請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77924
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 翁啟惠(Chi-Huey Wong) | |
dc.contributor.author | Tai-Du Lin | en |
dc.contributor.author | 林泰都 | zh_TW |
dc.date.accessioned | 2021-07-11T14:37:31Z | - |
dc.date.available | 2022-08-30 | |
dc.date.copyright | 2017-08-30 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-09 | |
dc.identifier.citation | 1. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., and Bray, F. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136, E359-386
2. TAIWAN., H. P. A. M. O. H. A. W. (2017) CANCER REGISTRY ANNUAL REPORT, 2014 TAIWAN. 2016 Ed. 3. Howlader N, N. A., Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA. (2016) SEER Cancer Statistics Review, 1975-2013, National Cancer Institute. . 4. Mishra, A., and Verma, M. (2010) Cancer biomarkers: are we ready for the prime time? Cancers (Basel) 2, 190-208 5. Reiter, W., Stieber, P., Reuter, C., Nagel, D., Cramer, C., Pahl, H., and Fateh-Moghadam, A. (1997) Prognostic value of preoperative serum levels of CEA, CA 19-9 and CA 72-4 in gastric carcinoma. Anticancer Res 17, 2903-2906 6. Marrelli, D., Pinto, E., De Stefano, A., Farnetani, M., Garosi, L., and Roviello, F. (2001) Clinical utility of CEA, CA 19-9, and CA 72-4 in the follow-up of patients with resectable gastric cancer. Am J Surg 181, 16-19 7. Wu, H. H., Lin, W. C., and Tsai, K. W. (2014) Advances in molecular biomarkers for gastric cancer: miRNAs as emerging novel cancer markers. Expert Rev Mol Med 16, e1 8. Terasawa, T., Nishida, H., Kato, K., Miyashiro, I., Yoshikawa, T., Takaku, R., and Hamashima, C. (2014) Prediction of gastric cancer development by serum pepsinogen test and Helicobacter pylori seropositivity in Eastern Asians: a systematic review and meta-analysis. PLoS One 9, e109783 9. Huang, Y. K., Yu, J. C., Kang, W. M., Ma, Z. Q., Ye, X., Tian, S. B., and Yan, C. (2015) Significance of Serum Pepsinogens as a Biomarker for Gastric Cancer and Atrophic Gastritis Screening: A Systematic Review and Meta-Analysis. PLoS One 10, e0142080 10. Tatsuta, M., Itoh, T., Okuda, S., Yamamura, H., Baba, M., and Tamura, H. (1980) Carcinoembryonic antigen in gastric juice as an aid in diagnosis of early gastric cancer. Cancer 46, 2686-2692 11. Kim, D. Y., Kim, H. R., Shim, J. H., Park, C. S., Kim, S. K., and Kim, Y. J. (2000) Significance of serum and tissue carcinoembryonic antigen for the prognosis of gastric carcinoma patients. J Surg Oncol 74, 185-192 12. Koprowski, H., Steplewski, Z., Mitchell, K., Herlyn, M., Herlyn, D., and Fuhrer, P. (1979) Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet 5, 957-971 13. Magnani, J. L., Steplewski, Z., Koprowski, H., and Ginsburg, V. (1983) Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res 43, 5489-5492 14. Li, Y., Yang, Y., Lu, M., and Shen, L. (2011) Predictive value of serum CEA, CA19-9 and CA72.4 in early diagnosis of recurrence after radical resection of gastric cancer. Hepatogastroenterology 58, 2166-2170 15. Louhimo, J., Alfthan, H., Stenman, U. H., and Haglund, C. (2004) Serum HCG beta and CA 72-4 are stronger prognostic factors than CEA, CA 19-9 and CA 242 in pancreatic cancer. Oncology 66, 126-131 16. Yu, J., Zhang, S., and Zhao, B. (2016) Differences and correlation of serum CEA, CA19-9 and CA72-4 in gastric cancer. Mol Clin Oncol 4, 441-449 17. Cainap, C., Nagy, V., Gherman, A., Cetean, S., Laszlo, I., Constantin, A. M., and Cainap, S. (2015) Classic tumor markers in gastric cancer. Current standards and limitations. Clujul Med 88, 111-115 18. Kitahara, F., Kobayashi, K., Sato, T., Kojima, Y., Araki, T., and Fujino, M. A. (1999) Accuracy of screening for gastric cancer using serum pepsinogen concentrations. Gut 44, 693-697 19. Nies, M. K., Ivy, D. D., and Everett, A. D. (2014) The untapped potential of proteomic analysis in pediatric pulmonary hypertension. Proteomics Clin Appl 8, 862-874 20. Rifai, N., Gillette, M. A., and Carr, S. A. (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24, 971-983 21. Parker, C. E., and Borchers, C. H. (2014) Mass spectrometry based biomarker discovery, verification, and validation--quality assurance and control of protein biomarker assays. Mol Oncol 8, 840-858 22. Chung, L., and Baxter, R. C. (2012) Breast cancer biomarkers: proteomic discovery and translation to clinically relevant assays. Expert Rev Proteomics 9, 599-614 23. de Wit, M., Fijneman, R. J., Verheul, H. M., Meijer, G. A., and Jimenez, C. R. (2013) Proteomics in colorectal cancer translational research: biomarker discovery for clinical applications. Clin Biochem 46, 466-479 24. Indovina, P., Marcelli, E., Pentimalli, F., Tanganelli, P., Tarro, G., and Giordano, A. (2013) Mass spectrometry-based proteomics: the road to lung cancer biomarker discovery. Mass Spectrom Rev 32, 129-142 25. Goo, Y. A., and Goodlett, D. R. (2010) Advances in proteomic prostate cancer biomarker discovery. J Proteomics 73, 1839-1850 26. Craven, R. A., Vasudev, N. S., and Banks, R. E. (2013) Proteomics and the search for biomarkers for renal cancer. Clin Biochem 46, 456-465 27. Zhang, Z., Bast, R. C., Jr., Yu, Y., Li, J., Sokoll, L. J., Rai, A. J., Rosenzweig, J. M., Cameron, B., Wang, Y. Y., Meng, X. Y., Berchuck, A., Van Haaften-Day, C., Hacker, N. F., de Bruijn, H. W., van der Zee, A. G., Jacobs, I. J., Fung, E. T., and Chan, D. W. (2004) Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 64, 5882-5890 28. Anderson, N. L., and Anderson, N. G. (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1, 845-867 29. Simpson, R. J., Bernhard, O. K., Greening, D. W., and Moritz, R. L. (2008) Proteomics-driven cancer biomarker discovery: looking to the future. Curr Opin Chem Biol 12, 72-77 30. Ahn, S. M., and Simpson, R. J. (2007) Body fluid proteomics: Prospects for biomarker discovery. Proteomics Clin Appl 1, 1004-1015 31. Quirk, J. G., Jr., Brunson, G. L., Long, C. A., Bannon, G. A., Sanders, M. M., and O'Brien, T. J. (1988) CA 125 in tissues and amniotic fluid during pregnancy. Am J Obstet Gynecol 159, 644-649 32. Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, A., Kampf, C., Sjostedt, E., Asplund, A., Olsson, I., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., Alm, T., Edqvist, P. H., Berling, H., Tegel, H., Mulder, J., Rockberg, J., Nilsson, P., Schwenk, J. M., Hamsten, M., von Feilitzen, K., Forsberg, M., Persson, L., Johansson, F., Zwahlen, M., von Heijne, G., Nielsen, J., and Ponten, F. (2015) Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 33. Sethi, M. K., Thaysen-Andersen, M., Kim, H., Park, C. K., Baker, M. S., Packer, N. H., Paik, Y. K., Hancock, W. S., and Fanayan, S. (2015) Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis. J Proteomics 126, 54-67 34. Wang, W., Jia, H. L., Huang, J. M., Liang, Y. C., Tan, H., Geng, H. Z., Guo, L. Y., and Yao, S. Z. (2014) Identification of biomarkers for lymph node metastasis in early-stage cervical cancer by tissue-based proteomics. Br J Cancer 110, 1748-1758 35. Muraoka, S., Kume, H., Watanabe, S., Adachi, J., Kuwano, M., Sato, M., Kawasaki, N., Kodera, Y., Ishitobi, M., Inaji, H., Miyamoto, Y., Kato, K., and Tomonaga, T. (2012) Strategy for SRM-based verification of biomarker candidates discovered by iTRAQ method in limited breast cancer tissue samples. J Proteome Res 11, 4201-4210 36. Lin, L. L., Huang, H. C., and Juan, H. F. (2012) Discovery of biomarkers for gastric cancer: a proteomics approach. J Proteomics 75, 3081-3097 37. Xia, Y. J., Ma, Y. Y., He, X. J., Wang, H. J., Ye, Z. Y., and Tao, H. Q. (2011) Suppression of selenium-binding protein 1 in gastric cancer is associated with poor survival. Hum Pathol 42, 1620-1628 38. Bai, Z., Ye, Y., Liang, B., Xu, F., Zhang, H., Zhang, Y., Peng, J., Shen, D., Cui, Z., Zhang, Z., and Wang, S. (2011) Proteomics-based identification of a group of apoptosis-related proteins and biomarkers in gastric cancer. Int J Oncol 38, 375-383 39. Kikuta, K., Kubota, D., Saito, T., Orita, H., Yoshida, A., Tsuda, H., Suehara, Y., Katai, H., Shimada, Y., Toyama, Y., Sato, K., Yao, T., Kaneko, K., Beppu, Y., Murakami, Y., Kawai, A., and Kondo, T. (2012) Clinical proteomics identified ATP-dependent RNA helicase DDX39 as a novel biomarker to predict poor prognosis of patients with gastrointestinal stromal tumor. J Proteomics 75, 1089-1098 40. Jung, J. H., Kim, H. J., Yeom, J., Yoo, C., Shin, J., Yoo, J., Kang, C. S., and Lee, C. (2012) Lowered expression of galectin-2 is associated with lymph node metastasis in gastric cancer. J Gastroenterol 47, 37-48 41. Balluff, B., Elsner, M., Kowarsch, A., Rauser, S., Meding, S., Schuhmacher, C., Feith, M., Herrmann, K., Rocken, C., Schmid, R. M., Hofler, H., Walch, A., and Ebert, M. P. (2010) Classification of HER2/neu status in gastric cancer using a breast-cancer derived proteome classifier. J Proteome Res 9, 6317-6322 42. Chen, C. D., Wang, C. S., Huang, Y. H., Chien, K. Y., Liang, Y., Chen, W. J., and Lin, K. H. (2007) Overexpression of CLIC1 in human gastric carcinoma and its clinicopathological significance. Proteomics 7, 155-167 43. Uhlen, M., Bjorling, E., Agaton, C., Szigyarto, C. A., Amini, B., Andersen, E., Andersson, A. C., Angelidou, P., Asplund, A., Asplund, C., Berglund, L., Bergstrom, K., Brumer, H., Cerjan, D., Ekstrom, M., Elobeid, A., Eriksson, C., Fagerberg, L., Falk, R., Fall, J., Forsberg, M., Bjorklund, M. G., Gumbel, K., Halimi, A., Hallin, I., Hamsten, C., Hansson, M., Hedhammar, M., Hercules, G., Kampf, C., Larsson, K., Lindskog, M., Lodewyckx, W., Lund, J., Lundeberg, J., Magnusson, K., Malm, E., Nilsson, P., Odling, J., Oksvold, P., Olsson, I., Oster, E., Ottosson, J., Paavilainen, L., Persson, A., Rimini, R., Rockberg, J., Runeson, M., Sivertsson, A., Skollermo, A., Steen, J., Stenvall, M., Sterky, F., Stromberg, S., Sundberg, M., Tegel, H., Tourle, S., Wahlund, E., Walden, A., Wan, J., Wernerus, H., Westberg, J., Wester, K., Wrethagen, U., Xu, L. L., Hober, S., and Ponten, F. (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4, 1920-1932 44. Bjorling, E., Lindskog, C., Oksvold, P., Linne, J., Kampf, C., Hober, S., Uhlen, M., and Ponten, F. (2008) A web-based tool for in silico biomarker discovery based on tissue-specific protein profiles in normal and cancer tissues. Mol Cell Proteomics 7, 825-844 45. Wallin, E., and von Heijne, G. (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7, 1029-1038 46. Ludwig, J. A., and Weinstein, J. N. (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5, 845-856 47. Overington, J. P., Al-Lazikani, B., and Hopkins, A. L. (2006) How many drug targets are there? Nat Rev Drug Discov 5, 993-996 48. Smith, S. M. (2011) Strategies for the purification of membrane proteins. Methods in molecular biology 681, 485-496 49. Schindler, J., and Nothwang, H. G. (2006) Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. Proteomics 6, 5409-5417 50. Scheurer, S. B., Rybak, J. N., Roesli, C., Brunisholz, R. A., Potthast, F., Schlapbach, R., Neri, D., and Elia, G. (2005) Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics 5, 2718-2728 51. Wisniewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis. Nature methods 6, 359-362 52. Yu, Y. Q., Gilar, M., and Gebler, J. C. (2004) A complete peptide mapping of membrane proteins: a novel surfactant aiding the enzymatic digestion of bacteriorhodopsin. Rapid communications in mass spectrometry : RCM 18, 711-715 53. Norris, J. L., Porter, N. A., and Caprioli, R. M. (2003) Mass spectrometry of intracellular and membrane proteins using cleavable detergents. Analytical chemistry 75, 6642-6647 54. Washburn, M. P., Wolters, D., and Yates, J. R., 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature biotechnology 19, 242-247 55. Wisniewski, J. R., Zougman, A., and Mann, M. (2009) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. Journal of proteome research 8, 5674-5678 56. Manadas, B., English, J. A., Wynne, K. J., Cotter, D. R., and Dunn, M. J. (2009) Comparative analysis of OFFGel, strong cation exchange with pH gradient, and RP at high pH for first-dimensional separation of peptides from a membrane-enriched protein fraction. Proteomics 9, 5194-5198 57. Stein, D. R., Hu, X., McCorrister, S. J., Westmacott, G. R., Plummer, F. A., Ball, T. B., and Carpenter, M. S. (2013) High pH reversed-phase chromatography as a superior fractionation scheme compared to off-gel isoelectric focusing for complex proteome analysis. Proteomics 13, 2956-2966 58. Lu, X., and Zhu, H. (2005) Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol Cell Proteomics 4, 1948-1958 59. Han, C. L., Chien, C. W., Chen, W. C., Chen, Y. R., Wu, C. P., Li, H., and Chen, Y. J. (2008) A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol Cell Proteomics 7, 1983-1997 60. Han, C. L., Chen, J. S., Chan, E. C., Wu, C. P., Yu, K. H., Chen, K. T., Tsou, C. C., Tsai, C. F., Chien, C. W., Kuo, Y. B., Lin, P. Y., Yu, J. S., Hsueh, C., Chen, M. C., Chan, C. C., Chang, Y. S., and Chen, Y. J. (2011) An informatics-assisted label-free approach for personalized tissue membrane proteomics: case study on colorectal cancer. Molecular & cellular proteomics : MCP 10, M110 003087 61. Chen, Y., Liu, L., Fu, H., Wei, C., and Jin, Q. (2014) Comparative proteomic analysis of outer membrane vesicles from Shigella flexneri under different culture conditions. Biochem Biophys Res Commun 453, 696-702 62. Raimondo, F., Corbetta, S., Savoia, A., Chinello, C., Cazzaniga, M., Rocco, F., Bosari, S., Grasso, M., Bovo, G., Magni, F., and Pitto, M. (2015) Comparative membrane proteomics: a technical advancement in the search of renal cell carcinoma biomarkers. Mol Biosyst 11, 1708-1716 63. Yang, Y., Toy, W., Choong, L. Y., Hou, P., Ashktorab, H., Smoot, D. T., Yeoh, K. G., and Lim, Y. P. (2012) Discovery of SLC3A2 cell membrane protein as a potential gastric cancer biomarker: implications in molecular imaging. J Proteome Res 11, 5736-5747 64. Guo, T., Fan, L., Ng, W. H., Zhu, Y., Ho, M., Wan, W. K., Lim, K. H., Ong, W. S., Lee, S. S., Huang, S., Kon, O. L., and Sze, S. K. (2012) Multidimensional identification of tissue biomarkers of gastric