject.keyword肝癌,甲型胎兒蛋白(AFP),紅血球結合蛋白 (Hp),親水性作用層析法 (HILIC),多重反應監測(MRM-MS),並行反應監測(PRM-MS),zh_TW
dc.subject.keywordHeptacellular Carcinoma,α-Fetoprotein (AFP),Haptoglobin (Hp),Hydrophilic interaction chromatography (HILIC),Mutiple reaction monitoring mass spectrometry (MRM-MS),Parallel reaction monitoring mass spectrometry (PRM-MS),en
dc.relation.page111
dc.identifier.doi10.6342/NTU201701515
dc.rights.note有償授權
dc.date.accepted2017-08-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-106-R04223120-1.pdf
  目前未授權公開取用
9.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved