請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77919完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱雪萍(Hsueh-Ping Chu) | |
| dc.contributor.author | Yu-Chen Chen | en |
| dc.contributor.author | 陳昱甄 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:37:24Z | - |
| dc.date.available | 2025-08-20 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | 1. Blackburn, E.H., Switching and signaling at the telomere. Cell, 2001. 106(6): p. 661-73. 2. McClintock, B., The Behavior in Successive Nuclear Divisions of a Chromosome Broken at Meiosis. Proc Natl Acad Sci U S A, 1939. 25(8): p. 405-16. 3. Sandell, L.L. and V.A. Zakian, Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell, 1993. 75(4): p. 729-39. 4. Murnane, J.P., Telomere dysfunction and chromosome instability. Mutat Res, 2012. 730(1-2): p. 28-36. 5. Harley, C.B. and B. Villeponteau, Telomeres and telomerase in aging and cancer. Curr Opin Genet Dev, 1995. 5(2): p. 249-55. 6. de Lange, T., Activation of telomerase in a human tumor. Proc Natl Acad Sci U S A, 1994. 91(8): p. 2882-5. 7. Lingner, J., J.P. Cooper, and T.R. Cech, Telomerase and DNA end replication: no longer a lagging strand problem? Science, 1995. 269(5230): p. 1533-4. 8. Hug, N. and J. Lingner, Telomere length homeostasis. Chromosoma, 2006. 115(6): p. 413-25. 9. Levy, M.Z., et al., Telomere end-replication problem and cell aging. J Mol Biol, 1992. 225(4): p. 951-60. 10. Deng, Y., S.S. Chan, and S. Chang, Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer, 2008. 8(6): p. 450-8. 11. Blackburn, E.H., E.S. Epel, and J. Lin, Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science, 2015. 350(6265): p. 1193-8. 12. Heidinger, B.J., et al., Telomere length in early life predicts lifespan. Proc Natl Acad Sci U S A, 2012. 109(5): p. 1743-8. 13. Greider, C.W. and E.H. Blackburn, Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 1985. 43(2 Pt 1): p. 405-13. 14. Nergadze, S.G., et al., CpG-island promoters drive transcription of human telomeres. RNA, 2009. 15(12): p. 2186-94. 15. Azzalin, C.M., et al., Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 2007. 318(5851): p. 798-801. 16. Schoeftner, S. and M.A. Blasco, Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol, 2008. 10(2): p. 228-36. 17. Redon, S., P. Reichenbach, and J. Lingner, The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res, 2010. 38(17): p. 5797-806. 18. Pfeiffer, V. and J. Lingner, TERRA promotes telomere shortening through exonuclease 1-mediated resection of chromosome ends. PLoS Genet, 2012. 8(6): p. e1002747. 19. Diman, A., et al., Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription. Sci Adv, 2016. 2(7): p. e1600031. 20. Chan, M.C. and Z. Arany, The many roles of PGC-1alpha in muscle--recent developments. Metabolism, 2014. 63(4): p. 441-51. 21. Rosenberg, I.H., Sarcopenia: origins and clinical relevance. J Nutr, 1997. 127(5 Suppl): p. 990S-991S. 22. Roubenoff, R., Origins and clinical relevance of sarcopenia. Can J Appl Physiol, 2001. 26(1): p. 78-89. 23. Delmonico, M.J., et al., Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc, 2007. 55(5): p. 769-74. 24. Ribeiro, S.M. and J.J. Kehayias, Sarcopenia and the analysis of body composition. Adv Nutr, 2014. 5(3): p. 260-7. 25. Roubenoff, R., Sarcopenia: effects on body composition and function. J Gerontol A Biol Sci Med Sci, 2003. 58(11): p. 1012-7. 26. Lau, E.M., et al., Prevalence of and risk factors for sarcopenia in elderly Chinese men and women. J Gerontol A Biol Sci Med Sci, 2005. 60(2): p. 213-6. 27. Waters, D.L., R.N. Baumgartner, and P.J. Garry, Sarcopenia: current perspectives. J Nutr Health Aging, 2000. 4(3): p. 133-9. 28. Volpi, E., R. Nazemi, and S. Fujita, Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care, 2004. 7(4): p. 405-10. 29. Tromm, C.B., et al., The role of continuous versus fractionated physical training on muscle oxidative stress parameters and calcium-handling proteins in aged rats. Aging Clin Exp Res, 2016. 28(5): p. 833-41. 30. Cawthon, R.M., Telomere measurement by quantitative PCR. Nucleic Acids Res, 2002. 30(10): p. e47. 31. Shammas, M.A., Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care, 2011. 14(1): p. 28-34. 32. Osthus, I.B., et al., Telomere length and long-term endurance exercise: does exercise training affect biological age? A pilot study. PLoS One, 2012. 7(12): p. e52769. 33. de Sousa, C.V., et al., The Antioxidant Effect of Exercise: A Systematic Review and Meta-Analysis. Sports Med, 2017. 47(2): p. 277-293. 34. Gleeson, M., et al., The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol, 2011. 11(9): p. 607-15. 35. Puterman, E., et al., The power of exercise: buffering the effect of chronic stress on telomere length. PLoS One, 2010. 5(5): p. e10837. 36. Werner, C., et al., Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation, 2009. 120(24): p. 2438-47. 37. Graf, M., et al., Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle. Cell, 2017. 170(1): p. 72-85 e14. 38. Porro, A., et al., Functional characterization of the TERRA transcriptome at damaged telomeres. Nat Commun, 2014. 5: p. 5379. 39. Liguori, I., et al., Oxidative stress, aging, and diseases. Clin Interv Aging, 2018. 13: p. 757-772. 40. Galigniana, N.M., et al., Oxidative stress induces transcription of telomeric repeat-containing RNA (TERRA) by engaging PKA signaling and cytoskeleton dynamics. Biochim Biophys Acta Mol Cell Res, 2020. 1867(4): p. 118643. 41. Savela, S., et al., Physical activity in midlife and telomere length measured in old age. Exp Gerontol, 2013. 48(1): p. 81-4. 42. Zykovich, A., et al., Genome-wide DNA methylation changes with age in disease-free human skeletal muscle. Aging Cell, 2014. 13(2): p. 360-6. 43. Livshits, G., et al., Contribution of Heritability and Epigenetic Factors to Skeletal Muscle Mass Variation in United Kingdom Twins. J Clin Endocrinol Metab, 2016. 101(6): p. 2450-9. 44. Gensous, N., et al., Age-Related DNA Methylation Changes: Potential Impact on Skeletal Muscle Aging in Humans. Front Physiol, 2019. 10: p. 996. 45. Negishi, Y., et al., Identification of chromatin marks at TERRA promoter and encoding region. Biochem Biophys Res Commun, 2015. 467(4): p. 1052-7. 46. Montero, J.J., et al., TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin. Nat Commun, 2018. 9(1): p. 1548. 47. Li, X., et al., Evaluation of eight reference genes for quantitative polymerase chain reaction analysis in human T lymphocytes cocultured with mesenchymal stem cells. Mol Med Rep, 2015. 12(5): p. 7721-7. 48. Deng, Z., et al., A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection. EMBO J, 2012. 31(21): p. 4165-78. 49. Feretzaki, M., P. Renck Nunes, and J. Lingner, Expression and differential regulation of human TERRA at several chromosome ends. RNA, 2019. 25(11): p. 1470-1480. 50. Feretzaki, M. and J. Lingner, A practical qPCR approach to detect TERRA, the elusive telomeric repeat-containing RNA. Methods, 2017. 114: p. 39-45. 51. Porro, A., et al., Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol, 2010. 30(20): p. 4808-17. 52. Vitelli, V., et al., Telomeric Repeat-Containing RNAs (TERRA) Decrease in Squamous Cell Carcinoma of the Head and Neck Is Associated with Worsened Clinical Outcome. Int J Mol Sci, 2018. 19(1). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77919 | - |
| dc.description.abstract | 端粒是個位於染色體末端,具有保護染色體防止被降解的高重複性DNA結構。現今研究已知,隨著年紀的增長,端粒的長度也會隨著每次的細胞分裂而隨之縮短。因此,端粒的長度也被視為細胞老化的重要指標。而近期研究指出,一段從亞端粒區(Subtelomeric)轉錄出來的長鏈非編碼(未轉譯成蛋白質表現基因的RNA)端粒重複序列RNA(TERRA),在酵母菌實驗中有參與細胞老化的過程。但TERRA在人類中扮演何種調控角色仍是存在許多未知的。因此,我們將著重於研究老化與其相關疾病在衰老的過程中,端粒長度以及TERRA表現量的改變。肌少症(Sarcopenia)是近期大家熱衷於討論的老化相關疾病,特徵是骨骼肌質量的流失以及功能強度下降。為此,我們分別收集了年輕(< 65歲),老年(≥ 65歲),和肌少症(≥ 65歲)的血液白細胞層(Buffy coat)。我們將肌少症病患介入為期12週,每週2次的肌力訓練,並在介入前與介入後分別抽取血液白細胞層。實驗結果發現,端粒長度確實在老化後有明顯地縮短,但患有肌少症的老人和一般老年人端粒長度並沒有差異,也沒有在運動後發生改變。但有趣的是,TERRA表現量卻在一般老年有顯著高於年輕以及肌少症者的情況,而肌少症者介入短時間的肌肉訓練後TERRA表現量有些微上升的趨勢。這些結果顯示TERRA轉錄會隨著年紀而上升,但因肌少症導致轉錄量下降。不過短時間的肌肉訓練可以使肌少症者轉錄量些微上升。 | zh_TW |
| dc.description.abstract | Telomeres contain repetitive DNA sequences that can form a capping structure to protect linear chromosome ends from degradation. As human aging, telomere length will be shortened as cells divide. Therefore, telomere length has been considered as a marker of cellular aging. Recent studies have reported that Telomeric Repeat-Containing RNAs (TERRA), a long non-coding RNA, which is transcribed from the subtelomeric regions toward telomeres may participate in cellular aging in budding yeast. But the function of TERRA in humans is still largely unknown. Here I focus on TERRA expression and telomere length during human natural aging, and in patients with an aging-associated disease sarcopenia, a syndrome characterized by the loss of skeletal muscle mass and strength. To study TERRA expression and telomere length, we collected RNA and genomic DNA from buffy coats of young (< 65 years old), elderly (≥ 65 years old), and elderly patient (≥ 65 years old) groups. The buffy coat samples were also collected from patients before and after muscle training, which performed 2 times a week for twelve weeks. Compared to the young group, the telomere length of elderly was significantly decreased, but there was no significant difference between pre- and post-exercise elderly patient groups. Interestingly, elderly control group showed a higher TERRA level than young control and case groups, indicating that TERRA transcription increased during aging, but decreased in sarcopenia patients. Muscle training for twelve weeks may slightly rescue the TERRA transcription in sarcopenia patients. These results reveal that TERRA expression is associated with human aging and downregulated in sarcopenia patients, and muscle training could upregulate TERRA expression. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:37:24Z (GMT). No. of bitstreams: 1 U0001-1608202017174200.pdf: 3260587 bytes, checksum: 87247019a20f1cbc04c1f90024c831e8 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF SUPPLEMENTARY FIGURES xii LIST OF TABLE xiii Chapter 1 Introduction 1 1.1 Telomere biology 1 1.2 End replication problem caused telomere shortening 1 1.3 Telomere length is a biomarker of organismal aging 2 1.4 Telomerase 3 1.5 Subtelomeres 3 1.6 Telomeric Repeat-Containing RNAs (TERRA) 4 1.7 TERRA expression increases after exercise 4 1.8 Sarcopenia 5 Chapter 2 Materials and Methods 7 2.1 Research subjects 7 2.2 Study participants 7 2.3 Cell lines and culture conditions 8 2.4 DNA extraction 8 2.5 Telomere length measurement 10 2.6 DNA Quantitative PCR (qPCR) 10 2.7 RNA extraction 11 2.8 cDNA synthesis 12 2.9 cDNA synthesis workflow 14 2.10 Quantitative RT-PCR (RT-qPCR) 14 2.11 TERRA primer design 15 Chapter 3 Results 16 3.1 Telomere length decline during aging process. 16 3.2 Endurance exercise for twelve weeks has no significant effect on telomere lengthening in sarcopenia patients. 17 3.3 TERRA expression level increased during the aging process. 20 3.4 TERRA expression alters in sarcopenia patients, and may increase after endurance of muscle training exercise for twelve weeks. 21 3.5 TERRA expression from individual chromosomes alters with aging. 22 3.6 TERRA 2q increases with the aging process, but not in sarcopenia patients after endurance of muscle training for twelve weeks. 23 3.7 TERRA 15q increased after exercise in muscle biopsy, but not in leukocytes. 25 3.8 Conclusion 26 Chapter 4 Discussion 27 Chapter 5 Supplementary data 57 Chapter 6 Reference 78 Chapter 7 Abbreviations 83 | |
| dc.language.iso | en | |
| dc.subject | 肌少症 | zh_TW |
| dc.subject | TERRA | zh_TW |
| dc.subject | 端粒長度 | zh_TW |
| dc.subject | 血液白細胞層 | zh_TW |
| dc.subject | 端粒 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | 運動 | zh_TW |
| dc.subject | buffy coat | en |
| dc.subject | telomere | en |
| dc.subject | Aging | en |
| dc.subject | telomere length | en |
| dc.subject | exercise | en |
| dc.subject | TERRA | en |
| dc.subject | sarcopenia | en |
| dc.title | 長鏈非編碼TERRA RNA在人類老化過程中扮演的角色 | zh_TW |
| dc.title | The role of long non-coding RNA – TERRA in human aging | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 韓德生(Der- Sheng Han),陳律佑(Liuh-Yow Chen) | |
| dc.subject.keyword | 老化,端粒,血液白細胞層,端粒長度,TERRA,肌少症,運動, | zh_TW |
| dc.subject.keyword | Aging,telomere,buffy coat,telomere length,TERRA,sarcopenia,exercise, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU202003596 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202017174200.pdf 未授權公開取用 | 3.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