cancer. J Proteome Res 11, 3405-3413 65. Gao, W., Xu, J., Wang, F., Zhang, L., Peng, R., Shu, Y., Wu, J., Tang, Q., and Zhu, Y. (2015) Plasma membrane proteomic analysis of human Gastric Cancer tissues: revealing flotillin 1 as a marker for Gastric Cancer. BMC Cancer 15, 367 66. Chen, B., Luo, Q. C., Chen, J. B., Lin, L. E., Luo, M. X., Ren, H. Y., Chen, P. Q., and Shi, L. G. (2016) Efficient isolation and proteomic analysis of cell plasma membrane proteins in gastric cancer reveal a novel differentiation and progression related cell surface marker, R-cadherin. Tumour Biol 67. Chen, B., Luo, Q. C., Chen, J. B., Lin, L. E., Luo, M. X., Ren, H. Y., Chen, P. Q., and Shi, L. G. (2016) Efficient isolation and proteomic analysis of cell plasma membrane proteins in gastric cancer reveal a novel differentiation and progression related cell surface marker, R-cadherin. Tumour Biol 37, 11775-11787 68. Chambers, A. G., Percy, A. J., Yang, J., Camenzind, A. G., and Borchers, C. H. (2013) Multiplexed quantitation of endogenous proteins in dried blood spots by multiple reaction monitoring-mass spectrometry. Mol Cell Proteomics 12, 781-791 69. Mermelekas, G., Vlahou, A., and Zoidakis, J. (2015) SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine. Expert Rev Mol Diagn 15, 1441-1454 70. Steiner, C., Tille, J. C., Lamerz, J., Kux van Geijtenbeek, S., McKee, T. A., Venturi, M., Rubbia-Brandt, L., Hochstrasser, D., Cutler, P., Lescuyer, P., and Ducret, A. (2015) Quantification of HER2 by Targeted Mass Spectrometry in Formalin-Fixed Paraffin-Embedded (FFPE) Breast Cancer Tissues. Mol Cell Proteomics 14, 2786-2799 71. R. W. Kondrat, G. A. M., R. G. Cooks (1978) Multiple reaction monitoring in mass spectrometry/mass spectrometry for direct analysis of complex mixtures. Anal. Chem 50, pp 2017–2021 72. Whiteaker, J. R., Zhang, H., Zhao, L., Wang, P., Kelly-Spratt, K. S., Ivey, R. G., Piening, B. D., Feng, L. C., Kasarda, E., Gurley, K. E., Eng, J. K., Chodosh, L. A., Kemp, C. J., McIntosh, M. W., and Paulovich, A. G. (2007) Integrated pipeline for mass spectrometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer. J Proteome Res 6, 3962-3975 73. Keshishian, H., Addona, T., Burgess, M., Mani, D. R., Shi, X., Kuhn, E., Sabatine, M. S., Gerszten, R. E., and Carr, S. A. (2009) Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 8, 2339-2349 74. Whiteaker, J. R., Lin, C., Kennedy, J., Hou, L., Trute, M., Sokal, I., Yan, P., Schoenherr, R. M., Zhao, L., Voytovich, U. J., Kelly-Spratt, K. S., Krasnoselsky, A., Gafken, P. R., Hogan, J. M., Jones, L. A., Wang, P., Amon, L., Chodosh, L. A., Nelson, P. S., McIntosh, M. W., Kemp, C. J., and Paulovich, A. G. (2011) A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol 29, 625-634 75. Anderson, L., and Hunter, C. L. (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5, 573-588 76. Picotti, P., and Aebersold, R. (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9, 555-566 77. Fortin, T., Salvador, A., Charrier, J. P., Lenz, C., Lacoux, X., Morla, A., Choquet-Kastylevsky, G., and Lemoine, J. (2009) Clinical quantitation of prostate-specific antigen biomarker in the low nanogram/milliliter range by conventional bore liquid chromatography-tandem mass spectrometry (multiple reaction monitoring) coupling and correlation with ELISA tests. Mol Cell Proteomics 8, 1006-1015 78. Prestigiacomo, A. F., and Stamey, T. A. (1995) Clinical usefulness of free and complexed PSA. Scand J Clin Lab Invest Suppl 221, 32-34 79. Pavlou, M. P., Dimitromanolakis, A., Martinez-Morillo, E., Smid, M., Foekens, J. A., and Diamandis, E. P. (2014) Integrating meta-analysis of microarray data and targeted proteomics for biomarker identification: application in breast cancer. J Proteome Res 13, 2897-2909 80. Naboulsi, W., Megger, D. A., Bracht, T., Kohl, M., Turewicz, M., Eisenacher, M., Voss, D. M., Schlaak, J. F., Hoffmann, A. C., Weber, F., Baba, H. A., Meyer, H. E., and Sitek, B. (2016) Quantitative Tissue Proteomics Analysis Reveals Versican as Potential Biomarker for Early-Stage Hepatocellular Carcinoma. J Proteome Res 15, 38-47 81. Kikuchi, T., Hassanein, M., Amann, J. M., Liu, Q., Slebos, R. J., Rahman, S. M., Kaufman, J. M., Zhang, X., Hoeksema, M. D., Harris, B. K., Li, M., Shyr, Y., Gonzalez, A. L., Zimmerman, L. J., Liebler, D. C., Massion, P. P., and Carbone, D. P. (2012) In-depth proteomic analysis of nonsmall cell lung cancer to discover molecular targets and candidate biomarkers. Mol Cell Proteomics 11, 916-932 82. Kume, H., Muraoka, S., Kuga, T., Adachi, J., Narumi, R., Watanabe, S., Kuwano, M., Kodera, Y., Matsushita, K., Fukuoka, J., Masuda, T., Ishihama, Y., Matsubara, H., Nomura, F., and Tomonaga, T. (2014) Discovery of colorectal cancer biomarker candidates by membrane proteomic analysis and subsequent verification using selected reaction monitoring (SRM) and tissue microarray (TMA) analysis. Mol Cell Proteomics 13, 1471-1484 83. Humphries, J. M., Penno, M. A., Weiland, F., Klingler-Hoffmann, M., Zuber, A., Boussioutas, A., Ernst, M., and Hoffmann, P. (2014) Identification and validation of novel candidate protein biomarkers for the detection of human gastric cancer. Biochim Biophys Acta 1844, 1051-1058 84. Tsou, C. C., Tsai, C. F., Tsui, Y. H., Sudhir, P. R., Wang, Y. T., Chen, Y. J., Chen, J. Y., Sung, T. Y., and Hsu, W. L. (2010) IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation. Mol Cell Proteomics 9, 131-144 85. MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M., Finney, G. L., Frewen, B., Kern, R., Tabb, D. L., Liebler, D. C., and MacCoss, M. J. (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966-968 86. Kamburov, A., Wierling, C., Lehrach, H., and Herwig, R. (2009) ConsensusPathDB--a database for integrating human functional interaction networks. Nucleic acids research 37, D623-628 87. Mi, H., Muruganujan, A., Casagrande, J. T., and Thomas, P. D. (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8, 1551-1566 88. Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57 89. Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic acids research 37, 1-13 90. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13, 2498-2504 91. Kanehisa, M., and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 28, 27-30 92. Zhu, Y., Qiu, P., and Ji, Y. (2014) TCGA-assembler: open-source software for retrieving and processing TCGA data. Nature methods 11, 599-600 93. Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., and Smyth, G. K. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research 43, e47 94. Deutsch, E. W., Eng, J. K., Zhang, H., King, N. L., Nesvizhskii, A. I., Lin, B., Lee, H., Yi, E. C., Ossola, R., and Aebersold, R. (2005) Human Plasma PeptideAtlas. Proteomics 5, 3497-3500 95. Reiter, L., Rinner, O., Picotti, P., Huttenhain, R., Beck, M., Brusniak, M. Y., Hengartner, M. O., and Aebersold, R. (2011) mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Methods 8, 430-435 96. Carr, S. A., Abbatiello, S. E., Ackermann, B. L., Borchers, C., Domon, B., Deutsch, E. W., Grant, R. P., Hoofnagle, A. N., Huttenhain, R., Koomen, J. M., Liebler, D. C., Liu, T., MacLean, B., Mani, D. R., Mansfield, E., Neubert, H., Paulovich, A. G., Reiter, L., Vitek, O., Aebersold, R., Anderson, L., Bethem, R., Blonder, J., Boja, E., Botelho, J., Boyne, M., Bradshaw, R. A., Burlingame, A. L., Chan, D., Keshishian, H., Kuhn, E., Kinsinger, C., Lee, J. S., Lee, S. W., Moritz, R., Oses-Prieto, J., Rifai, N., Ritchie, J., Rodriguez, H., Srinivas, P. R., Townsend, R. R., Van Eyk, J., Whiteley, G., Wiita, A., and Weintraub, S. (2014) Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteomics 13, 907-917 97. Wenqi, D., Li, W., Shanshan, C., Bei, C., Yafei, Z., Feihu, B., Jie, L., and Daiming, F. (2009) EpCAM is overexpressed in gastric cancer and its downregulation suppresses proliferation of gastric cancer. J Cancer Res Clin Oncol 135, 1277-1285 98. Warneke, V. S., Behrens, H. M., Haag, J., Kruger, S., Simon, E., Mathiak, M., Ebert, M. P., and Rocken, C. (2013) Members of the EpCAM signalling pathway are expressed in gastric cancer tissue and are correlated with patient prognosis. Br J Cancer 109, 2217-2227 99. Jung, H., Jun, K. H., Jung, J. H., Chin, H. M., and Park, W. B. (2011) The expression of claudin-1, claudin-2, claudin-3, and claudin-4 in gastric cancer tissue. J Surg Res 167, e185-191 100. Shinozaki, A., Ushiku, T., Morikawa, T., Hino, R., Sakatani, T., Uozaki, H., and Fukayama, M. (2009) Epstein-Barr virus-associated gastric carcinoma: a distinct carcinoma of gastric phenotype by claudin expression profiling. J Histochem Cytochem 57, 775-785 101. Cheng, L., Yang, S., Yang, Y., Zhang, W., Xiao, H., Gao, H., Deng, X., and Zhang, Q. (2012) Global gene expression and functional network analysis of gastric cancer identify extended pathway maps and GPRC5A as a potential biomarker. Cancer Lett 326, 105-113 102. Liu, H., Zhang, Y., Hao, X., Kong, F., Li, X., Yu, J., and Jia, Y. (2016) GPRC5A overexpression predicted advanced biological behaviors and poor prognosis in patients with gastric cancer. Tumour Biol 37, 503-510 103. Yoshida, T., Kobayashi, T., Itoda, M., Muto, T., Miyaguchi, K., Mogushi, K., Shoji, S., Shimokawa, K., Iida, S., Uetake, H., Ishikawa, T., Sugihara, K., Mizushima, H., and Tanaka, H. (2010) Clinical omics analysis of colorectal cancer incorporating copy number aberrations and gene expression data. Cancer Inform 9, 147-161 104. Nicastri, A., Gaspari, M., Sacco, R., Elia, L., Gabriele, C., Romano, R., Rizzuto, A., and Cuda, G. (2014) N-glycoprotein analysis discovers new up-regulated glycoproteins in colorectal cancer tissue. J Proteome Res 13, 4932-4941 105. Kuo, Y. B., Chan, C. C., Chang, C. A., Fan, C. W., Hung, R. P., Hung, Y. S., Chen, K. T., Yu, J. S., Chang, Y. S., and Chan, E. C. (2011) Identification of phospholipid scramblase 1 as a biomarker and determination of its prognostic value for colorectal cancer. Mol Med 17, 41-47 106. Chambers, J. C., Zhang, W., Sehmi, J., Li, X., Wass, M. N., Van der Harst, P., Holm, H., Sanna, S., Kavousi, M., Baumeister, S. E., Coin, L. J., Deng, G., Gieger, C., Heard-Costa, N. L., Hottenga, J. J., Kuhnel, B., Kumar, V., Lagou, V., Liang, L., Luan, J., Vidal, P. M., Mateo Leach, I., O'Reilly, P. F., Peden, J. F., Rahmioglu, N., Soininen, P., Speliotes, E. K., Yuan, X., Thorleifsson, G., Alizadeh, B. Z., Atwood, L. D., Borecki, I. B., Brown, M. J., Charoen, P., Cucca, F., Das, D., de Geus, E. J., Dixon, A. L., Doring, A., Ehret, G., Eyjolfsson, G. I., Farrall, M., Forouhi, N. G., Friedrich, N., Goessling, W., Gudbjartsson, D. F., Harris, T. B., Hartikainen, A. L., Heath, S., Hirschfield, G. M., Hofman, A., Homuth, G., Hypponen, E., Janssen, H. L., Johnson, T., Kangas, A. J., Kema, I. P., Kuhn, J. P., Lai, S., Lathrop, M., Lerch, M. M., Li, Y., Liang, T. J., Lin, J. P., Loos, R. J., Martin, N. G., Moffatt, M. F., Montgomery, G. W., Munroe, P. B., Musunuru, K., Nakamura, Y., O'Donnell, C. J., Olafsson, I., Penninx, B. W., Pouta, A., Prins, B. P., Prokopenko, I., Puls, R., Ruokonen, A., Savolainen, M. J., Schlessinger, D., Schouten, J. N., Seedorf, U., Sen-Chowdhry, S., Siminovitch, K. A., Smit, J. H., Spector, T. D., Tan, W., Teslovich, T. M., Tukiainen, T., Uitterlinden, A. G., Van der Klauw, M. M., Vasan, R. S., Wallace, C., Wallaschofski, H., Wichmann, H. E., Willemsen, G., Wurtz, P., Xu, C., Yerges-Armstrong, L. M., Alcohol Genome-wide Association, C., Diabetes Genetics, R., Meta-analyses, S., Genetic Investigation of Anthropometric Traits, C., Global Lipids Genetics, C., Genetics of Liver Disease, C., International Consortium for Blood, P., Meta-analyses of, G., Insulin-Related Traits, C., Abecasis, G. R., Ahmadi, K. R., Boomsma, D. I., Caulfield, M., Cookson, W. O., van Duijn, C. M., Froguel, P., Matsuda, K., McCarthy, M. I., Meisinger, C., Mooser, V., Pietilainen, K. H., Schumann, G., Snieder, H., Sternberg, M. J., Stolk, R. P., Thomas, H. C., Thorsteinsdottir, U., Uda, M., Waeber, G., Wareham, N. J., Waterworth, D. M., Watkins, H., Whitfield, J. B., Witteman, J. C., Wolffenbuttel, B. H., Fox, C. S., Ala-Korpela, M., Stefansson, K., Vollenweider, P., Volzke, H., Schadt, E. E., Scott, J., Jarvelin, M. R., Elliott, P., and Kooner, J. S. (2011) Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet 43, 1131-1138 107. Huang, H., Lu, Y., Min, L., Jiang, P., and Dai, L. (2015) Phospholipid Scramblase 1 Interacts with Midkine and Regulates Hepatic Cancer Cell Proliferation and Migration. Clin Lab 61, 1501-1508 108. Correa, P. (1988) A human model of gastric carcinogenesis. Cancer Res 48, 3554-3560 109. Rugge, M., Correa, P., Dixon, M. F., Hattori, T., Leandro, G., Lewin, K., Riddell, R. H., Sipponen, P., and Watanabe, H. (2000) Gastric dysplasia: the Padova international classification. Am J Surg Pathol 24, 167-176 110. de Vries, A. C., Haringsma, J., and Kuipers, E. J. (2007) The detection, surveillance and treatment of premalignant gastric lesions related to Helicobacter pylori infection. Helicobacter 12, 1-15 111. Cancer Genome Atlas Research, N. (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202-209 112. Wang, W. A., Groenendyk, J., and Michalak, M. (2014) Endoplasmic reticulum stress associated responses in cancer. Biochim Biophys Acta 1843, 2143-2149 113. Clarke, H. J., Chambers, J. E., Liniker, E., and Marciniak, S. J. (2014) Endoplasmic reticulum stress in malignancy. Cancer Cell 25, 563-573 114. Kang, J., Zhao, G., Lin, T., Tang, S., Xu, G., Hu, S., Bi, Q., Guo, C., Sun, L., Han, S., Xu, Q., Nie, Y., Wang, B., Liang, S., Ding, J., and Wu, K. (2013) A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells. Cancer Lett 339, 247-259 115. Naus, C. C., and Laird, D. W. (2010) Implications and challenges of connexin connections to cancer. Nat Rev Cancer 10, 435-441 116. Cronier, L., Crespin, S., Strale, P. O., Defamie, N., and Mesnil, M. (2009) Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal 11, 323-338 117. Liu, X., Cao, K., Xu, C., Hu, T., Zhou, L., Cao, D., Xiao, J., Luo, L., Guo, Y., and Qi, Y. (2015) GATA-3 augmentation down-regulates Connexin43 in Helicobacter pylori associated gastric carcinogenesis. Cancer Biol Ther 16, 987-996 118. Kurtenbach, S., Kurtenbach, S., and Zoidl, G. (2014) Gap junction modulation and its implications for heart function. Front Physiol 5, 82 119. Martin, T. A. (2014) The role of tight junctions in cancer metastasis. Semin Cell Dev Biol 36, 224-231 120. Iravani, O., Tay, B. W., Chua, P. J., Yip, G. W., and Bay, B. H. (2013) Claudins and gastric carcinogenesis. Exp Biol Med (Maywood) 238, 344-349 121. Ding, L., Lu, Z., Lu, Q., and Chen, Y. H. (2013) The claudin family of proteins in human malignancy: a clinical perspective. Cancer Manag Res 5, 367-375 122. Krause, G., Winkler, L., Mueller, S. L., Haseloff, R. F., Piontek, J., and Blasig, I. E. (2008) Structure and function of claudins. Biochim Biophys Acta 1778, 631-645 123. Fedwick, J. P., Lapointe, T. K., Meddings, J. B., Sherman, P. M., and Buret, A. G. (2005) Helicobacter pylori activates myosin light-chain kinase to disrupt claudin-4 and claudin-5 and increase epithelial permeability. Infect Immun 73, 7844-7852 124. Riquelme, I., Saavedra, K., Espinoza, J. A., Weber, H., Garcia, P., Nervi, B., Garrido, M., Corvalan, A. H., Roa, J. C., and Bizama, C. (2015) Molecular classification of gastric cancer: Towards a pathway-driven targeted therapy. Oncotarget 6, 24750-24779<BR | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77924 | - |
dc.description.abstract | Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. At present, however, the reported biomarkers, such as CEA, CA19-9, and CA72-4, have low sensitivity and specificity for diagnosis of gastric cancer (GC). Development of molecular biomarker for early diagnosis of GC is urgently needed. The membrane proteins hold promises for cancer detection because most FDA-approved cancer biomarkers are secreted membrane proteins. In attempt to identify GC biomarker with better diagnosis ability and reliability, in this study, we established a label-free discovery-through-verification proteomics pipeline to discover and verify biomarker candidates.
In the discovery phase, membrane proteomics analysis combining an efficient gel-assisted digestion protocol and a label-free quantification method were performed for 24 pairs of tumor and adjacent normal tissues from GC patients, including 8 and 16 from early stage (I and II stages) and late stages, respectively. Under 1.7% false discovery rate (FDR) and 95% confidence interval, the analysis quantified 1746 proteins, including the previously reported GC biomarkers: CEA, CA15-3, and CA125. We further filtered 35 potential biomarker candidates based on the following criteria: (1) Experimental evidence of presence in serum or informatic evidence showing secretion ability; (2) High frequency of overexpression (tumor/normal ratio ≧2) among 50% of total patients or stage-1 patients were candidate biomarkers for high detection sensitivity or early diagnosis of GC, respectably. By Western blotting (WB) analysis in normal and GC cell lines, only five proteins, BRI3BP, CLDN3, EPCAM, MME, and PLSCR1 have good quality of antibody to show positive staining. CLDN3, EPCAM, and PLSCR1 show significant overexpression in cancer cells. However, many of them do not have high-quality antibody or immunoassay available for quantification. In the second part of verification stage, the 35 biomarkers were verified by optimized MRM-MS approach by the following steps: (1) Best transitions for each candidate were selected from our in-house membrane proteome spectral libraries, SRMAtlas or PeptideAtlas; (2) selected transitions were tested on mixed gastric cancer cell lines and tissues to evaluate their reliability. A total of 815 transition from 163 peptides were selected for the 35 candidate proteins; 32 candidates show overexpression in at least 50% of patients or at least two stage-I patients except COX6BA and MME. The MRM-MS quantification result revealed that 8 candidates including ABHD12, CLDN3, DHCR7, EPCAM, GPRC5A, PLSCR1, SE1L1, and TMCO1 show >2-fold overexpression in tumor of more than 75% patients. To further evaluate the clinical relevance of these candidates, 3 candidates, EPCAM, CLDN3, and PLSCR1, with available antibodies were examined by tissue microarray (TMA) in 97 GC patients. These 3 candidates exhibited excellent discrimination between GC and normal mucosa (AUC range from 0,818 to 0.892). In addition, combined use of these 3 candidates as the biomarker panel has the best AUC (0.964). The results further showed that overexpression of EPCAM and CLDN3 not only occur in tumor part but also in the precancerous lesion, intestinal metaplasia (IM). In contrary, PLSCR1 is only significantly overexpressed in tumor tissue. These results suggested the promise of this biomarker panel for prediction and early diagnosis GC. Furthermore, the functional roles of the 8 candidates in GC tumorigenesis were studied by the protein-protein interaction (PPI) network constructed based on our membrane proteomic dataset and the TCGA Stomach Adenocarcinoma transcriptome datasets. These biomarker candidates and their PPI neighbors are majorly enriched in VEGF, MAPK and PI3K/AKT signaling pathway which had been reported to be involved in GC and PI3K, AKT, VEGFR, and EGFR have been targeted for treatment of GC. The results demonstrated the power of tissue membrane proteomics for the discovery of valuable biomarker candidates for prediction and early diagnosis of GC. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:37:31Z (GMT). No. of bitstreams: 1 ntu-106-D99b46008-1.pdf: 4944834 bytes, checksum: 5db0b118b8f1e892a39560ee5e80ee40 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV Abbreviations VI Chapter 1 Introduction 1 1.1 Current Status of Gastric Cancer and Diagnosis 1 1.2 Tissue Membrane Proteomics in Cancer Biomarker Discovery 3 1.3 Multiple Reaction Monitoring Mass Spectrometry (MRM-MS) for Targeted Verification 8 1.4 Thesis objective 11 Chapter 2 Material and method 13 2.1 Material 13 2.2 Tissue Samples 14 2.3 Purification of Membrane Protein from Paired Normal and Tumor Tissues 14 2.4 Gel-assisted Digestion of Membrane Proteins 15 2.5 LC-MS/MS Analysis 16 2.6 Protein Identification and Label-free Quantification 17 2.7 Protein Annotation 18 2.8 MRM Assay Development 18 2.9 Cell Culture 19 2.10 Western Blottng (WB) 20 2.11 Immunohistochemistry (IHC) Staining 20 2.12 Network Construction, GO and KEGG Enrichment Analyses and Shortest Path Analysis 22 2.13 The Cancer Genome Atlas (TCGA) RNA-seq Data Analysis 22 2.14 Identification of Possible Biomarker Interacting Pathway Protein 22 2.15 Statistical Analysis 23 Chapter 3 Personalized Membrane Proteome Profiling on Paired Tumor and Adjacent Normal Tissues in Gastric Cancer Patients 24 3.1 Material Mass Spectrometry (MS)-based Discovery-to-Verification Workflow for Mining Tissue Membrane Proteins as Candidates for Cancer Diagnosis 24 3.2 Differentially Expressed Proteins in Individualized Membrane Proteome Profile 25 3.3 Selection of Biomarker Candidates from Individualized Tissue Membrane Proteomics Profiles in Gastric Cancer Patients 26 Chapter 4 Multiple Reaction Monitoring (MRM)-MS Assay for Verification of targeted biomarker Candidates 28 4.1 Development of MRM-MS Approach for Verification of Selected Membrane Protein Candidates 28 4.2 Quantified of Candidates Markers by MRM-MS Approach in Gastric Cancer Tissue 31 Chapter 5 Validation of CLDN3, EPCAM, and PLSCR1 by Tissue Microarray 34 5.1 Antibody-based Validations of Selected Membrane Protein Candidates 34 5.2 Expression Level of Selected Candidates in Normal Mucosa, Intestinal Metaplasia, and Tumor 36 Chapter 6 Integrated Functional Analysis of Proteomic and Transcriptomic Expressions of the GC Biomarker Candidates 38 6.1 Functional Enrichment Analysis from Gene Ontology and KEGG Pathway Databases 38 6.2 VEGF, MAPK, and PI3K/AKT Signaling Pathway are Major Regulated by Our Selected Candidates 40 Chapter 7 Discussion 42 7.1 Mining Biomarkers by Personalized Membrane Proteomics Analysis Provided Better Candidates with Improved Detection Sensitivity 42 7.2 Development MRM-MS Assay for Verification of Multiple Candidates in “One Shot” Assay and Prioritization Promising Candidates for Further Validation 43 7.3 Biomarker Panel of EPCAM + CLDN3 + PLSCR1 May be Used as A Sensitive and Specific Diagnostic Screening Test 45 7.4 Integrated Proteomic and Genomic Analysis of Gastric Cancer 49 Chapter 8 Conclusions and Future Perspectives 50 Reference 53 Figures 69 Tables 90 Appendixes 114 | |
dc.language.iso | en | |
dc.title | 利用個人化膜蛋白質體學與多重反應監測質譜法探勘胃癌診斷生物指標 | zh_TW |
dc.title | Mining biomarkers for gastric cancer diagnosis by personalized membrane proteomics and multiple reaction monitoring mass spectrometry analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 陳玉如(Yu-Ju Chen) | |
dc.contributor.oralexamcommittee | 蕭宏昇(Michael Hsiao),廖寶琦(Pao-Chi Liao),吳登強(Deng-Chyang Wu),陳志榮(Chi-Long Chen) | |
dc.subject.keyword | 胃癌,生物標記蛋白,蛋白質體學,重反應監測質譜法, | zh_TW |
dc.subject.keyword | Gastric cancer,Biomarker,Membrane proteome,multiple reaction monitoring mass spectrometry analysis, | en |
dc.relation.page | 198 | |
dc.identifier.doi | 10.6342/NTU201702865 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-09 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-D99b46008-1.pdf 目前未授權公開取用 | 4.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。